EUROPEAN JOURNAL OF PURE AND APPLIED MATHEMATICS
Vol. 10, No. 3, 2017, 455-472
ISSN 1307-5543 - www.ejpam.com
Published by New York Business Global

States on pseudo-BCI algebras

Xiao Long Xin ${ }^{1, *}$, Yi Jun Li^{1}, Yu Long Fu ${ }^{2}$
${ }^{1}$ School of Mathematics, Northwest University, Xi'an, China
${ }^{2}$ School of Cyber Engnieering, Xidian University, Xi'an, China

Abstract

In this paper, we discuss the structure of pseudo-BCI algebras and get that any pseudoBCI algebra is a union of it's branches. We introduce the notion of local bounded pseudo-BCI algebras and study some related properties. Moreover we define two operations \wedge_{1}, \wedge_{2} in a local bounded pseudo-BCI algebra A and two local operations \vee_{1} and \vee_{2} in $V(a)$ for $a \in M(A)$. We show that in a $\wedge_{1}\left(\wedge_{2}\right)$-commutative local bounded pseudo-BCI algebra $A,\left(V(a), \wedge_{1}, \vee_{1}\right)\left(\left(V(a), \wedge_{2}, \vee_{2}\right)\right)$ forms a lattice for all $a \in M(A)$. We define a Bosbach state on a local bounded pseudo-BCI algebra. Then we give two examples of local bounded pseudo-BCI algebras to show that there is local bounded pseudo-BCI algebras having a Bosbach state but there is some one having no Bosbach states. Moreover we discuss some basic properties about Bosbach states. If s is a Bosbach state of a local bounded pseudo-BCI algebra A, we prove that $A / \operatorname{ker}(s)$ is equivalent to an MV-algebra. We also introduce the notion of state-morphisms on local bounded pseudo-BCI algebras and discuss the relations between Bosbach states and state-morphisms. Finally we give some characterization of Bosbach states.

2010 Mathematics Subject Classifications: 03G25
Key Words and Phrases: Pseudo-BCI algebra, local bounded, state, state-morphism, MValgebra

1. Introduction

BCK/BCI algebras were introduced originally by Iséki in [17] and [18] with a binary operation $*$ modeling the set-theoretical difference. Another motivation is from classical and non-classical propositional calculi modeling logical implications. Such algebras contain as a special subfamily of a family of MV-algebras where some important fuzzy structures can be studied. For more about BCK algebras, see [22].

Pseudo-BCK algebras were originally introduced by Georgescu and Iorgulescu in [13] as algebras with "two differences", a left- and right-difference, instead of one $*$ and with a constant element 0 as the least element. In [12], a special subclass of pseudo-BCK algebras, called Łukasiewicz pseudo-BCK algebras, was introduced and it was shown that
*Corresponding author.
Email addresses: xlxin@nwu.edu.cn (X.L. Xin), liyijun2009@126.com (Y.J. Li), ylfu@xidian.edu.cn (Y.L. Fu)
it is always a subalgebra of the positive cone of some ℓ-group (not necessarily abelian). The class of Lukasiewicz pseudo-BCKalgebras is a variety whereas the class of pseudoBCKalgebras is not; it is only a quasivariety because it is not closed under homomorphic images. For a guide through the pseudo-BCK algebras realm, see the monograph [16]. In [8], W. A. Dudek and Y. B. Jun introduced the notion of pseudo-BCI algebras as an extension of BCI-algebras, and investigated some properties.

MV-algebras entered into mathematics just 50 years ago due to Chang [3], but the notion of a state for MV-algebras was introduced by Mundici [23] in 1995 as averaging of the truth-value in Lukasiewicz logic. BL-algebras were introduced in the 1990s by Hájek [14] as the equivalent algebraic semantics for its basic fuzzy logic. In [5], authors defined a state-operator and a strong state-operator for a BL-algebra and prove some of their basic properties. L. Z. Liu studied the existence of Bosbach states and Riečan states on finite monoidal t-norm based algebras in [21]. Some examples show that there exist MTL-algebras having no Bosbach states and Riečan states.

In [10], Dvurečenskij introduced measures and states on BCK-algebras, and showed that the set of elements of measure 0 is an ideal, and the corresponding quotient BCKalgebra is commutative with a lifted original measure. Ciungu and Dvurečenskij [4] extended the notions of measures and states presented in Dvurečen-skij and Pulmannová [9] to the case of pseudo-BCK algebras, studied similar properties, and prove that, under some conditions, the notion of a state in the sense of Dvurečenskij and Pulmannová [9] coincides with the Bosbach state.

The aim of this paper is to introduce and study the state theory on local bounded pseudo-BCI algebras. This paper is organized as follows: in Section 2, we recall notions of BCI-algebras and the notion and some properties of pseudo-BCI algebras. In the same time, we discuss the structure of pseudo-BCI algebras and get that any pseudo-BCI algebra is a union of it's branches. In Section 3, we introduce the notion of local bounded pseudoBCI algebras and study some related properties. In Section 4, we define a Bosbach state on a local bounded pseudo-BCI algebra. Then we give two examples of local bounded pseudo-BCI algebras to show that there is local bounded pseudo-BCI algebras having a Bosbach state but there is some one having no Bosbach states. Moreover we discuss some of their basic properties. We discuss the relation between local bounded pseudoBCI algebras and $M V$-algebras. We also introduce the notion of state-morphisms on local bounded pseudo-BCI algebras and discuss the relations between Bosbach states and state-morphisms. Finally we give some characterization on Bosbach states.

2. Pseudo-BCI algebras

Recall that a BCI-algebra is an algebra $(X, *, 0)$ of type $(2,0)$ satisfying the following axioms: for every $x, y, z \in X,(1)((x * y) *(x * z)) *(z * y)=0,(2)(x *(x * y)) * y=0$, (3) $x * x=0$, (4) $x * y=0$ and $y * x=0$ imply $x=y$.

For any BCI-algebra X, the relation \leq defined by $x \leq y$ if and only if $x * y=0$ is a partial order on X. A nonempty subset I of a BCI-algebra X is called a BCI- ideal of X if it satisfies (1) $0 \in I$, (2) For all $x, y \in X, x * y \in I, y \in I \Rightarrow x \in I$.

We recall the notion and some properties of pseudo-BCI algebras.
Definition 1. [19] A pseudo-BCI algebras is a structure $\mathbb{A}=(A, \leq, *, \circ, 0)$, where \leq is a binary relation on $A, *$ and \circ are binary operations on A and " 0 " is an element of A, satisfying, for all $x, y, z \in A$,
$\left(I_{1}\right)(x * y) \circ(x * z) \leq z * y,(x \circ y) *(x \circ z) \leq z \circ y$.
($\left.I_{2}\right) x *(x \circ y) \leq y, x \circ(x * y) \leq y$.
(I3) $x \leq x$.
($\left.I_{4}\right) x \leq y$ and $y \leq x$ imply $x=y$.
(I $\left.I_{5}\right) x \leq y$ iff $x * y=0$ iff $x \circ y=0$.
Definition 2. [13] A pseudo-BCK algebra is a structure $\mathbb{A}=(A, \preceq, \rightarrow, \rightsquigarrow, 1)$ where \preceq is a binary relation on A, and \rightarrow and \rightsquigarrow are binary operations on A and 1 is an element of A satisfying, for all $x, y, z \in A$, the axioms:

```
\(\left(K_{1}\right) x \rightarrow y \preceq(y \rightarrow z) \rightsquigarrow(x \rightarrow z), x \rightsquigarrow y \preceq(y \rightsquigarrow z) \rightarrow(x \rightsquigarrow z)\).
\(\left(K_{2}\right) x \preceq(x \rightarrow y) \rightsquigarrow y, x \preceq(x \rightsquigarrow y) \rightarrow y\).
( \(K_{3}\) ) \(x \preceq x\).
( \(K_{4}\) ) \(x \preceq 1\).
\(\left(K_{5}\right)\) if \(x \preceq y\) and \(y \preceq x\), then \(x=y\).
\(\left(K_{6}\right) x \preceq y\) iff \(x \rightarrow y=1\) iff \(x \rightsquigarrow y=1\).
```

Remark 1. (1) A pseudo-BCK algebra $\mathbb{A}=(A, \preceq, \rightarrow \rightsquigarrow, 1)$ can be seen a pseudo-BCI algebra $\mathbb{A}=(A, \leq, *, \circ, 0)$ if $x \rightarrow y=y * x, x \rightsquigarrow y=y \circ x, 1=0$ and $x \preceq y$ iff $y \leq x$ for all $x, y \in A$.
(2) A pseudo-BCI algebra is a BCI algebra if $*=0$.
(3) The relation \leq is a partial order on a pseudo-BCI algebra A.

Now we give two pseudo-BCI algebras which are not pseudo-BCK algebras.
Example 1. Let $A=\{0, u, v, w, t, 1, a, b\}$. The order of the elements in A is as the following Hasse diagram:

Now the operations * and \circ are defined by Tables 2.1 and 2.2, respectively. Simple calculations show that $(A, \leqslant, *, \circ, 0)$ is a pseudo-BCI algebra.

Example 2. Let $A=\{0, x, y, z, 1, a, b\}$ in which the order of elements in A is as the following Hasse diagram:

$*$	0	u	v	w	t	1	a	b
0	0	0	0	0	0	0	a	a
u	u	0	0	0	0	0	a	a
v	v	v	0	v	0	0	a	a
w	w	w	w	0	0	0	a	a
t	t	t	w	t	0	0	a	a
1	1	1	1	1	1	0	a	a
a	a	a	a	a	a	a	0	0
b	b	b	b	b	b	a	1	0

Tables 2.1

\circ	0	u	v	w	t	1	a	b
0	0	0	0	0	0	0	a	a
u	u	0	0	0	0	0	a	a
v	v	v	0	v	0	0	a	a
w	w	w	w	0	0	0	a	a
t	t	t	t	v	0	0	a	a
1	1	1	1	1	1	0	a	a
a	a	a	a	a	a	a	0	0
b	b	b	b	b	b	a	1	0

Tables 2.2

Let the operations $*$, o be given by the following Tables 2.3 and 2.4.

$*$	0	x	y	z	1	a	b
0	0	0	0	0	0	a	a
x	x	0	0	0	0	a	a
y	y	y	0	y	0	a	a
z	z	z	z	0	0	a	a
1	1	1	1	y	0	a	a
a	a	a	a	a	a	0	0
b	b	a	a	a	a	y	0

Tables 2.3

o	0	x	y	z	1	a	b
0	0	0	0	0	0	a	a
x	x	0	0	0	0	a	a
y	y	y	0	y	0	a	a
z	z	z	z	0	0	a	a
1	1	1	z	1	0	a	a
a	a	a	a	a	a	0	0
b	b	b	a	b	a	x	0

Tables 2.4

Then $(A, \leqslant, *, \circ, 0)$ is a pseudo-BCI algebra.
Proposition 1. [19] In a pseudo-BCI algebras A the following hold:
$\left(p_{1}\right) x \leq 0 \Rightarrow x=0$.
$\left(p_{2}\right) x \leq y \Rightarrow z * y \leq z * x$ and $z \circ y \leq z \circ x$.
$\left(p_{3}\right) x \leq y, y \leq z \Rightarrow x \leq z$.
$\left(p_{4}\right)(x * y) \circ z=(x \circ z) * y$.
$\left(p_{5}\right) x * y \leq z \Leftrightarrow x \circ z \leq y$.
$\left(p_{6}\right)(x * y) *(z * y) \leq x * z,(x \circ y) \circ(z \circ y) \leq x \circ z$.
$\left(p_{7}\right) x \leq y \Rightarrow x * z \leq y * z, x \circ z \leq y \circ z$.
($\left.p_{8}\right) x * 0=x=x \circ 0$.
$\left(p_{9}\right) x *(x \circ(x * y))=x * y, x \circ(x *(x \circ y))=x \circ y$.
Proposition 2. [19] In a pseudo-BCI algebra A the following holds for all $x, y, z \in A$:
(i) $0 *(x \circ y) \leq y \circ x$.
(ii) $0 \circ(x * y) \leq y * x$.
(iii) $0 *(x * y)=(0 \circ x) \circ(0 * y)$.
(iv) $0 \circ(x \circ y)=(0 * x) *(0 \circ y)$.

Definition 3. [19] An element a of a pseudo-BCI algebra A is called a pseudo-atom if for every $x \in A, x \leq a$ implies $x=a$.

The set of all pseudo-atoms of a pseudo-BCI algebra A is denoted by $M(A)$. Obviously, $0 \in M(A)$.

Proposition 3. Let A be a pseudo-BCI algebra and $a \in A$. The following conditions are equivalent:
(1) a is a pseudo-atom of A;
(2) $y *(y \circ a)=a($ or $y \circ(y * a)=a)$ for all $y \in A$;
(3) $y *(y \circ(a * x))=a * x($ or $y \circ(y *(a \circ x))=a \circ x)$ for all $x, y \in A$.

Proof. (1) \Rightarrow (2). By $I_{2}, y *(y \circ a) \leq a$. Since a is a pseudo-atom of A, we have $y *(y \circ a)=a$.
(2) \Rightarrow (3) Obviously.
$(3) \Rightarrow(1)$ It follows from Proposition 3.6 of [19].
By Proposition 3, we have $x *(x \circ a)=x \circ(x * a)=a$ for all $a \in M(A)$ and $x \in A$.
Corollary 1. Let A be a pseudo-BCI algebra. Then for all $a \in M(A)$ and $x \in A$, we have $a * x \in M(A)$ and $a \circ x \in M(A)$.

Proof. Let $a \in M(A)$ and $x \in A$. By Proposition 3.8(3), we have $y *(y \circ(a * x))=a * x$ for all $y \in A$. Using Proposition 3.8(2), we get that $a * x$ is a pseudo-atom of A, that is $a * x \in M(A)$. Similarly we can prove $a \circ x \in M(A)$.

Let A be a pseudo-BCI algebra. For $a \in M(A)$, define $V(a)=\{x \in A \mid a \leq x\}$. V(a) is called a branch of A. Obviously $a \in V(a)$.

Proposition 4. Let A be a pseudo-BCI algebra, $a, b \in M(A)$ and $a \neq b$. Then $V(a) \cap$ $V(b)=\emptyset$.

Proof. Assume $V(a) \cap V(b) \neq \emptyset$, then there is $x \in V(a) \cap V(b)$. Hence $a \leq x$ and $b \leq x$. It follows that $(b *(b \circ a)) \circ(b *(b \circ x)) \leq(b \circ x) *(b \circ a) \leq a \circ x=0$. So $(b *(b \circ a)) \circ(b *(b \circ x))=0$. Hence $b *(b \circ a) \leq(b *(b \circ x))=b$. Since $b \in M(A)$, we have $b *(b \circ a)=b$. Note that $b=(b *(b \circ a)) \leq a$. Similarly $a \leq b$. By Definition 3.1, we have $a=b$. It is a contradiction, hence $V(a) \cap V(b)=\emptyset$.

Proposition 5. Let A be a pseudo-BCI algebra and $x, y \in A$. If $x \leq y$, then x, y are in the same branch of A.

Proof. Assume that $x \in V(a)$ and $y \in V(b)$ for some $a, b \in M(A)$ and $a \neq b$. Then $a \leq x \leq y$. Hence $y \in V(a)$ and so $y \in V(a) \cap V(b)$, a contradiction with Proposition 4.

Proposition 6. Let A be a pseudo-BCI algebra and $x \in V(a)$ for some $a \in M(A)$. Then $0 *(0 \circ x)=a$ and $0 \circ(0 * x)=a$.

Proof. Since $0 *(0 \circ x) \leq x$, we have $0 *(0 \circ x) \in V(a)$ by Proposition 5. Hence $a \leq 0 *(0 \circ x)$. On the other hand, we have $(0 *(0 \circ x)) \circ a=(0 \circ a) *(0 \circ x)=$ $((a * x) \circ a) *(0 \circ x)=((a \circ a) * x) *(0 \circ x)=(0 * x) *(0 * x)=0$. Therefore $0 *(0 \circ x) \leq a$. This shows that $0 *(0 \circ x)=a$. Similarly we can prove $0 \circ(0 * x)=a$.

Proposition 7. Let A be a pseudo-BCI algebra. Then for any $x \in A, 0 *(0 \circ x) \in M(A)$ and $0 \circ(0 * x) \in M(A)$.

Proof. Let $x \in A$. In order to prove $0 \circ(0 * x) \in M(A)$, we assume $y \leq 0 \circ(0 * x)$. Then $y \circ(0 \circ(0 * x))=0$. By $\left(p_{4}\right)$ and $\left(p_{9}\right)$ of Proposition 3.3, we have
$(0 \circ(0 * x)) * y=(0 * y) \circ(0 * x)$
$=((y \circ(0 \circ(0 * x))) * y) \circ(0 * x)$
$=((y * y) \circ((0 \circ(0 * x)))) \circ(0 * x)$
$=(0 \circ((0 \circ(0 * x)))) \circ(0 * x)$.
By Proposition 2(iv), $0 \circ((0 \circ(0 * x)))=(0 * 0) *(0 \circ(0 * x))=0 *(0 \circ(0 * x))=0 * x$. Hence $(0 \circ(0 * x)) * y=(0 \circ((0 \circ(0 * x)))) \circ(0 * x)=(0 * x) \circ(0 * x)=0$. This shows that $0 \circ(0 * x) \leq y$ and hence $y=0 \circ(0 * x)$. Similarly we can prove $0 *(0 \circ x) \in M(A)$.

Corollary 2. Let A be a pseudo-BCI algebra. Then for any $x \in A,(0 \circ x) \in M(A)$ and $(0 * x) \in M(A)$.

Proof. Since $0 * x=0 *(0 \circ(0 * x))$ and $0 \circ x=0 \circ(0 *(0 \circ x))$, we have $0 * x \in M(A)$ and $0 \circ x \in M(A)$ by Proposition 7 .

By Propositions 6 and 7 , we have $0 *(0 \circ x)=0 \circ(0 * x) \in M(A)$ for all $x \in A$. Denote $a_{x}=0 *(0 \circ x)=0 \circ(0 * x)$, for $x \in A$. Then $a_{x} \in M(A)$ and $x \in V\left(a_{x}\right)$.

Using above arguments we can get the structure of a pseudo-BCI algebra.
Theorem 1. Let A be a pseudo-BCI algebra. Then $\{V(a) \mid a \in M(A)\}$ forms a partition of A, that is, $A=\cup_{a \in M(A)} V(a)$ and $V(a) \cap V(b)=\emptyset$ for all $a, b \in M(A)$ and $a \neq b$.

3. Local bounded pseudo-BCI algebras

Let A be a pseudo-BCI algebra. For $a \in M(A)$, if there is an element $1_{a} \in V(a) \backslash\{a\}$ such that for all $x \in V(a), x \leq 1_{a}$, then 1_{a} is called the local unit of $V(a)$. Note that 1_{a} is unique.

Definition 4. Let A be a pseudo-BCI algebra. If for every $a \in M(A), V(a)$ has a local unit, then A is called a local bounded pseudo-BCI algebra. For convenience we denote it by lbp-BCI algebra.

Note that the pseudo-BCI algebras given in Examples 1 and 2 are local bounded pseudo-BCI algebras. In Examples 1, $M(A)=\{0, a\}, V(0)=\{0, u, v, w, t, 1\}, 1_{0}=0$, $V(a)=\{a, b\}, 1_{a}=b$. In Examples $2, M(A)=\{0, a\}, V(0)=\{0, x, y, z, 1\}, 1_{0}=0$, $V(a)=\{a, b\}, 1_{a}=b$.

In the following, A shall mean a lbp-BCI algebra unless otherwise specified.
We define two negations, ${ }^{-}$and ${ }^{\sim}$, as follows: for $a \in M(A)$ and $x \in V(a)$, $x^{-} \doteq 1_{a} * x, x^{\sim} \doteq 1_{a} \circ x$.

Proposition 8. For all $x, y \in A$, we have
(1) $x^{-\sim} \leq x, x^{\sim-} \leq x$.
(2) $x \leq y \Rightarrow y^{-} \leq x^{-}, y^{\sim} \leq x^{\sim}$.
(3) $x^{-}=x^{-\sim-}, x^{\sim}=x^{\sim-\sim}$.

Proof. (1) By $\left(I_{2}\right)$ of Definition 1, we have $x^{-\sim} \leq x$ and $x^{\sim-} \leq x$.
(2) Let $x \leq y$, then $x, y \in V(a)$ for some $a \in M(A)$. Hence $\left(1_{a} \circ y\right) *\left(1_{a} \circ x\right) \leq x \circ y=0$, and so $\left(1_{a} \circ y\right) *\left(1_{a} \circ x\right)=0$. It follows that $1_{a} \circ y \leq 1_{a} \circ x$, or $y^{\sim} \leq x^{\sim}$. Similarly we can prove $y^{-} \leq x^{-}$.
(3) By (1), we have $x^{\sim-} \leq x$. Replace x by x^{-}, we get $x^{-\sim-} \leq x^{-}$. On the other hand, $x^{-\sim} \leq x$ implies $x^{-} \leq x^{-\sim-}$ by (2). So $x^{-}=x^{-\sim-}$. Similarly we can prove $x^{\sim}=x^{\sim-\sim}$.

Let A be a pseudo-BCI algebra. For any $x, y \in A$, define $x \wedge_{1} y \doteq y \circ(y * x)$, $x \wedge_{2} y \doteq y *(y \circ x)$.

Proposition 9. In A the following properties hold:
(1) $a_{x} \wedge_{1} x=x \wedge_{1} a_{x}=a_{x}$ and $a_{x} \wedge_{2} x=x \wedge_{2} a_{x}=a_{x}$ for all $x \in A$.
(2) $x \leq y$ implies $y \wedge_{1} x=x$ and $y \wedge_{2} x=x$.
(3) $x \wedge_{1} x=x$ and $x \wedge_{2} x=x$.
(4) If $x_{1} \leq x_{2}$, then $x_{1} \wedge_{1} y \leq x_{2} \wedge_{1} y$ and $x_{1} \wedge_{2} y \leq x_{2} \wedge_{2} y$.

Proof. (1) By Proposition 3, we have $a_{x} \wedge_{1} x=x \circ\left(x * a_{x}\right)=a_{x}$ since $a_{x} \in M(A)$. Note that for $x \in V\left(a_{x}\right)$, we get $x \wedge_{1} a_{x}=a_{x} \circ\left(a_{x} * x\right)=a_{x} \circ 0=a_{x}$. So we shows that $a_{x} \wedge_{1} x=x \wedge_{1} a_{x}=a_{x}$. Similarly we can prove $a_{x} \wedge_{2} x=x \wedge_{2} a_{x}=a_{x}$ for all $x \in A$.
(2) Let $x \leq y$. Then $y \wedge_{1} x=x \circ(x * y)=x \circ 0=x$ and $y \wedge_{2} x=x *(x \circ y)=x * 0=x$.
(3) We have $x \wedge_{1} x=x \circ(x * x)=x$ and $x \wedge_{2} x=x *(x \circ x)=x$.
(4) Let $x_{1} \leq x_{2}$. Note that $\left(x_{1} \wedge_{1} y\right) *\left(x_{2} \wedge_{1} y\right)=\left(y \circ\left(y * x_{1}\right)\right) *\left(y \circ\left(y * x_{2}\right)\right) \leq$ $\left(y * x_{2}\right) \circ\left(y * x_{1}\right) \leq x_{1} * x_{2}=0$. We get $x_{1} \wedge_{1} y \leq x_{2} \wedge_{1} y$. Similarly we can prove $x_{1} \wedge_{2} y \leq x_{2} \wedge_{2} y$.

Proposition 10. In A the following properties hold for all $a \in M(A)$ and $x, y \in V(a)$:
(1) $x \wedge_{1} y^{-\sim}=x^{-\sim} \wedge_{1} y^{-\sim}$ and $x \wedge_{2} y^{\sim-}=x^{\sim-} \wedge_{2} y^{\sim-}$.
(2) $x \wedge_{1} y^{\sim}=x^{-\sim} \wedge_{1} y^{\sim}$ and $x \wedge_{2} y^{-}=x^{\sim-} \wedge_{2} y^{-}$.

Proof. (1) Using Proposition 1, we have $y^{-\backsim} * x=\left(1_{a} \circ\left(1_{a} * y\right)\right) * x=\left(1_{a} * x\right) \circ\left(1_{a} * y\right)=$ $\left(1_{a} *\left(1_{a} \circ\left(1_{a} * x\right)\right)\right) \circ\left(1_{a} * y\right)=\left(1_{a} \circ\left(1_{a} * y\right)\right) *\left(1_{a} \circ\left(1_{a} * x\right)\right)=y^{-\sim} * x^{-\sim}$.
Thus $x \wedge_{1} y^{-\sim}=y^{-\sim} \circ\left(y^{-\sim} * x\right)=y^{-\sim} \circ\left(y^{-\sim} * x^{-\sim}\right)=x^{-\sim} \wedge_{1} y^{-\sim}$.
(2) By Proposition 8 and (1), we get
$x \wedge_{1} y^{\sim}=x \wedge_{1}\left(y^{\sim}\right)^{-\sim}=x^{-\sim} \wedge_{1}\left(y^{\sim}\right)^{-\sim}=x^{-\sim} \wedge_{1} y^{\sim}$.
Proposition 11. In A the following properties hold for all $x, y \in A$:
$y *\left(x \wedge_{1} y\right)=y * x$ and $y \circ\left(x \wedge_{2} y\right)=y \circ x$.
Proof. By Proposition 1, we have $y *\left(x \wedge_{1} y\right)=y *\left(y \circ(y * x)=y * x\right.$ and $y \circ\left(x \wedge_{2} y\right)=$ $y \circ(y *(y \circ x))=y \circ x$.

Proposition 12. Let $a \in M(A)$. If $x, y \in V(a)$, then $x * y \in V(0)$ and $x \circ y \in V(0)$.
Proof. Using Proposition 2 and 6 , we get $0 \circ(0 *(x * y))=0 \circ((0 \circ x) \circ(0 * y))=$ $(0 *(0 \circ x)) *(0 \circ(0 * y))=a * a=0$. Since by $\left(I_{2}\right) 0 \circ(0 *(x * y)) \leq x * y$, we have $0 \leq x * y$, and so $x * y \in V(0)$. Similarly we can prove $x \circ y \in V(0)$.

Proposition 13. In A the following properties hold for all $a \in M(A), x, y \in V(a)$:
(1) $x \wedge_{1} y\left(y \wedge_{1} x\right)$ is a lower bound of $\{x, y\}$.
(2) $x \wedge_{2} y\left(y \wedge_{2} x\right)$ is a lower bound of $\{x, y\}$.

Proof. By Definition 3.1, we have $x \wedge_{1} y=y \circ(y * x) \leq x$. Moreover by Proposition 12, $y * x \in V(0)$ and so $0 \circ(y * x)=0$, and $(y \circ(y * x)) * y=(y * y) \circ(y * x)=0 \circ(y * x)=0$. It follows that $x \wedge_{1} y=y \circ(y * x) \leq y$. Similarly we can get that $\left(y \wedge_{1} x\right)$ is also a lower bound of $\{x, y\}$.
(2) Similar to the proof of (1).

Definition 5. (1) If for all $a \in M(A)$ and $x, y \in V(a), x \wedge_{1} y=y \wedge_{1} x$, we call A to be a local \wedge_{1}-commutative pseudo-BCI algebra.
(2) If for all $a \in M(A)$ and $x, y \in V(a), x \wedge_{2} y=y \wedge_{2} x$, we call A to be a local \wedge_{2} commutative pseudo-BCI algebra.
(3) If A is local \wedge_{1}-commutative and local \wedge_{2}-commutative, we call A to be local commutative.

Proposition 14. (1) If A is local \wedge_{1}-commutative, then $\left(V(a), \wedge_{1}\right)$ forms a lower similattice for all $a \in M(a)$.
(2) If A is local \wedge_{2}-commutative, then $\left(V(a), \wedge_{2}\right)$ forms a lower similattice for all $a \in$ $M(a)$.

Proof. (1) It needs only to prove that $x \wedge_{1} y$ is the greatest lower bound of $\{x, y\}$ for all $a \in M(A)$ and $x, y \in V(a)$. Assume that m is a lower bound of $\{x, y\}$. We have
$m *\left(x \wedge_{1} y\right)=(m \circ(m * y)) *(y \circ(y * x))=\left(y \wedge_{1} m\right) *(y \circ(y * x))=\left(m \wedge_{1} y\right) *(y \circ(y * x))=$ $(y \circ(y * m)) *(y \circ(y * x)) \leq(y * x) \circ(y * m) \leq m * x=0$,
and so $m \leq\left(x \wedge_{1} y\right)$.
(2) Similar to the proof of (1).

For a lbp-BCI algebra A, we can define the following operations in $V(a)$,
$x \vee_{1} y=1_{a} \circ\left(\left(1_{a} * x\right) \wedge_{1}\left(1_{a} * y\right)\right)$,
$x \vee_{2} y=1_{a} *\left(\left(1_{a} \circ x\right) \wedge_{2}\left(1_{a} \circ y\right)\right)$,
for all $a \in M(A)$ and for all $x, y \in V(a)$.
Proposition 15. Let A be a lbp-BCI algebra.
(1) If A is local \wedge_{1}-commutative, then $\left(V(a), \wedge_{1}, \vee_{1}\right)$ forms a lattice for all $a \in M(a)$.
(2) If A is local \wedge_{2}-commutative, then $\left(V(a), \wedge_{2}, \vee_{2}\right)$ forms a lattice for all $a \in M(a)$.

Proof. (1) Let $a \in M(A)$ and $x, y \in V(a)$. Since A is local \wedge_{1}-commutative, then $x=x \circ\left(x * 1_{a}\right)=1_{a} \circ\left(1_{a} * x\right) \leq 1_{a} \circ\left(\left(1_{a} * x\right) \wedge_{1}\left(1_{a} * y\right)\right)=x \vee_{1} y$. Similarly we can prove $y \leq x \vee_{1} y$.

If $z \geq x$ and $z \geq y$, then $z \in V(a), 1_{a} * x \geq 1_{a} * z$ and $1_{a} * y \geq 1_{a} * z$. By Proposition 14, we have $1_{a} * z \leq\left(1_{a} * x\right) \wedge_{1}\left(1_{a} * y\right)$. Therefore $x \vee_{1} y=1_{a} \circ\left(\left(1_{a} * x\right) \wedge_{1}\left(1_{a} * y\right)\right) \leq$ $1_{a} \circ\left(1_{a} * z\right)=z \circ\left(z * 1_{a}\right)=z$. It follows that $x \vee_{1} y$ is the least upper bound of $\{x, y\}$.

Applying Proposition 14, we get ($\left.V(a), \wedge_{1}, \vee_{1}\right)$ forms a lattice.
(2) Similar to the proof of (1).

Definition 6. Let A be a pseudo-BCI algebra. (1) If for all $x, y \in A, x \wedge_{1} y=y \wedge_{1} x$, we call A to be \wedge_{1}-commutative.
(2) If for all $x, y \in A, x \wedge_{2} y=y \wedge_{2} x$, we call A to be \wedge_{2}-commutative.
(3) If A is \wedge_{1}-commutative and \wedge_{2}-commutative, we call A to be sup-commutative.

The following result shows that \wedge_{1}-commutative (\wedge_{2}-commutative) pseudo-BCI algebras must be pseudo-BCK algebras.

Proposition 16. Let A be a pseudo-BCI algebra. Then the following are equivalent:
(1) A is \wedge_{1}-commutative (\wedge_{2}-commutative).
(2) A is a \wedge_{1}-commutative (\wedge_{2}-commutative) pseudo-BCK algebra.

Proof. (1) \Rightarrow (2). Let A be \wedge_{1}-commutative. Then for any $a \in M(A)$, we have $a \wedge_{1} 0=0 \wedge_{1} a$. Note that $a \wedge_{1} 0=0 \circ(0 * a)=a$ by Proposition 6 and $0 \wedge_{1} a=a \circ(a * 0)=0$. This shows that $a=0$, that is $A=V(0)$. Thus A is a \wedge_{1}-commutative pseudo-BCK algebra. Similarly we can prove the result for case of \wedge_{2}-commutative.
$(2) \Rightarrow(1)$. It is straightforward.
Proposition 17. [15] If A is a sup-commutative pseudo-BCK algebra, then $\wedge_{1}=\wedge_{2}$.
By Proposition 16 and 17, we can get a characterization of sup-commutative pseudoBCI algebras.

Proposition 18. Let A be a pseudo-BCI algebra. Then the following are equivalent:
(1) A is a sup-commutative pseudo-BCI algebra.
(2) A is a sup-commutative pseudo-BCK algebra.

4. States on local bounded pseudo-BCI algebras

Definition 7. Let A be a lbp-BCI algebra. A Bosbach state on A is a function $s: A \rightarrow$ $[0,1]$ such that the following conditions hold:
(1) $s(x)+s(y * x)=s(y)+s(x * y)$, for all $x, y \in A$,
(2) $s(x)+s(y \circ x)=s(y)+s(x \circ y)$, for all $x, y \in A$,
(3) $s(a)=1$ and $s\left(1_{a}\right)=0$ where $a \in M(A)$ and 1_{a} is the local unit of $V(a)$.

Example 3. Consider the local bounded pseudo-BCI algebra A given in Example 1. Define the function $s: A \rightarrow[0,1]$ by $s(0)=1, s(u)=1, s(v)=1, s(w)=1, s(t)=1, s(1)=$ $0, s(a)=1, s(b)=0$. Then s is a unique Bosbach state on A.

Example 4. Consider the local bounded pseudo-BCI algebra A given in Example 2. Define a function $s: A \rightarrow[0,1]$ as follows: $s(0)=1, s(x)=\alpha, s(y)=\beta, s(z)=\gamma, s(1)=0, s(a)=$ $1, s(b)=0$. Using $s(u)+s(v * u)=s(v)+s(u * v)$, taking $u=x, v=1, u=y, v=1$ and $u=z, v=1$, respectively, we get $\alpha=1, \beta=1, \gamma=0$. On the other hand, taking $u=z$, $v=1$ in $s(u)+s(v \circ u)=s(v)+s(u \circ v)$, we get $\gamma+0=0+1$, so $0=1$ which is a contradiction. Hence A does not admit a Bosbach state.

Proposition 19. Let A be a lbp-BCI algebra and s a Bosbach state on A. Then the following properties hold for all $x, y \in A$:
(1) If $x \leq y$, then $s(y * x)=1+s(y)-s(x)=s(y \circ x)$ and $s(y) \leq s(x)$.
(2) If x, y are in same branch, then $s\left(x \wedge_{1} y\right)=s\left(y \wedge_{1} x\right), s\left(x \wedge_{2} y\right)=s\left(y \wedge_{2} x\right)$.
(3) If x, y are in same branch, then $s\left(x \wedge_{1} y^{-\sim}\right)=s\left(x^{-\sim} \wedge_{1} y^{-\sim}\right), s\left(x \wedge_{2} y^{\sim-}\right)=s\left(x^{\sim-} \wedge_{2}\right.$ $y^{\sim-}$).
(4) If x, y are in same branch, then $s\left(x^{-\sim} \wedge_{1} y\right)=s\left(x \wedge_{1} y^{-\sim}\right), s\left(x^{\sim-} \wedge_{2} y\right)=s\left(x \wedge_{2} y^{\sim-}\right)$.
(5) $s\left(x^{-\sim}\right)=s(x)=s\left(x^{\sim-}\right)$.
(6) $s\left(x^{-}\right)=1-s(x)=s\left(x^{\sim}\right)$.

Proof. (1) Let $x \leq y$. It follows from Definition 5.1 that $s(y * x)=1+s(y)-s(x)=$ $s(y \circ x)$. Moreover $s(x)-s(y)=1-s(y * x) \geq 0$ and hence $s(y) \leq s(x)$.
(2) By Proposition 1, we have $y * x=y *\left(x \wedge_{1} y\right)$. Since x, y are in same branch, then $x \wedge_{1} y \leq x, y$ by proposition 13. By property (1), we have $s(y * x)=s\left(y *\left(x \wedge_{1} y\right)\right)=$ $1+s(y)-s\left(x \wedge_{1} y\right)$ and $s(x * y)=s\left(x *\left(y \wedge_{1} x\right)\right)=1+s(x)-s\left(y \wedge_{1} x\right)$. Using condition (1) from Definition 7 we get $s\left(x \wedge_{1} y\right)=s\left(y \wedge_{1} x\right)$. Similarly we can prove $s\left(x \wedge_{2} y\right)=s\left(y \wedge_{2} x\right)$.
(3) It follows from Proposition 10.
(4) It follows from (2) and (3).
(5) For $x \in A$, there is $a \in M(A)$ such that $x \in V(a)$. Note that $x^{-\sim}=x \wedge_{1} 1_{a}$. By (2), we have $s\left(x^{-\sim}\right)=s\left(x \wedge_{1} 1_{a}\right)=s\left(1_{a} \wedge_{1} x\right)=s\left(x \circ\left(x * 1_{a}\right)\right)=s(x)$. In a similar way, we can prove $s(x)=s\left(x^{\sim-}\right)$.
(6) By (1), we have $s\left(x^{-}\right)=s\left(1_{a} * x\right)=1+s\left(1_{a}\right)-s(x)=1-s(x)$. In a similar way we can get $s\left(x^{\sim}\right)=1-s(x)$.

Proposition 20. Let A be a lbp-BCI algebra and s be a Bosbach state on A. Then the following properties hold for all $a \in M(A)$ and $x, y \in V(a)$:
(1) $s\left(y * x^{-\sim}\right)=s\left(y^{-\sim} * x\right), s\left(y \circ x^{\sim-}\right)=s\left(y^{\sim-} \circ x\right)$.
(2) $s\left(y^{-\sim} * x\right)=s\left(x^{-} \circ y^{-}\right)=s\left(y^{-\sim} * x^{-\sim}\right)=s\left(y * x^{-\sim}\right)$,
$s\left(y^{\sim-} \circ x\right)=s\left(x^{\sim} * y^{\sim}\right)=s\left(y^{\sim-} \circ x^{\sim-}\right)=s\left(y \circ x^{\sim-}\right)$.
(3) $s\left(y^{-\sim} * x^{\sim}\right)=s\left(y * x^{\sim}\right), s\left(y^{\sim-} \circ x^{-}\right)=s\left(y \circ x^{-}\right)$.

Proof. (1) Note that $s\left(y * x^{-\sim}\right)+s\left(y \circ\left(y * x^{-\sim}\right)\right)=s(y)+s\left(\left(y * x^{-\sim}\right) \circ y\right)$, or $s\left(y * x^{-\sim}\right)+s\left(x^{-\sim} \wedge_{1} y\right)=s(y)+s\left(\left(y * x^{-\sim}\right) \circ y\right)$. By Proposition 19(4), we have $s\left(y * x^{-\sim}\right)+s\left(x \wedge_{1} y^{-\sim}\right)=s(y)+s\left(\left(y * x^{-\sim}\right) \circ y\right)=s(y)+s\left((y \circ y) * x^{-\sim}\right)=s(y)+s\left(0 * x^{-\sim}\right)$. Using Corollary 2 , we get $0 * x^{-\sim} \in M(A)$, and so $s\left(0 * x^{-\sim}\right)=1$. Thus $s\left(y * x^{-\sim}\right)=$ $s(y)+1-s\left(x \wedge_{1} y^{-\sim}\right)=1-s\left(x \wedge_{1} y^{-\sim}\right)+s\left(y^{-\sim}\right)=s\left(\left(y^{-\sim} * x\right) \circ y^{-\sim}\right)-s\left(x \wedge_{1} y^{-\sim}\right)+s\left(y^{-\sim}\right)=$ $s\left(y^{-\sim} * x\right)$.
Similarly we can prove $s\left(y \circ x^{\sim-}\right)=s\left(y^{\sim-} \circ x\right)$.
(2) By $\left(p_{4}\right)$ we have $s\left(y^{-\sim} * x\right)=s\left(\left(1_{a} \circ\left(1_{a} * y\right)\right) * x\right)=s\left(\left(1_{a} * x\right) \circ\left(1_{a} * y\right)\right)=$ $s\left(x^{-} \circ y^{-}\right)$. Moreover we have $s\left(y^{-\sim} * x^{-\sim}\right)=s\left(\left(1_{a} \circ\left(1_{a} * y\right)\right) *\left(\left(1_{a} \circ\left(1_{a} * x\right)\right)\right)=\right.$ $s\left(\left(1_{a} \circ\left(\left(1_{a} \circ\left(1_{a} * x\right)\right)\right) \circ\left(1_{a} * y\right)\right)=s\left(x^{-\sim-} \circ y^{-}\right)=s\left(x^{-} \circ y^{-}\right)\right.$by Proposition 8. Using (1) we can get $s\left(y^{-\sim} * x\right)=s\left(x^{-} \circ y^{-}\right)=s\left(y^{-\sim} * x^{-\sim}\right)=s\left(y * x^{-\sim}\right)$. Similarly we have $s\left(y^{\sim-} \circ x\right)=s\left(x^{\sim} * y^{\sim}\right)=s\left(y^{\sim-} \circ x^{\sim-}\right)=s\left(y \circ x^{\sim-}\right)$.
(3) By Proposition 5.4(4) we get
$s\left(y^{-\sim} * x^{\sim}\right)=s\left(y^{-\sim}\right)+s\left(\left(y^{-\sim} * x^{\sim}\right) \circ y^{-\sim}\right)-s\left(y^{-\sim} \circ\left(y^{-\sim} * x^{\sim}\right)\right)=s(y)+1-s\left(x^{\sim} \wedge_{1}\right.$ $\left.y^{-\sim}\right)=s(y)+1-s\left(x^{\sim \sim \sim} \wedge_{1} y\right)=s(y)+1-s\left(x^{\sim} \wedge_{1} y\right)=s\left(y \circ x^{\sim}\right)$.
Similarly we can get $s\left(y^{\sim-} \circ x^{-}\right)=s\left(y \circ x^{-}\right)$.
Proposition 21. Let A be a lbp-BCI algebra and s be a Bosbach state on A. Then for all $a \in M(A)$ and $x, y \in V(a), s(y * x)=1-s\left(x \wedge_{1} y\right)+s(y)$ and $s(y \circ x)=1-s\left(x \wedge_{2} y\right)+s(y)$.

Proof. Let $a \in M(A)$ and $x, y \in V(a)$. Note that $x \wedge_{1} y \leq x, y$ and $x \wedge_{2} y \leq x, y$. By $19(1)$, we have $s(y * x)=s\left(y *\left(x \wedge_{1} y\right)\right)=1-s\left(x \wedge_{1} y\right)+s(y)$ and $s(y \circ x)=s\left(y \circ\left(x \wedge_{2} y\right)\right)=$ $1-s\left(x \wedge_{2} y\right)+s(y)$.

The following results are important for our study.
Proposition 22. Let A be a lbp-BCI algebra and s be a Bosbach state on A. Then for all $a \in M(A)$ and $x, y \in V(a)$, we have
(1) $s\left(x \wedge_{1} y\right)=s\left(x \wedge_{2} y\right)$.
(2) $s(x * y)=s(x \circ y)$.

Proof. (1) First we prove the equality for $x \leq y$.
By Propositions 19(2) and 9(2), we have $s\left(x \wedge_{1} y\right)=s\left(y \wedge_{1} x\right)=s(x)$ and $s\left(x \wedge_{2} y\right)=$ $s\left(y \wedge_{2} x\right)=s(x)$, that is $s\left(x \wedge_{1} y\right)=s\left(x \wedge_{2} y\right)$.

Now assume that x and y are arbitrary elements of $V(a)$, where $a \in M(A)$. Using Propositions 19(2) again and first part of the proof, we have $s\left(x \wedge_{1} y\right)=s\left(x \wedge_{1}\left(x \wedge_{1} y\right)\right)=$ $s\left(\left(x \wedge_{1} y\right) \wedge_{1} x\right)=s\left(\left(x \wedge_{1} y\right) \wedge_{2} x\right) \leq s\left(y \wedge_{2} x\right)=s\left(x \wedge_{2} y\right)$.
Dually, we can prove $s\left(x \wedge_{2} y\right) \leq s\left(x \wedge_{1} y\right)$. Hence $s\left(x \wedge_{1} y\right)=s\left(x \wedge_{2} y\right)$.
(2) It follows from Proposition 21 and the first equation.

Consider the real interval [0,1] of reals equipped with the Lukasiewicz implication \rightarrow_{L} defined by

$$
x \rightarrow_{\mathrm{£}} y=\min \{1-x+y, 1\}, \text { for all } x, y \in[0,1] .
$$

Definition 8. Let A be a lbp-BCI algebra. A state-morphism on A is a function $m: A \rightarrow$ $[0,1]$ such that:
(SM1) $m(a)=0, m\left(1_{a}\right)=1$ for all $a \in M(A)$.
(SM2) $m(y * x)=m(y \circ x)=m(x) \rightarrow_{E} m(y)$, for all $x, y \in A$.
Proposition 23. Let A be a lbp-BCI algebra. Then every state-morphism on A is a Bosbach state on A.

Proof. It is similar to the proof of [[4], Proposition 3.9].
Proposition 24. Let A be a lbp-BCI algebra. A Bosbach state m on A is a state-morphism if and only if $m\left(x \wedge_{1} y\right)=\min \{m(x), m(y)\}$ for all $x, y \in A$, or equivalently, $m\left(x \wedge_{2} y\right)=$ $\min \{m(x), m(y)\}$ for all $x, y \in A$.

Proof. It is similar to the proof of [[4], Proposition 3.10].
Let A be a lbp-BCI algebra and s be a Bosbach state on A. Define a set $\operatorname{Ker}(s):=$ $\{x \in A \mid s(x)=1\}$. $\operatorname{Ker}(s)$ is called the kernel of s on A.

Definition 9. Let A be a pseudo $B C I$ algebra and I be a nonempty subset of A. If I satisfies the following conditions:
(1) $0 \in I$,
(2) $x \in I$ and $y * x \in I$ (or $y \circ x \in I$) imply $y \in I$ for all $x, y \in A$,
I is called a pseudo ideal of A, simply called an ideal of A.
Let I be a pseudo ideal of a pseudo BCI algebra A. If I satisfies $0 * x \in I$ and $0 \circ x \in I$, we call I a closed pseudo ideal of A. If I satisfies $x * y \in I$ if and only if $x \circ y \in I$, we call I a normal pseudo ideal of A. If I satisfies $x * y \in I$ if and only if $x \circ y \in I$ for all $a \in M(A), x, y \in V(a)$, we call I a local normal pseudo ideal of A.

Proposition 25. Let A be a lbp-BCI algebra and s be a Bosbach state on A. Then $\operatorname{Ker}(s)$ is a closed and local normal proper ideal of A.

Proof. Obviously, $0 \in \operatorname{Ker}(s)$ and $1 \notin \operatorname{Ker}(s)$.
Assume that $x, y * x \in \operatorname{Ker}(s)$. Then we have $1=s(x)$ and $s(y * x)=1$. It follows from Definition 5.1 that $s(y)=s(x)+s(y * x)-s(x * y)=2-s(x * y) \geq 1$ and thus $s(y)=1$. Hence $y \in \operatorname{Ker}(s)$. This shows that $\operatorname{Ker}(s)$ is a proper ideal of A. For any $x \in A$, we have $0 * x \in M(A)$ and $0 * x \in M(A)$ by Corollary 2 . Hence $s(0 * x)=1$ and $s(0 \circ x)=1$. It follows that $0 * x \in \operatorname{Ker}(s)$ and $0 \circ x \in \operatorname{Ker}(s)$. This shows that I is a closed pseudo ideal of A. By Proposition 22, we can get that A is local normal.

Theorem 2. Let A be a pseudo BCI algebra and I be a pseudo ideal of A. Define a binary relation " \sim " on A by $x \sim y$ if and only if $x * y, y * x \in I$ if and only if $x \circ y, y \circ x \in I$. Then \sim is a congruence relation on A. Denote $C_{x}=\{y \in A \mid x \sim y\}$. Define $C_{x} * C_{y}=C_{x * y}$ and $C_{x} \circ C_{y}=C_{x o y}$. Denote $A / I=\left\{C_{x} \mid x \in A\right\}$. Then $\left(A / I, *, \circ, C_{0}\right)$ is a pseudo BCI algebra. If I is a closed pseudo ideal of A, then $C_{0}=I$.

Proof. Obviously \sim is reflexive and symmetric. Now we prove that it is transitive. Let $x \sim y$ and $y \sim z$. Then $x * y, y * z \in I$. By $\left(I_{1}\right),(x * z) \circ(x * y) \leq y * z$, thus $x * z \in I$. Similarly we can prove $z * x \in I$. This shows that $x \sim z$ and hence \sim is transitive. Thus it is an equivalent relation on A. We also can show that \sim is a congruence relation on A and omit it. Denote $A / I=\left\{C_{x} \mid x \in A\right\}$. Then binary operations "*" and "०" on A / I are well-defined. Moreover we can show that $(A / I, *, \circ)$ satisfies $I_{1}-I_{5}$ in Definition 3.1. It follows that $\left(A / I, *, \circ, C_{0}\right)$ is a pseudo BCI algebra.

Finally we assume that I is a closed pseudo ideal of A. Then for $x \in I$, we have $0 * x \in I$ and $x * 0=x \in I$. Hence $x \sim 0$, that is, $x \in C_{0}$. Therefore $C_{0}=I$.

Proposition 26. Let s be a Bosbach state on a lbp-BCI algebra A and $K=\operatorname{ker}(s)$. Then we have the following.
(1) $x / K \leq y / K$ iff $s(x * y)=1$ iff $s(x \circ y)=1$, where $x / K=\{y \in A \mid y \sim x\}$ for all $x \in A$.
(2) For all $a \in M(A)$ and all $x, y \in V(a)$, we have that $x / K \leq y / K$ iff $s\left(y \wedge_{1} x\right)=s(x)$ iff $s\left(y \wedge_{2} x\right)=s(x)$.
(3) $x / K=y / K$ iff $s(x * y)=s(y * x)=1$ iff $s(x \circ y)=s(y \circ x)=1$.
(4) For all $a \in M(A)$ and all $x, y \in V(a), x / K=y / K$ iff $s(x)=s(y)=s\left(x \wedge_{1} y\right)$ iff $s(x)=s(y)=s\left(x \wedge_{2} y\right)$.
(5) $\left(A / K, \leq, *, \circ, 0 / K, 1_{0} / K\right)$ is a bounded pseudo-BCK algebra where 1_{0} is the unit of $V(0)$.
(6) The mapping $\tilde{s}: A / K \rightarrow[0,1]$ defined by $\tilde{s}(x / K):=s(x)(x \in A)$ is a Bosbach state on A / K.

Proof. (1) By Theorem 2, we know that $(A / K, \leq, *, \circ, 0 / K)$ is a pseudo-BCI algebra. Note that $x / K \leq y / K$ iff $x / K * y / K=(x * y) / K=0 / K$ iff $x * y \in K$ iff $s(x * y)=1$. Similarly, $x / K \leq y / K$ iff $x / K \circ y / K=(x \circ y) / K=0 / K$ iff $x \circ y \in K$ iff $s(x \circ y)=1$.
(2) Let $a \in M(A)$ and $x, y \in V(a)$. As $s(x * y)=1-s\left(y \wedge_{1} x\right)+s(x)$ by Proposition 21, we get $x / K \leq y / K$ iff $s\left(y \wedge_{1} x\right)=s(x)$. Similarly, we have $x / K \leq y / K$ iff $s\left(y \wedge_{2} x\right)=s(x)$.
(3) It follows easily from (1).
(4) It follows easily from (2).
(5) First we prove $M(A / K)=\{0 / K\}$. Let $x / K \leq 0 / K$. By (1), $s(x * 0)=1$. Note that $0 * x \in M(A)$, then we have $s(0 * x)=1$. By (3), $x / K=0 / K$. Thus $0 / K \in M(A / K)$.

Conversely let $x / K \in M(A / K)$. Obviously $(0 *(0 * x)) / K \leq x / K$. Hence $(0 *(0 *$ $x)) / K=x / K$. Since for any $a \in M(A), s(a * 0)=s(0 * a)=1$, we have $0 / K=a / K$. Thus $x / K=(0 *(0 * x)) / K=0 / K$. This shows that $M(A / K)=\{0 / K\}$, and hence $(A / K, \leq, *, \circ, 0 / K)$ is a pseudo-BCK algebra.

Now we prove that $1_{0} / K$ is the greatest element of A / K. First we claim $1_{0} / K=1_{a} / K$ for all $a \in M(A)$. Note that $s\left(1_{0}\right)+s\left(1_{a} * 1_{0}\right)=s\left(1_{a}\right)+s\left(1_{0} * 1_{a}\right)$ and $s\left(1_{0}\right)=s\left(1_{a}\right)=0$
by Definition 7 , we have $s\left(1_{a} * 1_{0}\right)=s\left(1_{0} * 1_{a}\right)$. Moreover $s\left(1_{a} * 1_{0}\right)+s\left(a \circ\left(1_{a} * 1_{0}\right)\right)=$ $s(a)+s\left(\left(1_{a} * 1_{0}\right) \circ a\right)$ by Definition 7. By Corollary 1, $a \circ\left(1_{a} * 1_{0}\right) \in M(A)$, and so $s\left(a \circ\left(1_{a} * 1_{0}\right)\right)=1$. Since $\left(1_{a} * 1_{0}\right) \circ a=\left(1_{a} \circ a\right) * 1_{0}$ and $1_{a} \circ a \in V(0)$ by Proposition 12 , we have $s\left(\left(1_{a} * 1_{0}\right) \circ a\right)=s\left(\left(1_{a} \circ a\right) * 1_{0}\right)=s(0)=1$. Hence $s\left(1_{a} * 1_{0}\right)=1$. By $(3), 1_{0} / K=1_{a} / K$ for all $a \in M(A)$. Let $x / K \in A / K$. Then $x / K \leq 1_{(0 *(0 \circ x))} / K=1_{0} / K$. This shows that $1_{0} / K$ is the greatest element of A / K. It follows that $\left(A / K, \leq, *, \circ, 0 / K, 1_{0} / K\right)$ is a bounded pseudo BCK algebra.
(6) The fact that \tilde{s} is a well-defined Bosbach state on A / K is now straightforward.

Definition 10. Let A be a lbp-BCI algebra. Then
(1) A is called good if $x^{-\sim}=x^{\sim-}$ for all $x \in A$.
(2) A is with the condition $(p D N)$ if $x^{-\sim}=x^{\sim-}=x$ for all $x \in A$.

Proposition 27. Let s be a Bosbach state on a bounded pseudo-BCI algebra A and let $K=\operatorname{ker}(s)$. For every element $x \in A$, we have $x^{-\sim} / K=x / K=x^{\sim-} / K$, that is, A / K satisfies the ($p D N$) condition.

Proof. It is similar to the proof of [[4], Proposition 3.14].
Remark 2. Let s be a Bosbach state on a pseudo-BCI algebra A. According to the proof of Proposition 27, we have $s\left(x * x^{-\sim}\right)=1=s\left(x * x^{\sim-}\right)$ and $s\left(x \circ x^{-\sim}\right)=1=s\left(x \circ x^{\sim-}\right)$.

Theorem 3. Let A be a lbp-BCI algebra, s be a Bosbach state on A and $K=k e r(s)$. Then A / K is \wedge_{1}-commutative as well as \wedge_{2}-commutative. In addition, A / K is a \wedge-semilattice and good.

Proof. It is similar to the proof of [[4], Proposition 3.16].

Proposition 28. ([4]) Let A be a good pseudo-BCK algebra. We define a binary operation \otimes on A by $x \otimes y:=y^{-\sim} * x^{\sim}$. For all $x, y \in A$, the following hold:
(1) $x \otimes y=x^{\sim-} \circ y^{-}$.
(2) $x \otimes y \leq x, y$.
(3) $x \otimes 1=1 \otimes x=x^{\sim-}$.
(4) $x \otimes 0=0 \otimes x=0$.
(5) $(x \otimes y)^{-\sim}=x \otimes y=x^{-\sim} \otimes y^{-\sim}$.
(6) \otimes is associative.

An MV-algebra is an algebra $\left(A, \oplus,^{-}, 0\right)$ of type $(2,1,0)$ such that $(\mathrm{i}) \oplus$ is commutative and associative, (ii) $x \oplus 0=x$, (iii) $x \oplus 0^{-}=0^{-}$,(iv) $x^{--}=x$,(v) $y \oplus\left(y \oplus x^{-}\right)^{-}=$ $x \oplus\left(x \oplus y^{-}\right)^{-}$. If we define $x * y=x \circ y=y^{-} \oplus x$, then $(A, *, \circ, 1,0)$ is a bounded pseudo-BCK algebra.

An MV-state on an MV-algebra A is a mapping $s: A \rightarrow[0,1]$ such that $s(1)=1$ and $s(a \oplus b)=s(a)+s(b)$ whenever $a \odot b=0$. Every MV-algebra admits at least one MV-state, and due to [17], every MV-state on A coincides with a Bosbach state on the BCK algebra A and vice versa.

We note that the radical, $\operatorname{Rad}(A)$, of an MV-algebra A is the intersection of all maximal ideals of $A([7])$.

Proposition 29. ([9]). In any MV-algebra A the following conditions are equivalent:
(a) $\operatorname{Rad}(A)=0$.
(b) $n x \leq x^{-}$for all $n \in N$ implies $x=0$.
(c) $n x \leq y^{-}$for all $n \in N$ implies $x \wedge y=0$.
(d) $n x \leq y$ for all $n \in N$ implies $x \odot y=x$, where $n x=x_{1} \oplus \cdots x_{n}$ with $x_{1}=\cdots=x_{n}=x$.

Remark 3. An MV-algebra A is archimedean in the sense of [9] if it satisfies the condition (b) of Proposition 29 and A is archimedean in Belluces sense [1] if it satisfies the condition
(d) of Proposition 29. By Proposition 29 the two definitions of archimedean MV-algebras are equivalent.

Theorem 4. Let s be a Bosbach state on a lbp-BCI algebra A and let $K=\operatorname{Ker}(s)$. Then $\left(A / K, \oplus,^{-}, 0 / K\right)$, where $a / K \oplus b / K=\left(b * a^{-}\right) / K$ and $(a / K)^{-}=a^{-} / K$, is an archimedean $M V$-algebra and the map $\hat{s}(a / K):=s(a)$ is an $M V$-state on this $M V$-algebra.

Proof. It is similar to the proof of [[4], Theorem 3.20].
By Theorem 3, A / K is a good pseudo-BCK algebra that is a \wedge-semilattice and \tilde{s} on A / K is a Bosbach state such that $\operatorname{Ker}(\tilde{s})=\{0 / K\}$. Due to [[20], Proposition 3.4.7], $(A / K) / \operatorname{Ker}(\tilde{s})$ is term-equivalent to an MV-algebra that is archimedean and \tilde{s} is an MVstate on it. Since $A / K=(A / K) / \operatorname{Ker}(\tilde{s})$, the same is true also for A / K, and this proves the theorem.

In the following, we give properties of state-morphisms on lbp-BCI algebras.
Lemma 1. Let A be a lbp-BCI algebra and m be a state-morphism on A. Then we have the following.
(1) $m\left(y^{-\sim} * x^{\sim}\right)=\min \{m(x)+m(y), 1\}$, for all $a \in M(A)$ and $x, y \in V(a)$.
(2) $m\left(x^{\sim-} \circ y^{-}\right)=\min \{m(x)+m(y), 1\}$, for all $a \in M(A)$ and $x, y \in V(a)$.

Proof. Assume that m is a state-morphism on A, so it is a Bosbach state on A. By Propositions 19 and 20, for for all $a \in M(A)$ and $x, y \in V(a)$, we have $m\left(y^{-\sim} * x^{\sim}\right)=$ $m\left(y * x^{\sim}\right)=m\left(x^{\sim}\right) \rightarrow_{\mathrm{E}} m(y)=m(x)^{\sim} \rightarrow_{\mathrm{E}} m(y)=\min \left\{1-m(x)^{\sim}+m(y), 1\right\}=$ $\min \{m(x)+m(y), 1\}$. Similarly we can prove $m\left(x^{\sim-} \circ y^{-}\right)=\min \{m(x)+m(y), 1\}$, for all $a \in M(A)$ and $x, y \in V(a)$.

Proposition 30. Let A be a lbp-BCI algebra and s be a Bosbach state on A. Then the following are equivalent:
(1) s is a state-morphism.
(2) $\operatorname{ker}(s)$ is a maximal ideal of A.

Proof. It is similar to the proof of [[4], Proposition 3.22].

Lemma 2. Let m be a state-morphism on a lbp-BCI algebra A and $K=\operatorname{ker}(m)$. Then
(1) $a / K \leq b / K$ if and only if $m(a) \leq m(b)$,
(2) $a / K=b / K$ if and only if $m(a)=m(b)$.

Proof. It is similar to the proof of [[4], Lemma 3.23].
Proposition 31. Let A be a lbp-BCI algebra and m_{1}, m_{2} be two state-morphisms on A such that $\operatorname{ker}\left(m_{1}\right)=\operatorname{ker}\left(m_{2}\right)$. Then $m_{1}=m_{2}$.

Proof. By Proposition 23, m_{1} and m_{1} are two Bosbach states on A. Since $k e r\left(m_{1}\right)=$ $\operatorname{ker}\left(m_{2}\right)$, we have $A / \operatorname{ker}\left(m_{1}\right)=A / \operatorname{ker}\left(m_{2}\right)$. By the proof of Proposition 30, we have that $A / \operatorname{ker}\left(m_{1}\right)$ is in fact an MV-subalgebra of the MV-algebra of the real interval $[0,1]$. But $\operatorname{ker}\left(\hat{m}_{1}\right)=0 / K=\operatorname{ker}\left(\hat{m}_{2}\right)$. Hence, by [[11], Proposition 4.5], $\hat{m_{1}}=\hat{m}_{2}$, consequently, $m_{1}=m_{2}$.

Let A be a lbp-BCI algebra. We say that a Bosbach state s is extremal if for any $0<\lambda<1$ and for any two Bosbach states s_{1}, s_{2} on $A, s=\lambda s_{1}+(1-\lambda) s_{2}$ implies $s_{1}=s_{2}$. Summarizing previous characterizations of state-morphisms, we have the following result.

Theorem 5. Let s be a Bosbach state on a lbp-BCI algebra A. Then the following are equivalent:
(1) s is an extremal Bosbach state.
(2) $s\left(x \wedge_{1} y\right)=\max \{s(x), s(y)\}$ for all $x, y \in A$.
(3) $s\left(x \wedge_{2} y\right)=\max \{s(x), s(y)\}$ for all $x, y \in A$.
(4) s is a state-morphism.
(5) $\operatorname{ker}(s)$ is a maximal ideal.

Proof. It is similar to the proof of [[4], Theorem 3.26].

5. Conclusions

Until now, the states on unbounded algebraic structures have been studied for Hilbert algebras and integral residuated lattices in [2] and [6], respectively.

In this paper, we first study state theory on non-bounded algebraic structures, and introduce a notion of state on pseudo-BCI algebras. In order to adapt a state to pseudo-BCI algebras, we first discuss the structure of pseudo-BCI algebras, which can be decomposed in to the union of it's branches. Note that for all $a \in M(A)$ and $a \neq 0, V(a)$ is not a BCK-algebra, hence the structure of pseudo-BCI algebras is different from the structure of pseudo-BCK algebras. Therefore it is valuable to study state theory on pseudo-BCI algebras. Moreover we introduce a notion of local bounded pseudo-BCI algebras and set up the theory of states on such algebraic structure. We also introduce a notion of state-morphisms on local bounded pseudo-BCI algebras and discuss the relations between Bosbach states and state-morphisms. By use of state's theory, we discuss the relation between pseudoBCI algebras and MV-algebras. In the next work, we will consider the following problem: satisfying what apposite conditions a local bounded pseudo-BCI algebra admits a Bosbach state?

Acknowledgements

This research is partially supported by a grant of National Natural Science Foundation of China (11571281,61602359), China Postdoctoral Science Foundation (2015M582618), China 111 Project (B16037).

References

[1] L P Belluce. Semisimple and complete MV-algebras. Algebra Univ., 29:1-9, 1992.
[2] C Bussneag. States on Hilbert algebras. Studia Logica, 94:177-188, 2010.
[3] C C Chang. Algebraic analysis of many valued logics. Transactions of the American Mathematical society, 88(2):467-490, 1958.
[4] L C Ciungu and A Dvurečenskij. Measures, states and de Finetti maps on pseudo-BCK algebras. Fuzzy Sets and Systems, 161(22):2870-2896, 2010.
[5] L C Ciungu, A Dvurečenskij and M Hycko. State BL-algebras. Soft Computing, 15(4):619-634, 2011.
[6] L C Ciungu. Relative negations in non-commutative fuzzy structures. Soft Computing, 18:15-33, 2014.
[7] R Cignoli, I M L DOttaviano and D Mundici. Algebraic Foundations of Many-valued Reasoning. Kluwer Academic Publishers, Dordrecht, 2000.
[8] W A Dudek and Y B Jun. Pseudo-BCI algebras. East Asian Math. J., 24:187-190, 2008.
[9] A Dvurečenskij and S Pulmannová. New Trends in Quantum Structures. Kluwer Academic Publishers, Dordrecht, Boston, London, 2000.
[10] A Dvurečenskij. Measures and states on BCK-algebras. Atti Del seminario matematico e fisico universita di modena, 47:511-528, 1996.
[11] A Dvurečenskij. States on pseudo MV-algebras. Studia Logica, 68:301-327, 2001.
[12] A Dvurečenskij and T Vetterlein. Algebras in the positive cone of po-groups Order, 19:127-146, 2002.
[13] G Georgescu and A Iorgulescu. Pseudo-BCKalgebras: An extension of BCKalgebras. in:Proc.DMTCS01: Combinatorics, Computability and Logic, Springer, London, pp.97114, 2001.
[14] P Hájek. Metamathematics of Fuzzy Logic. Kluwer Academic Publishers, Dordrecht, 1998.
[15] A Iorgulescu. Pseudo-Iséki algebras. Connection with pseudo-BL algebras. J. Multiple-Valued Logic Soft Comput., 3-4:263-308, 2005.
[16] A Iorgulescu. Algebras of Logic as BCK-algebras. Academy of Economic Studies Bucharest, Editura, 2008.
[17] K Iséki. An algebra related with a propositional calculus. Proc. Japan Acad., 42:26-29, 1966.
[18] K Iséki. On BCI-algebras. Math. Sem. Notes Kobe Univ., 8(1):125-130, 1980.
[19] Y B Jun, H K Kim and J Neggers. On pseudo-BCI ideals of pseudo-BCI algebras. Matematiqki Vesnik, 58:39-46, 2006.
[20] J Kuhr. Pseudo-BCK algebras and related structures. Univerzita Palackého v Olomouci, 2007.
[21] L Lianzhen. States on finite monoidal t-norm based algebras. Information Sciences, 181:1369-1393, 2011.
[22] J Meng and Y B Jun. BCK-algebras. Kyungmoon Sa, Seoul, 1994.
[23] D Mundici. Averaging the truth-value in Łukasiewicz logic. Studia Logica, 55(1):113127, 1995.
[24] D Mundici. Interpretation of AFC*-algebras in Łukasiewicz sentential calculus. J. Funct. Anal, 65: 15-53, 1986.

