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1. Introduction

The concept of statistical convergence play a vital role not only in pure mathematics but
also in other branches of science involving mathematics, especially in information theory,
computer science, biological science, dynamical systems, geographic information systems,
population modeling, and motion planning in robotics.

The concept of convergence of sequences of points has been extended by several authors
to convergence of sequences of sets. The one of these such extensions considered in this
paper is the concept of Wijsman convergence. We shall define Wijsman statistically almost
λ-convergence for sequences of sets and establish some basic results regarding this notions.

The idea of statistical convergence was formerly given under the name “almost conver-
gence” by Zygmund in the first edition of his celebrated monograph published in Warsaw in
1935 [13]. The concept was formally introduced by Steinhaus [11] and Fast [2] and later was
introduced by Schoenberg [10], and also independently by Buck [1]. A lot of developments
have been made in this areas after the works of S̆alát [12] and Fridy [4]. Over the years
and under different names statistical convergence has been discussed in the theory of Fourier
analysis, ergodic theory and number theory. In the recent years, generalization of statistical
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convergence have appeared in the study of strong integral summability and the structure of
ideals of bounded continuous functions on Stone-C̆ech compactification of the natural num-
bers.

A real or complex number sequence x =
�

xk

�

is said to be statistically convergent to L if
for every ε > 0

lim
n

1

n

�

�

�

¦

k ≤ n :
�

�xk − L
�

�≥ ε
©

�

�

�= 0.

In this case, we write S − lim x = L or xk → L(S) and S denotes the set of all statistically
convergent sequences.

The generalized de la Vallée-Poussin mean is defined by

tn (x) =
1

λn

∑

k∈In

xk

where In =
�

n−λn+ 1, n
�

. A sequence x =
�

xk

�

is said to be (V,λ)−summable to number L

[5] if tn (x)→ L as n→∞. If λn = n, then (V,λ)−summability reduces to (C , 1)-summability.
Mursaleen [8] defined λ−statistically convergent sequence as follows: A sequence

x =
�

xk

�

is said to be λ− statistically convergent to the number L if for every ε > 0

lim
n→∞

1

λn

�

�

�

¦

k ∈ In :
�

�xk − L
�

�≥ ε
©

�

�

�= 0.

Let Sλ denotes the set of all λ−statistically convergent sequences. If λn = n, then Sλ is the
same as S.

The idea of almost convergence of sequences of points was introduced by Lorentz [6]. A
sequence x = (xk) is said to be almost convergent to L if

lim
n→∞

1

n

n
∑

k=1

xk+m = L uniformly in m.

Maddox [7] and Freedman et al. [3] introduced the notion of strong almost convergence
of sequences of points independently. A sequence x = (xk) is said to be strongly almost

convergent to L if

lim
n→∞

1

n

n
∑

k=1

|xk+m− L|= 0 uniformly in m.

Let `∞, c, ac and |ac| denote the sets of all bounded , convergent, almost convergent and
strongly almost convergent sequences, respectively. It is known [7] that

c ⊂ ac ⊂ |ac| ⊂ `∞.

2. Wijsman Convergence and Preliminaries

Let (X ,ρ) be a metric space. For any point x ∈ X and any non-empty subset A ⊂ X , the
distance from x to A is defined by

d(x ,A) = inf
y∈A
ρ
�

x , y
�

.



B. Hazarika, A. Esi / Eur. J. Pure Appl. Math, 6 (2013), 137-146 139

Definition 1 ([9]). Let (X ,ρ) be a metric space. For any non-empty closed subsets A,Ak ⊂ X

(k ∈ N), we say that the sequence
�

Ak

�

is Wijsman convergent to A if limk d(x ,Ak) = d(x ,A) for

each x ∈ X . In this case we write W − lim Ak = A.

The concepts of Wijsman statistical convergence and boundedless for the sequence
�

Ak

�

were given by Nuray and Rhoades [9] as follows:

Definition 2. Let (X ,ρ) be a metric space. For any non-empty closed subsets A,Ak ⊂ X (k ∈ N),
we say that the sequence

�

Ak

�

is Wijsman statistical convergent to A if the sequence
�

d(x ,Ak)
�

is

statistically convergent to d(x ,A), i.e., for ε > 0 and for each x ∈ X

lim
n

1

n

�

�

�

¦

k ≤ n :
�

�d(x ,Ak)− d(x ,A)
�

�≥ ε
©

�

�

�= 0.

In this case, we write st − limk Ak = A or Ak→ A(WS).

The sequence
�

Ak

�

is bounded if supk d(x ,Ak)<∞ for each x ∈ X . The set of all bounded
sequences of sets denoted by L∞.

Definition 3 ([9]). Let (X ,ρ) be a metric space. For any non-empty closed subsets A,Ak ⊂ X ,

we say {Ak} is Wijsman Cesaro summable to A if {d(x ,Ak)} is Cesaro summable to d(x ,A), i.e.

for each x ∈ X ,

lim
n→∞

1

n

n
∑

k=1

d(x ,Ak) = d(x ,A).

Definition 4 ([9]). Let (X ,ρ) be a metric space. For any non-empty closed subsets A,Ak ⊂ X , we

say {Ak} is Wijsman strongly Cesaro summable to A if {d(x ,Ak)} is Cesaro summable to d(x ,A),
i.e. for each x ∈ X ,

lim
n→∞

1

n

n
∑

k=1

|d(x ,Ak)− d(x ,A)|= 0.

Definition 5 ([9]). Let (X ,ρ) be a metric space. For any non-empty closed subsets A,Ak ⊂ X ,

we say {Ak} is Wijsman almost convergent to A if for each x ∈ X ,

lim
n→∞

1

n

n
∑

k=1

d(x ,Ak+m) = d(x ,A) uniformly in m.

Definition 6 ([9]). Let (X ,ρ) be a metric space. For any non-empty closed subsets A,Ak ⊂ X ,

we say {Ak} is Wijsman strongly almost convergent to A if for each x ∈ X ,

lim
n→∞

1

n

n
∑

k=1

|d(x ,Ak+m)− d(x ,A)|= 0 uniformly in m.

Let L∞, C ,AC and |AC | denote the sets of all bounded , Wijsman convergent, Wijsman almost

convergent and Wijsman strongly almost convergent sequences, respectively. It is known [9] that

C ⊂ AC ⊂ |AC | ⊂ L∞.
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Definition 7 ([9]). Let (X ,ρ) be a metric space. For any non-empty closed subsets A,Ak ⊂ X ,

we say {Ak} is Wijsman almost statistically convergent to A if for each ε > 0 and for each x ∈ X ,

lim
n→∞

1

n
|{k ≤ n : |d(x ,Ak+m)− d(x ,A)| ≥ ε}|= 0 uniformly in m.

3. Wijsman Statistically Almost λ-convergence

In this section, we will define Wijsman strongly λ-summable and Wijsman statistically al-
most λ-convergence of sequences of sets and will give the relations between Wijsman strongly
λ-summable and Wisjman statistically almost λ− convergence of sequences of sets.

Let λ =
�

λn

�

be a non-decreasing sequence of positive numbers such that
λn+1 ≤ λn+ 1,λ1 = 1,λn→∞ as n→∞ and In =

�

n−λn+ 1, n
�

.

Definition 8. Let (X ,ρ) be a metric space. For any non-empty closed subsets A,Ak ⊂ X , we say

{Ak} is Wijsman λ-summable to A if for each x ∈ X ,

lim
n→∞

1

λn

∑

k∈In

d(x ,Ak) = d(x ,A).

If λn = n, then Wijsman λ-summable reduces to Wijsman Cesaro summable.

Definition 9. Let (X ,ρ) be a metric space. For any non-empty closed subsets A,Ak ⊂ X , we say

{Ak} is Wijsman strongly λ-summable to A if for each x ∈ X ,

lim
n→∞

1

λn

∑

k∈In

|d(x ,Ak)− d(x ,A)|= 0.

In this case, we write wW
λ
− limk Ak = A or Ak→ A

�

wW
λ

�

and

wW
λ =







�

Ak

�

: lim
n

1

λn

∑

k∈In

�

�d(x ,Ak)− d(x ,A)
�

�= 0







.

If λn = n, then Wijsman strongly λ-summable reduces to Wijsman strongly Cesaro summable,

i.e.

wW =

(

�

Ak

�

: lim
n

1

n

∑

k∈N

�

�d(x ,Ak)− d(x ,A)
�

�= 0

)

.

Definition 10. Let (X ,ρ) be a metric space. For any non-empty closed subsets A,Ak ⊂ X , we say

{Ak} is Wijsman almost λ-convergent to A if for each x ∈ X ,

lim
n→∞

1

λn

∑

k∈In

d(x ,Ak+m) = d(x ,A) uniformly in m.
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If λn = n, then Wijsman almost λ-convergent reduces to Wijsman almost convergent. In
special case m= 0, then Wijsman almost λ-convergent reduces to Wijsman λ-summable.

Definition 11. Let (X ,ρ) be a metric space. For any non-empty closed subsets A,Ak ⊂ X , we say

{Ak} is Wijsman strongly almost λ-convergent to A if for each x ∈ X ,

lim
n→∞

1

λn

∑

k∈In

|d(x ,Ak+m)− d(x ,A)|= 0 uniformly in m.

In this case, we write wW
λ − limk Ak = A or Ak→ A

�

wW
λ

�

.

If λn = n, then Wijsman strongly almost λ-convergent reduces to Wijsman strongly almost
convergent. In special case m = 0, then Wijsman strongly almost λ-convergent reduces to
Wijsman strongly λ-summable.

Definition 12. Let (X ,ρ) be a metric space. For any non-empty closed subsets A,Ak ⊂ X

(k ∈ N), we say that the sequence
�

Ak

�

is Wijsman statistically λ-convergent to A if the sequence
�

d(x ,Ak)
�

is statistically λ− convergent to d(x ,A), i.e., for ε > 0 and for each x ∈ X

lim
n

1

λn

�

�

�

¦

k ∈ In :
�

�d(x ,Ak)− d(x ,A)
�

�≥ ε
©

�

�

�= 0.

In this case, we write sW
λ
− limk Ak = A or Ak→ A

�

sW
λ

�

.

If λn = n, then Wijsman statistical λ-convergent reduces to Wijsman statistical convergent.

Definition 13. Let (X ,ρ) be a metric space. For any non-empty closed subsets A,Ak ⊂ X , we say

{Ak} is Wijsman almost statistically λ-convergent to A if for each ε > 0 and for each x ∈ X ,

lim
n→∞

1

λn

|{k ∈ In : |d(x ,Ak+m)− d(x ,A)| ≥ ε}|= 0 uniformly in m.

In this case, we write sW
λ − limk Ak = A or Ak→ A

�

sW
λ

�

.

If λn = n, then Wijsman almost statistically λ-convergent reduces to Wijsman almost
statistically convergent. In special case m= 0, then Wijsman almost statistically λ-convergent
reduces to Wijsman statistically λ-convergent.

Example 1. Let X = R2 and the sequence
�

Ak

�

is defined as follows:

Ak =

(
¦
�

x , y
�

: x2+
�

y − 1
�2
= k−1
©

, if n−
��

�λn

�

�

�

+ 1≤ k ≤ n, k is square integer

{(0,0)} , otherwise
.

Then the sequence
�

Ak

�

is Wijsman λ−statistical convergent to A= {(0,0)} since

lim
n

1

λn

�

�

�

¦

k ∈ In :
�

�d(x ,Ak)− d(x , {(0,0)})
�

�≥ ε
©

�

�

�= 0.

But it is not Wijsman convergent.
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Theorem 1. Let (X ,ρ) be a metric space and A,Ak ⊂ X (k ∈ N) be non-empty closed subsets of

X . Then

a) wW
λ ⊂ sW

λ and the inclusion is proper.

b) Let
�

Ak

�

∈ L∞, then sW
λ ⊂ wW

λ .

c) sW
λ ∩ L∞ = wW

λ ∩ L∞, where

L∞ = {(Ak) : sup
k,m
|d(x ,Ak+m)− d(x ,A)|<∞}.

Proof.

a) Let ε > 0 and
�

Ak

�

∈ wW
λ . Then for all m ∈ N we can write

∑

k∈In

�

�d(x ,Ak+m)− d(x ,A)
�

�≥
∑

k∈In

|d(x ,Ak+m)−d(x ,A)|≥ε

�

�d(x ,Ak+m)− d(x ,A)
�

�

≥ε
�

�

�

¦

k ∈ In :
�

�d(x ,Ak+m)− d(x ,A)
�

�≥ ε
©

�

�

�

which gives the result. To show that the inclusion is strict, we define the sequence
�

Ak

�

as
follows:

Ak =

(

{k} , if n−
��

�λn

�

�

�

+ 1≤ k ≤ n;

{0} , otherwise

It is clear that
�

Ak

�

/∈ L∞ and for ε > 0,

lim
n

1

λn

�

�

�

¦

k ∈ In :
�

�d(x ,Ak+m)− d(x , {0})
�

�≥ ε
©

�

�

�= lim
n

1

λn

��

�λn

�

�

�

= 0.

So
�

Ak

�

∈ sW
λ , but

lim
n

1

λn

∑

k∈In

�

�d(x ,Ak+m)− d(x , {0})
�

�= lim
n

1

λn

���

�λn

�

�

����

�λn

�

�

�

+ 1
��

2
=

1

2
6= 0.

Therefore
�

Ak

�

/∈ wW
λ . This completes the proof of (a).

b) Suppose that
�

Ak

�

∈ sW
λ and
�

Ak

�

∈ L∞, say
�

�d(x ,Ak+m)− d(x ,A)
�

� ≤ M for each x ∈ X

and for all k, m ∈ N. Given ε > 0, we get

1

λn

∑

k∈In

�

�d(x ,Ak+m)− d(x ,A)
�

�=
1

λn

∑

k∈In

|d(x ,Ak+m)−d(x ,A)|≥ε

�

�d(x ,Ak+m)− d(x ,A)
�

�
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+
1

λn

∑

k∈In

|d(x ,Ak+m)−d(x ,A)|<ε

�

�d(x ,Ak+m)− d(x ,A)
�

�

≤
M

λn

�

�

�

¦

k ∈ In :
�

�d(x ,Ak+m)− d(x ,A)
�

�≥ ε
©

�

�

�+ ε

from which the result follows.

c) It follows from (a) and (b).

If we let λn = n in Theorem 1, then we have the following corollary.

Corollary 1. Let (X ,ρ) be a metric space and A,Ak ⊂ X (k ∈ N) be non-empty closed subsets of

X . Then

a) wW ⊂ sW and the inclusion is proper.

b) Let
�

Ak

�

∈ L∞, then sW ⊂ wW .

c) sW ∩ L∞ = wW ∩ L∞.

Theorem 2. sW ⊂ sW
λ if and only if lim inf λn

n
> 0.

Proof. Suppose that lim inf λn

n
> 0. For given ε > 0, for all m ∈ N, we have

¦

k ≤ n :
�

�d(x ,Akm)− d(x ,A)
�

�≥ ε
©

⊃
¦

k ∈ In :
�

�d(x ,Ak+m)− d(x ,A)
�

�≥ ε
©

.

Therefore

1

n

�

�

�

¦

k ≤ n :
�

�d(x ,Ak+m)− d(x ,A)
�

�≥ ε
©

�

�

�≥
1

n

�

�

�

¦

k ∈ In :
�

�d(x ,Ak+m)− d(x ,A)
�

�≥ ε
©

�

�

�

≥
λn

n
.

1

λn

�

�

�

¦

k ∈ In :
�

�d(x ,Ak+m)− d(x ,A)
�

�≥ ε
©

�

�

� .

Taking the limit as n→∞ and using lim inf λn

n
> 0, we get the desired result.

Conversely, suppose that lim infn
λn

n
= 0. Then we can select a subsequence (n(i))∞i=1 such

that
λn(i)

n(i)
<

1

i
.

We define a sequence (Ak) as follows:

Ak =

(

{1}, if n(i)−
��

�λn(i)

�

�

�

+ 1≤ k ≤ n(i), i = 1,2,3, . . . ;

{0}, otherwise
.

Then (Ak) is Wijsman-statistically convergent, so (Ak) ∈ sW . But (Ak) /∈ wW
λ .

Therefore the Theorem 1 (b) implies that (Ak) /∈ sW
λ . This completes the proof.
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Theorem 3. sW
λ ⊂ sW if lim inf λn

n
= 1.

Proof. Since limn
λn

n
= 1, then for ε > 0, for all m ∈ N, we observe that

1

n
|{k ≤ n : |d(x ,Ak+m)− d(x ,A)| ≥ ε}| ≤

1

n
|{k ≤ n−λn : |d(x ,Ak+m)− d(x ,A)| ≥ ε}|

+
1

n
|{k ∈ In : |d(x ,Ak+m)− d(x ,A)| ≥ ε}|

≤
n−λn

n
+

1

n
|{k ∈ In : |d(x ,Ak+m− d(x ,A)| ≥ ε}|

=
n−λn

n
+
λn

n

1

λn

|{k ∈ In : |d(x ,Ak+m− d(x ,A)| ≥ ε}|.

This implies that (Ak) Wijsman almost statistically convergent, if (Ak) is Wijsman almost sta-
tistically λ-convergent. Thus sW

λ ⊂ sW .

Remark 1. Since limn
λn

n
= 1, implies that lim infn

λn

n
> 0, then from Theorem 2, we have

sW ⊂ sW
λ . Hence sW

λ = sW .

Definition 14 ([9]). Let (X ,ρ) be a metric space. For any non-empty closed subsets A,Ak ⊂ X ,

we say {Ak} is Wijsman strongly p-almost convergent to A if for each x ∈ X , p ∈ (0,∞),

lim
n→∞

1

n

n
∑

k=1

|d(x ,Ak+m)− d(x ,A)|p = 0 uniformly in m.

We introduced the following definition.

Definition 15. Let (X ,ρ) be a metric space. For any non-empty closed subsets A,Ak ⊂ X , we say

{Ak} is Wijsman strongly almost λp-summable to A if for each x ∈ X , p ∈ (0,∞),

lim
n→∞

1

λn

∑

k∈In

|d(x ,Ak+m)− d(x ,A)|p = 0 uniformly in m.

If λn = n, Wijsman strongly almost λp-summable reduces to Wijsman strongly almost
p-Cesaro summable defined as follows:

lim
n→∞

1

n

n
∑

k=1

|d(x ,Ak+m)− d(x ,A)|p = 0 uniformly in m.

Theorem 4. Let (X ,ρ) be a metric space and A,Ak ⊂ X (k ∈ N) be non-empty closed subsets of

X . If (Ak) is Wijsman strongly almost λp-summable to A, then it is Wijsman statistically almost

λ-convergent to A.
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Proof. For any (Ak, ) fix an ε > 0 and for all m ∈ N, we have
∑

k∈In

|d(x ,Ak+m)− d(x ,A)|p ≥ ε|{k ∈ In : |d(x ,Ak+m)− d(x ,A)|p ≥ ε}|,

and it follows that if (Ak) is Wijsman strongly almost λp-summable to A, then it is Wijsman
statistically almost λ-convergent to A.

Theorem 5. Let (X ,ρ) be a metric space and A,Ak ⊂ X (k ∈ N) be non-empty closed subsets of X .

If (Ak) is bounded and Wijsman statistically almost λ-convergent to A, then it is Wijsman strongly

almost λp-summable to A and hence (Ak) is Wijsman strongly almost p-Cesaro summable to A.

Proof. Let (Ak) is bounded and Wijsman statistically almost λ-convergent to A. Since (Ak)

is bounded,then there exists M > 0 such that |d(x ,Ak+m)− d(x ,A)| ≤ M for all k, m ∈ N. Let
ε > 0 be given and for all m ∈ N, we select n0 = n0(ε) such that

1

λn

�

�

�

�

�

¨

k ∈ In : |d(x ,Ak+m)− d(x ,A)|p ≥
�ε

2

�
1
p

«

�

�

�

�

�

<
ε

2M p
for all n> n0.

We put

K(ε) =

¨

k ∈ In : |d(x ,Ak+m)− d(x ,A)| ≥
�ε

2

�
1
p

«

.

For all m ∈ N, we have

1

λn

∑

k∈In

|d(x ,Ak+m)− d(x ,A)|p =
1

λn

∑

k∈In,k∈K(ε)

|d(x ,Ak+m)− d(x ,A)|p

+
1

λn

∑

k∈In,k/∈K(ε)

|d(x ,Ak+m)− d(x ,A)|p = T1+ T2

where

T1 =
1

λn

∑

k∈In,k∈K(ε)

|d(x ,Ak+m)− d(x ,A)|p

and

T2 =
1

λn

∑

k∈In,k/∈K(ε)

|d(x ,Ak+m)− d(x ,A)|p.

If k ∈ K(ε), then T2 <
ε

2
.

If k /∈ K(ε), then

T1 ≤ (sup
k,m
|d(x ,Ak+m)− d(x ,A)|p)

1

λn

|K(ε)| ≤
1

λn

λnε

2M p
M p =

ε

2
.

Therefore for all m ∈ N, we have

1

λn

∑

k∈In

|d(x ,Ak+m)− d(x ,A)|p < ε.

Hence (Ak) is Wijsman strongly almost λp-summable to A.
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