EUROPEAN JOURNAL OF PURE AND APPLIED MATHEMATICS

Vol. 10, No. 3, 2017, 455-472 ISSN 1307-5543 – www.ejpam.com Published by New York Business Global

States on pseudo-BCI algebras

Xiao Long Xin^{1,*}, Yi Jun Li¹, Yu Long Fu²

¹ School of Mathematics, Northwest University, Xi'an, China

² School of Cyber Engnieering, Xidian University, Xi'an, China

Abstract. In this paper, we discuss the structure of pseudo-BCI algebras and get that any pseudo-BCI algebra is a union of it's branches. We introduce the notion of local bounded pseudo-BCI algebras and study some related properties. Moreover we define two operations \wedge_1 , \wedge_2 in a local bounded pseudo-BCI algebra A and two local operations \vee_1 and \vee_2 in V(a) for $a \in M(A)$. We show that in a $\wedge_1(\wedge_2)$ -commutative local bounded pseudo-BCI algebra A, $(V(a), \wedge_1, \vee_1)((V(a), \wedge_2, \vee_2))$ forms a lattice for all $a \in M(A)$. We define a Bosbach state on a local bounded pseudo-BCI algebra. Then we give two examples of local bounded pseudo-BCI algebras to show that there is local bounded pseudo-BCI algebras having a Bosbach state but there is some one having no Bosbach states. Moreover we discuss some basic properties about Bosbach states. If s is a Bosbach state of a local bounded pseudo-BCI algebra. We also introduce the notion of state-morphisms on local bounded pseudo-BCI algebras and discuss the relations between Bosbach states and state-morphisms. Finally we give some characterization of Bosbach states.

2010 Mathematics Subject Classifications: 03G25

Key Words and Phrases: Pseudo-BCI algebra, local bounded, state, state-morphism, MV-algebra

1. Introduction

BCK/BCI algebras were introduced originally by Iséki in [17] and [18] with a binary operation * modeling the set-theoretical difference. Another motivation is from classical and non-classical propositional calculi modeling logical implications. Such algebras contain as a special subfamily of a family of MV-algebras where some important fuzzy structures can be studied. For more about BCK algebras, see [22].

Pseudo-BCK algebras were originally introduced by Georgescu and Iorgulescu in [13] as algebras with "two differences", a left- and right-difference, instead of one * and with a constant element 0 as the least element. In [12], a special subclass of pseudo-BCK algebras, called Lukasiewicz pseudo-BCK algebras, was introduced and it was shown that

http://www.ejpam.com

© 2017 EJPAM All rights reserved.

^{*}Corresponding author.

Email addresses: xlxin@nwu.edu.cn (X.L. Xin), liyijun2009@126.com (Y.J. Li), ylfu@xidian.edu.cn (Y.L. Fu)

it is always a subalgebra of the positive cone of some ℓ -group (not necessarily abelian). The class of Lukasiewicz pseudo-BCKalgebras is a variety whereas the class of pseudo-BCKalgebras is not; it is only a quasivariety because it is not closed under homomorphic images. For a guide through the pseudo-BCK algebras realm, see the monograph [16]. In [8], W. A. Dudek and Y. B. Jun introduced the notion of pseudo-BCI algebras as an extension of BCI-algebras, and investigated some properties.

MV-algebras entered into mathematics just 50 years ago due to Chang [3], but the notion of a state for MV-algebras was introduced by Mundici [23] in 1995 as averaging of the truth-value in Lukasiewicz logic. BL-algebras were introduced in the 1990s by Hájek [14] as the equivalent algebraic semantics for its basic fuzzy logic. In [5], authors defined a state-operator and a strong state-operator for a BL-algebra and prove some of their basic properties. L. Z. Liu studied the existence of Bosbach states and Riečan states on finite monoidal t-norm based algebras in [21]. Some examples show that there exist MTL-algebras having no Bosbach states and Riečan states.

In [10], Dvurečenskij introduced measures and states on BCK-algebras, and showed that the set of elements of measure 0 is an ideal, and the corresponding quotient BCKalgebra is commutative with a lifted original measure. Ciungu and Dvurečenskij [4] extended the notions of measures and states presented in Dvurečen-skij and Pulmannová [9] to the case of pseudo-BCK algebras, studied similar properties, and prove that, under some conditions, the notion of a state in the sense of Dvurečenskij and Pulmannová [9] coincides with the Bosbach state.

The aim of this paper is to introduce and study the state theory on local bounded pseudo-BCI algebras. This paper is organized as follows: in Section 2, we recall notions of BCI-algebras and the notion and some properties of pseudo-BCI algebras. In the same time, we discuss the structure of pseudo-BCI algebras and get that any pseudo-BCI algebra is a union of it's branches. In Section 3, we introduce the notion of local bounded pseudo-BCI algebras and study some related properties. In Section 4, we define a Bosbach state on a local bounded pseudo-BCI algebra. Then we give two examples of local bounded pseudo-BCI algebras to show that there is local bounded pseudo-BCI algebras having a Bosbach state but there is some one having no Bosbach states. Moreover we discuss some of their basic properties. We discuss the relation between local bounded pseudo-BCI algebras and MV-algebras. We also introduce the notion of state-morphisms on local bounded pseudo-BCI algebras and discuss the relations between Bosbach states and state-morphisms. Finally we give some characterization on Bosbach states.

2. Pseudo-BCI algebras

Recall that a BCI-algebra is an algebra (X, *, 0) of type (2,0) satisfying the following axioms: for every $x, y, z \in X$, (1) ((x * y) * (x * z)) * (z * y) = 0, (2) (x * (x * y)) * y = 0, (3) x * x = 0, (4) x * y = 0 and y * x = 0 imply x = y.

For any BCI-algebra X, the relation \leq defined by $x \leq y$ if and only if x * y = 0 is a partial order on X. A nonempty subset I of a BCI-algebra X is called a BCI- ideal of X if it satisfies (1) $0 \in I$, (2) For all $x, y \in X, x * y \in I, y \in I \Rightarrow x \in I$.

We recall the notion and some properties of pseudo-BCI algebras.

Definition 1. [19] A pseudo-BCI algebras is a structure $\mathbb{A} = (A, \leq, *, \circ, 0)$, where \leq is a binary relation on A, * and \circ are binary operations on A and "0" is an element of A, satisfying, for all $x, y, z \in A$,

 $\begin{array}{l} (I_1) \ (x * y) \circ (x * z) \leq z * y, \ (x \circ y) * (x \circ z) \leq z \circ y. \\ (I_2) \ x * (x \circ y) \leq y, \ x \circ (x * y) \leq y. \\ (I_3) \ x \leq x. \\ (I_4) \ x \leq y \ and \ y \leq x \ imply \ x = y. \\ (I_5) \ x \leq y \ iff \ x * y = 0 \ iff \ x \circ y = 0. \end{array}$

Definition 2. [13] A pseudo-BCK algebra is a structure $\mathbb{A} = (A, \leq, \rightarrow, \rightsquigarrow, 1)$ where \leq is a binary relation on A, and \rightarrow and \rightsquigarrow are binary operations on A and 1 is an element of A satisfying, for all $x, y, z \in A$, the axioms:

 $\begin{array}{l} (K_1) \ x \to y \preceq (y \to z) \rightsquigarrow (x \to z), \ x \rightsquigarrow y \preceq (y \rightsquigarrow z) \to (x \rightsquigarrow z). \\ (K_2) \ x \preceq (x \to y) \rightsquigarrow y, \ x \preceq (x \rightsquigarrow y) \to y. \\ (K_3) \ x \preceq x. \\ (K_4) \ x \preceq 1. \\ (K_5) \ if \ x \preceq y \ and \ y \preceq x, \ then \ x = y. \\ (K_6) \ x \preceq y \ iff \ x \to y = 1 \ iff \ x \rightsquigarrow y = 1. \end{array}$

Remark 1. (1) A pseudo-BCK algebra $\mathbb{A} = (A, \preceq, \rightarrow \rightsquigarrow, 1)$ can be seen a pseudo-BCI algebra $\mathbb{A} = (A, \leq, *, \circ, 0)$ if $x \to y = y * x$, $x \rightsquigarrow y = y \circ x$, 1 = 0 and $x \preceq y$ iff $y \leq x$ for all $x, y \in A$.

(2) A pseudo-BCI algebra is a BCI algebra if $* = \circ$.

(3) The relation \leq is a partial order on a pseudo-BCI algebra A.

Now we give two pseudo-BCI algebras which are not pseudo-BCK algebras.

Example 1. Let $A = \{0, u, v, w, t, 1, a, b\}$. The order of the elements in A is as the following Hasse diagram:

Now the operations * and \circ are defined by Tables 2.1 and 2.2, respectively. Simple calculations show that $(A, \leq , *, \circ, 0)$ is a pseudo-BCI algebra.

Example 2. Let $A = \{0, x, y, z, 1, a, b\}$ in which the order of elements in A is as the following Hasse diagram:

X.L. Xin, Y.J. Li, Y.L. Fu / Eur. J. Pure Appl. Math, 10 (3) (2017), 455-472

*	0	u	v	W	t	1	a	b
0	0	0	0	0	0	0	a	a
u	u	0	0	0	0	0	a	a
v	v	v	0	v	0	0	a	a
W	W	W	W	0	0	0	a	a
t	t	t	W	t	0	0	a	a
1	1	1	1	1	1	0	a	a
a	a	a	a	a	a	a	0	0
b	b	b	b	b	b	а	1	0

0	0	u	v	W	t	1	a	b
0	0	0	0	0	0	0	a	a
u	u	0	0	0	0	0	a	a
v	v	v	0	v	0	0	a	a
W	W	W	W	0	0	0	a	a
\mathbf{t}	t	t	t	v	0	0	a	a
1	1	1	1	1	1	0	a	a
a	a	a	a	a	a	a	0	0
b	b	b	b	b	b	a	1	0

 $Tables \ 2.2$

b

 $\frac{1}{a}$

Let the operations $*, \circ$ be given by the following Tables 2.3 and 2.4.

*	0	х	у	\mathbf{Z}	1	a	b
0	0	0	0	0	0	a	а
X	х	0	0	0	0	a	a
у	у	у	0	у	0	a	a
Z	Z	z	Z	0	0	a	a
1	1	1	1	у	0	a	а
a	a	a	a	a	a	0	0
b	b	a	a	a	a	у	0

1 0 b 0 х у \mathbf{Z} \mathbf{a} 0 0 00 0 0 \mathbf{a} \mathbf{a} 0 0 х х 0 0 \mathbf{a} \mathbf{a} 0 0 \mathbf{a} \mathbf{a} у у у у 0 0 \mathbf{a} \mathbf{Z} \mathbf{Z} \mathbf{Z} \mathbf{Z} \mathbf{a} 1 1 1 0 \mathbf{Z} 1 \mathbf{a} \mathbf{a} 0 0 \mathbf{a} \mathbf{a} \mathbf{a} \mathbf{a} \mathbf{a} \mathbf{a} \mathbf{b} b \mathbf{b} \mathbf{a} b 0 \mathbf{a} х

 $Tables \ 2.4$

Then $(A, \leq , *, \circ, 0)$ is a pseudo-BCI algebra.

Proposition 1. [19] In a pseudo-BCI algebras A the following hold: $(p_1) \ x \le 0 \Rightarrow x = 0.$

 $\begin{array}{l} (p_2) \ x \leq y \Rightarrow z \ast y \leq z \ast x \ and \ z \circ y \leq z \circ x. \\ (p_3) \ x \leq y, y \leq z \Rightarrow x \leq z. \\ (p_4) \ (x \ast y) \circ z = (x \circ z) \ast y. \\ (p_5) \ x \ast y \leq z \Leftrightarrow x \circ z \leq y. \\ (p_6) \ (x \ast y) \ast (z \ast y) \leq x \ast z, \ (x \circ y) \circ (z \circ y) \leq x \circ z. \\ (p_7) \ x \leq y \Rightarrow x \ast z \leq y \ast z, x \circ z \leq y \circ z. \end{array}$

X.L. Xin, Y.J. Li, Y.L. Fu / Eur. J. Pure Appl. Math, 10 (3) (2017), 455-472

 $(p_8) \ x * 0 = x = x \circ 0. \\ (p_9) \ x * (x \circ (x * y)) = x * y, \ x \circ (x * (x \circ y)) = x \circ y.$

Proposition 2. [19] In a pseudo-BCI algebra A the following holds for all $x, y, z \in A$: (i) $0 * (x \circ y) \leq y \circ x$. (ii) $0 \circ (x * y) \leq y * x$. (iii) $0 * (x * y) = (0 \circ x) \circ (0 * y)$. (iv) $0 \circ (x \circ y) = (0 * x) * (0 \circ y)$.

Definition 3. [19] An element a of a pseudo-BCI algebra A is called a pseudo-atom if for every $x \in A$, $x \leq a$ implies x = a.

The set of all pseudo-atoms of a pseudo-BCI algebra A is denoted by M(A). Obviously, $0 \in M(A)$.

Proposition 3. Let A be a pseudo-BCI algebra and $a \in A$. The following conditions are equivalent:

(1) a is a pseudo-atom of A;

(2) $y * (y \circ a) = a$ (or $y \circ (y * a) = a$) for all $y \in A$;

(3) $y * (y \circ (a * x)) = a * x$ (or $y \circ (y * (a \circ x)) = a \circ x$) for all $x, y \in A$.

Proof. (1) \Rightarrow (2). By I_2 , $y * (y \circ a) \leq a$. Since a is a pseudo-atom of A, we have $y * (y \circ a) = a$.

 $(2) \Rightarrow (3)$ Obviously.

 $(3) \Rightarrow (1)$ It follows from Proposition 3.6 of [19].

By Proposition 3, we have $x * (x \circ a) = x \circ (x * a) = a$ for all $a \in M(A)$ and $x \in A$.

Corollary 1. Let A be a pseudo-BCI algebra. Then for all $a \in M(A)$ and $x \in A$, we have $a * x \in M(A)$ and $a \circ x \in M(A)$.

Proof. Let $a \in M(A)$ and $x \in A$. By Proposition 3.8(3), we have $y * (y \circ (a * x)) = a * x$ for all $y \in A$. Using Proposition 3.8(2), we get that a * x is a pseudo-atom of A, that is $a * x \in M(A)$. Similarly we can prove $a \circ x \in M(A)$.

Let A be a pseudo-BCI algebra. For $a \in M(A)$, define $V(a) = \{x \in A \mid a \leq x\}$. V(a) is called a branch of A. Obviously $a \in V(a)$.

Proposition 4. Let A be a pseudo-BCI algebra, $a, b \in M(A)$ and $a \neq b$. Then $V(a) \cap V(b) = \emptyset$.

Proof. Assume $V(a) \cap V(b) \neq \emptyset$, then there is $x \in V(a) \cap V(b)$. Hence $a \leq x$ and $b \leq x$. It follows that $(b * (b \circ a)) \circ (b * (b \circ x)) \leq (b \circ x) * (b \circ a) \leq a \circ x = 0$. So $(b * (b \circ a)) \circ (b * (b \circ x)) = 0$. Hence $b * (b \circ a) \leq (b * (b \circ x)) = b$. Since $b \in M(A)$, we have $b * (b \circ a) = b$. Note that $b = (b * (b \circ a)) \leq a$. Similarly $a \leq b$. By Definition 3.1, we have a = b. It is a contradiction, hence $V(a) \cap V(b) = \emptyset$.

Proposition 5. Let A be a pseudo-BCI algebra and $x, y \in A$. If $x \leq y$, then x, y are in the same branch of A.

Proof. Assume that $x \in V(a)$ and $y \in V(b)$ for some $a, b \in M(A)$ and $a \neq b$. Then $a \leq x \leq y$. Hence $y \in V(a)$ and so $y \in V(a) \cap V(b)$, a contradiction with Proposition 4.

Proposition 6. Let A be a pseudo-BCI algebra and $x \in V(a)$ for some $a \in M(A)$. Then $0 * (0 \circ x) = a$ and $0 \circ (0 * x) = a$.

Proof. Since $0 * (0 \circ x) \leq x$, we have $0 * (0 \circ x) \in V(a)$ by Proposition 5. Hence $a \leq 0 * (0 \circ x)$. On the other hand, we have $(0 * (0 \circ x)) \circ a = (0 \circ a) * (0 \circ x) = ((a * x) \circ a) * (0 \circ x) = ((a \circ a) * x) * (0 \circ x) = (0 * x) * (0 * x) = 0$. Therefore $0 * (0 \circ x) \leq a$. This shows that $0 * (0 \circ x) = a$. Similarly we can prove $0 \circ (0 * x) = a$.

Proposition 7. Let A be a pseudo-BCI algebra. Then for any $x \in A$, $0 * (0 \circ x) \in M(A)$ and $0 \circ (0 * x) \in M(A)$.

Proof. Let $x \in A$. In order to prove $0 \circ (0 * x) \in M(A)$, we assume $y \leq 0 \circ (0 * x)$. Then $y \circ (0 \circ (0 * x)) = 0$. By (p_4) and (p_9) of Proposition 3.3, we have

 $\begin{aligned} &(0 \circ (0 * x)) * y = (0 * y) \circ (0 * x) \\ &= ((y \circ (0 \circ (0 * x))) * y) \circ (0 * x) \\ &= ((y * y) \circ ((0 \circ (0 * x)))) \circ (0 * x) \\ &= (0 \circ ((0 \circ (0 * x)))) \circ (0 * x). \end{aligned}$

By Proposition 2(iv), $0 \circ ((0 \circ (0 * x))) = (0 * 0) * (0 \circ (0 * x)) = 0 * (0 \circ (0 * x)) = 0 * x$. Hence $(0 \circ (0 * x)) * y = (0 \circ ((0 \circ (0 * x)))) \circ (0 * x) = (0 * x) \circ (0 * x) = 0$. This shows that $0 \circ (0 * x) \le y$ and hence $y = 0 \circ (0 * x)$. Similarly we can prove $0 * (0 \circ x) \in M(A)$.

Corollary 2. Let A be a pseudo-BCI algebra. Then for any $x \in A$, $(0 \circ x) \in M(A)$ and $(0 * x) \in M(A)$.

Proof. Since $0 * x = 0 * (0 \circ (0 * x))$ and $0 \circ x = 0 \circ (0 * (0 \circ x))$, we have $0 * x \in M(A)$ and $0 \circ x \in M(A)$ by Proposition 7.

By Propositions 6 and 7, we have $0 * (0 \circ x) = 0 \circ (0 * x) \in M(A)$ for all $x \in A$. Denote $a_x = 0 * (0 \circ x) = 0 \circ (0 * x)$, for $x \in A$. Then $a_x \in M(A)$ and $x \in V(a_x)$.

Using above arguments we can get the structure of a pseudo-BCI algebra.

Theorem 1. Let A be a pseudo-BCI algebra. Then $\{V(a) \mid a \in M(A)\}$ forms a partition of A, that is, $A = \bigcup_{a \in M(A)} V(a)$ and $V(a) \cap V(b) = \emptyset$ for all $a, b \in M(A)$ and $a \neq b$.

3. Local bounded pseudo-BCI algebras

Let A be a pseudo-BCI algebra. For $a \in M(A)$, if there is an element $1_a \in V(a) \setminus \{a\}$ such that for all $x \in V(a)$, $x \leq 1_a$, then 1_a is called the local unit of V(a). Note that 1_a is unique.

Definition 4. Let A be a pseudo-BCI algebra. If for every $a \in M(A)$, V(a) has a local unit, then A is called a local bounded pseudo-BCI algebra. For convenience we denote it by lbp-BCI algebra.

Note that the pseudo-BCI algebras given in Examples 1 and 2 are local bounded pseudo-BCI algebras. In Examples 1, $M(A) = \{0, a\}, V(0) = \{0, u, v, w, t, 1\}, 1_0 = 0, V(a) = \{a, b\}, 1_a = b$. In Examples 2, $M(A) = \{0, a\}, V(0) = \{0, x, y, z, 1\}, 1_0 = 0, V(a) = \{a, b\}, 1_a = b$.

In the following, A shall mean a lbp-BCI algebra unless otherwise specified.

We define two negations, \neg and \neg , as follows: for $a \in M(A)$ and $x \in V(a)$, $x^{\neg} \doteq 1_a * x, x^{\sim} \doteq 1_a \circ x$.

Proposition 8. For all $x, y \in A$, we have

(1) $x^{-\sim} \le x, x^{\sim-} \le x.$ (2) $x \le y \Rightarrow y^{-} \le x^{-}, y^{\sim} \le x^{\sim}.$ (3) $x^{-} = x^{-\sim-}, x^{\sim} = x^{\sim-\sim}.$

Proof. (1) By (I_2) of Definition 1, we have $x^{-\sim} \leq x$ and $x^{\sim -} \leq x$.

(2) Let $x \leq y$, then $x, y \in V(a)$ for some $a \in M(A)$. Hence $(1_a \circ y) * (1_a \circ x) \leq x \circ y = 0$, and so $(1_a \circ y) * (1_a \circ x) = 0$. It follows that $1_a \circ y \leq 1_a \circ x$, or $y^{\sim} \leq x^{\sim}$. Similarly we can prove $y^{-} \leq x^{-}$.

(3) By (1), we have $x^{--} \leq x$. Replace x by x^- , we get $x^{---} \leq x^-$. On the other hand, $x^{--} \leq x$ implies $x^- \leq x^{---}$ by (2). So $x^- = x^{---}$. Similarly we can prove $x^- = x^{---}$.

Let A be a pseudo-BCI algebra. For any $x, y \in A$, define $x \wedge_1 y \doteq y \circ (y * x)$, $x \wedge_2 y \doteq y * (y \circ x)$.

Proposition 9. In A the following properties hold:

(1) $a_x \wedge_1 x = x \wedge_1 a_x = a_x$ and $a_x \wedge_2 x = x \wedge_2 a_x = a_x$ for all $x \in A$. (2) $x \leq y$ implies $y \wedge_1 x = x$ and $y \wedge_2 x = x$.

(3) $x \wedge_1 x = x$ and $x \wedge_2 x = x$.

(4) If $x_1 \leq x_2$, then $x_1 \wedge_1 y \leq x_2 \wedge_1 y$ and $x_1 \wedge_2 y \leq x_2 \wedge_2 y$.

Proof. (1) By Proposition 3, we have $a_x \wedge_1 x = x \circ (x * a_x) = a_x$ since $a_x \in M(A)$. Note that for $x \in V(a_x)$, we get $x \wedge_1 a_x = a_x \circ (a_x * x) = a_x \circ 0 = a_x$. So we shows that $a_x \wedge_1 x = x \wedge_1 a_x = a_x$. Similarly we can prove $a_x \wedge_2 x = x \wedge_2 a_x = a_x$ for all $x \in A$.

(2) Let $x \le y$. Then $y \land_1 x = x \circ (x * y) = x \circ 0 = x$ and $y \land_2 x = x * (x \circ y) = x * 0 = x$. (3) We have $x \land_1 x = x \circ (x * x) = x$ and $x \land_2 x = x * (x \circ x) = x$.

(4) Let $x_1 \leq x_2$. Note that $(x_1 \wedge_1 y) * (x_2 \wedge_1 y) = (y \circ (y * x_1)) * (y \circ (y * x_2)) \leq (y * x_2) \circ (y * x_1) \leq x_1 * x_2 = 0$. We get $x_1 \wedge_1 y \leq x_2 \wedge_1 y$. Similarly we can prove $x_1 \wedge_2 y \leq x_2 \wedge_2 y$.

Proposition 10. In A the following properties hold for all $a \in M(A)$ and $x, y \in V(a)$: (1) $x \wedge_1 y^{-\sim} = x^{-\sim} \wedge_1 y^{-\sim}$ and $x \wedge_2 y^{-\sim} = x^{-\sim} \wedge_2 y^{-\sim}$. (2) $x \wedge_1 y^{-\sim} = x^{-\sim} \wedge_1 y^{-\sim}$ and $x \wedge_2 y^{-} = x^{-\sim} \wedge_2 y^{-\sim}$. $\begin{array}{l} Proof. \ (1) \text{ Using Proposition 1, we have } y^{-\sim} * x = (1_a \circ (1_a * y)) * x = (1_a * x) \circ (1_a * y) = (1_a \circ (1_a * y)) \circ (1_a * y) = (1_a \circ (1_a * y)) * (1_a \circ (1_a * x)) = y^{-\sim} * x^{-\sim}.\\ \text{Thus } x \wedge_1 y^{-\sim} = y^{-\sim} \circ (y^{-\sim} * x) = y^{-\sim} \circ (y^{-\sim} * x^{-\sim}) = x^{-\sim} \wedge_1 y^{-\sim}.\\ \text{(2) By Proposition 8 and (1), we get} \\ x \wedge_1 y^{\sim} = x \wedge_1 (y^{\sim})^{-\sim} = x^{-\sim} \wedge_1 (y^{\sim})^{-\sim} = x^{-\sim} \wedge_1 y^{\sim}. \end{array}$

Proposition 11. In A the following properties hold for all $x, y \in A$: $y * (x \wedge_1 y) = y * x$ and $y \circ (x \wedge_2 y) = y \circ x$.

Proof. By Proposition 1, we have $y * (x \wedge_1 y) = y * (y \circ (y * x)) = y * x$ and $y \circ (x \wedge_2 y) = y \circ (y * (y \circ x)) = y \circ x$.

Proposition 12. Let $a \in M(A)$. If $x, y \in V(a)$, then $x * y \in V(0)$ and $x \circ y \in V(0)$.

Proof. Using Proposition 2 and 6, we get $0 \circ (0 * (x * y)) = 0 \circ ((0 \circ x) \circ (0 * y)) = (0 * (0 \circ x)) * (0 \circ (0 * y)) = a * a = 0$. Since by $(I_2) 0 \circ (0 * (x * y)) \le x * y$, we have $0 \le x * y$, and so $x * y \in V(0)$. Similarly we can prove $x \circ y \in V(0)$.

Proposition 13. In A the following properties hold for all $a \in M(A)$, $x, y \in V(a)$: (1) $x \wedge_1 y \ (y \wedge_1 x)$ is a lower bound of $\{x, y\}$. (2) $x \wedge_2 y \ (y \wedge_2 x)$ is a lower bound of $\{x, y\}$.

Proof. By Definition 3.1, we have $x \wedge_1 y = y \circ (y * x) \leq x$. Moreover by Proposition 12, $y * x \in V(0)$ and so $0 \circ (y * x) = 0$, and $(y \circ (y * x)) * y = (y * y) \circ (y * x) = 0 \circ (y * x) = 0$. It follows that $x \wedge_1 y = y \circ (y * x) \leq y$. Similarly we can get that $(y \wedge_1 x)$ is also a lower bound of $\{x, y\}$.

(2) Similar to the proof of (1).

Definition 5. (1) If for all $a \in M(A)$ and $x, y \in V(a)$, $x \wedge_1 y = y \wedge_1 x$, we call A to be a local \wedge_1 -commutative pseudo-BCI algebra.

(2) If for all $a \in M(A)$ and $x, y \in V(a)$, $x \wedge_2 y = y \wedge_2 x$, we call A to be a local \wedge_2 commutative pseudo-BCI algebra.

(3) If A is local \wedge_1 -commutative and local \wedge_2 -commutative, we call A to be local commutative.

Proposition 14. (1) If A is local \wedge_1 -commutative, then $(V(a), \wedge_1)$ forms a lower similattice for all $a \in M(a)$.

(2) If A is local \wedge_2 -commutative, then $(V(a), \wedge_2)$ forms a lower similattice for all $a \in M(a)$.

Proof. (1) It needs only to prove that $x \wedge_1 y$ is the greatest lower bound of $\{x, y\}$ for all $a \in M(A)$ and $x, y \in V(a)$. Assume that m is a lower bound of $\{x, y\}$. We have

 $m*(x \wedge_1 y) = (m \circ (m*y))*(y \circ (y*x)) = (y \wedge_1 m)*(y \circ (y*x)) = (m \wedge_1 y)*(y \circ (y*x)) = (y \circ (y*m))*(y \circ (y*x)) \le (y*x) \circ (y*m) \le m*x = 0,$ and so $m \le (x \wedge_1 y)$. X.L. Xin, Y.J. Li, Y.L. Fu / Eur. J. Pure Appl. Math, 10 (3) (2017), 455-472

(2) Similar to the proof of (1).

For a lbp-BCI algebra A, we can define the following operations in V(a),

 $x \vee_1 y = 1_a \circ ((1_a * x) \wedge_1 (1_a * y)),$ $x \vee_2 y = 1_a * ((1_a \circ x) \wedge_2 (1_a \circ y)),$

for all $a \in M(A)$ and for all $x, y \in V(a)$.

Proposition 15. Let A be a lbp-BCI algebra.

(1) If A is local \wedge_1 -commutative, then $(V(a), \wedge_1, \vee_1)$ forms a lattice for all $a \in M(a)$.

(2) If A is local \wedge_2 -commutative, then $(V(a), \wedge_2, \vee_2)$ forms a lattice for all $a \in M(a)$.

Proof. (1) Let $a \in M(A)$ and $x, y \in V(a)$. Since A is local \wedge_1 -commutative, then $x = x \circ (x * 1_a) = 1_a \circ (1_a * x) \leq 1_a \circ ((1_a * x) \wedge_1 (1_a * y)) = x \vee_1 y$. Similarly we can prove $y \leq x \vee_1 y$.

If $z \ge x$ and $z \ge y$, then $z \in V(a)$, $1_a * x \ge 1_a * z$ and $1_a * y \ge 1_a * z$. By Proposition 14, we have $1_a * z \le (1_a * x) \land_1 (1_a * y)$. Therefore $x \lor_1 y = 1_a \circ ((1_a * x) \land_1 (1_a * y)) \le 1_a \circ (1_a * z) = z \circ (z * 1_a) = z$. It follows that $x \lor_1 y$ is the least upper bound of $\{x, y\}$.

Applying Proposition 14, we get $(V(a), \wedge_1, \vee_1)$ forms a lattice.

(2) Similar to the proof of (1).

Definition 6. Let A be a pseudo-BCI algebra. (1) If for all $x, y \in A$, $x \wedge_1 y = y \wedge_1 x$, we call A to be \wedge_1 -commutative.

(2) If for all $x, y \in A$, $x \wedge_2 y = y \wedge_2 x$, we call A to be \wedge_2 -commutative.

(3) If A is \wedge_1 -commutative and \wedge_2 -commutative, we call A to be sup-commutative.

The following result shows that \wedge_1 -commutative (\wedge_2 -commutative) pseudo-BCI algebras must be pseudo-BCK algebras.

Proposition 16. Let A be a pseudo-BCI algebra. Then the following are equivalent: (1) A is \wedge_1 -commutative (\wedge_2 -commutative).

(2) A is a \wedge_1 -commutative (\wedge_2 -commutative) pseudo-BCK algebra.

Proof. (1) \Rightarrow (2). Let A be \wedge_1 -commutative. Then for any $a \in M(A)$, we have $a \wedge_1 0 = 0 \wedge_1 a$. Note that $a \wedge_1 0 = 0 \circ (0 * a) = a$ by Proposition 6 and $0 \wedge_1 a = a \circ (a * 0) = 0$. This shows that a = 0, that is A = V(0). Thus A is a \wedge_1 -commutative pseudo-BCK algebra. Similarly we can prove the result for case of \wedge_2 -commutative.

 $(2) \Rightarrow (1)$. It is straightforward.

Proposition 17. [15] If A is a sup-commutative pseudo-BCK algebra, then $\wedge_1 = \wedge_2$.

By Proposition 16 and 17, we can get a characterization of sup-commutative pseudo-BCI algebras.

Proposition 18. Let A be a pseudo-BCI algebra. Then the following are equivalent:
(1) A is a sup-commutative pseudo-BCI algebra.
(2) A is a sup-commutative pseudo-BCK algebra.

4. States on local bounded pseudo-BCI algebras

Definition 7. Let A be a lbp-BCI algebra. A Bosbach state on A is a function $s : A \rightarrow [0,1]$ such that the following conditions hold:

(1) s(x) + s(y * x) = s(y) + s(x * y), for all $x, y \in A$,

(2) $s(x) + s(y \circ x) = s(y) + s(x \circ y)$, for all $x, y \in A$,

(3) s(a) = 1 and $s(1_a) = 0$ where $a \in M(A)$ and 1_a is the local unit of V(a).

Example 3. Consider the local bounded pseudo-BCI algebra A given in Example 1. Define the function $s : A \to [0,1]$ by s(0) = 1, s(u) = 1, s(v) = 1, s(w) = 1, s(t) = 1, s(1) = 0, s(a) = 1, s(b) = 0. Then s is a unique Bosbach state on A.

Example 4. Consider the local bounded pseudo-BCI algebra A given in Example 2. Define a function $s : A \to [0,1]$ as follows: $s(0) = 1, s(x) = \alpha, s(y) = \beta, s(z) = \gamma, s(1) = 0, s(a) = 1, s(b) = 0$. Using s(u) + s(v * u) = s(v) + s(u * v), taking u = x, v = 1, u = y, v = 1 and u = z, v = 1, respectively, we get $\alpha = 1, \beta = 1, \gamma = 0$. On the other hand, taking u = z, v = 1 in $s(u) + s(v \circ u) = s(v) + s(u \circ v)$, we get $\gamma + 0 = 0 + 1$, so 0 = 1 which is a contradiction. Hence A does not admit a Bosbach state.

Proposition 19. Let A be a lbp-BCI algebra and s a Bosbach state on A. Then the following properties hold for all $x, y \in A$:

(1) If $x \le y$, then $s(y * x) = 1 + s(y) - s(x) = s(y \circ x)$ and $s(y) \le s(x)$.

(2) If x, y are in same branch, then $s(x \wedge_1 y) = s(y \wedge_1 x)$, $s(x \wedge_2 y) = s(y \wedge_2 x)$.

(3) If x, y are in same branch, then $s(x \wedge_1 y^{-\sim}) = s(x^{-\sim} \wedge_1 y^{-\sim}), s(x \wedge_2 y^{\sim-}) = s(x^{\sim-} \wedge_2 y^{\sim-}).$

(4) If x, y are in same branch, then $s(x^{-\sim} \wedge_1 y) = s(x \wedge_1 y^{-\sim}), s(x^{\sim-} \wedge_2 y) = s(x \wedge_2 y^{\sim-}).$ (5) $s(x^{-\sim}) = s(x) = s(x^{\sim-}).$

(6) $s(x^{-}) = 1 - s(x) = s(x^{\sim}).$

Proof. (1) Let $x \le y$. It follows from Definition 5.1 that $s(y * x) = 1 + s(y) - s(x) = s(y \circ x)$. Moreover $s(x) - s(y) = 1 - s(y * x) \ge 0$ and hence $s(y) \le s(x)$.

(2) By Proposition 1, we have $y * x = y * (x \wedge_1 y)$. Since x, y are in same branch, then $x \wedge_1 y \leq x, y$ by proposition 13. By property (1), we have $s(y * x) = s(y * (x \wedge_1 y)) = 1 + s(y) - s(x \wedge_1 y)$ and $s(x * y) = s(x * (y \wedge_1 x)) = 1 + s(x) - s(y \wedge_1 x)$. Using condition (1) from Definition 7 we get $s(x \wedge_1 y) = s(y \wedge_1 x)$. Similarly we can prove $s(x \wedge_2 y) = s(y \wedge_2 x)$.

(3) It follows from Proposition 10.

(4) It follows from (2) and (3).

(5) For $x \in A$, there is $a \in M(A)$ such that $x \in V(a)$. Note that $x^{-\sim} = x \wedge_1 1_a$. By (2), we have $s(x^{-\sim}) = s(x \wedge_1 1_a) = s(1_a \wedge_1 x) = s(x \circ (x * 1_a)) = s(x)$. In a similar way, we can prove $s(x) = s(x^{\sim -})$.

(6) By (1), we have $s(x^{-}) = s(1_a * x) = 1 + s(1_a) - s(x) = 1 - s(x)$. In a similar way we can get $s(x^{\sim}) = 1 - s(x)$.

Proposition 20. Let *A* be a lbp-BCI algebra and *s* be a Bosbach state on *A*. Then the following properties hold for all *a* ∈ *M*(*A*) and *x*, *y* ∈ *V*(*a*): (1) $s(y * x^{--}) = s(y^{--} * x), s(y \circ x^{--}) = s(y^{--} \circ x).$ (2) $s(y^{--} * x) = s(x^{-} \circ y^{-}) = s(y^{--} * x^{--}) = s(y * x^{--}),$ $s(y^{--} \circ x) = s(x^{-} * y^{-}) = s(y^{--} \circ x^{--}) = s(y \circ x^{--}).$ (3) $s(y^{--} * x^{-}) = s(y * x^{-}), s(y^{--} \circ x^{--}) = s(y \circ x^{--}).$

Proof. (1) Note that $s(y * x^{-\sim}) + s(y \circ (y * x^{-\sim})) = s(y) + s((y * x^{-\sim}) \circ y)$, or $s(y * x^{-\sim}) + s(x^{-\sim} \wedge_1 y) = s(y) + s((y * x^{-\sim}) \circ y)$. By Proposition 19(4), we have $s(y * x^{-\sim}) + s(x \wedge_1 y^{-\sim}) = s(y) + s((y * x^{-\sim}) \circ y) = s(y) + s((y \circ y) * x^{-\sim}) = s(y) + s(0 * x^{-\sim})$. Using Corollary 2, we get $0 * x^{-\sim} \in M(A)$, and so $s(0 * x^{-\sim}) = 1$. Thus $s(y * x^{-\sim}) = s(y) + 1 - s(x \wedge_1 y^{-\sim}) = 1 - s(x \wedge_1 y^{-\sim}) + s(y^{-\sim}) = s((y^{-\sim} * x) \circ y^{-\sim}) - s(x \wedge_1 y^{-\sim}) + s(y^{-\sim}) = s(y^{-\sim} * x)$.

Similarly we can prove $s(y \circ x^{\sim -}) = s(y^{\sim -} \circ x)$.

(2) By (p_4) we have $s(y^{-\sim} * x) = s((1_a \circ (1_a * y)) * x) = s((1_a * x) \circ (1_a * y)) = s(x^- \circ y^-)$. Moreover we have $s(y^{-\sim} * x^{-\sim}) = s((1_a \circ (1_a * y)) * ((1_a \circ (1_a * x))) = s((1_a \circ ((1_a \circ (1_a * x))) \circ (1_a * y)) = s(x^{-\sim} \circ y^-) = s(x^- \circ y^-)$ by Proposition 8. Using (1) we can get $s(y^{-\sim} * x) = s(x^- \circ y^-) = s(y^{-\sim} * x^{-\sim}) = s(y * x^{-\sim})$. Similarly we have $s(y^{-\sim} \circ x) = s(x^- \circ x^{-\circ}) = s(y^{-\circ} \circ x^{-\circ}) = s(y^{-\circ} \circ x^{-\circ})$.

(3) By Proposition 5.4(4) we get

 $s(y^{-\sim} * x^{\sim}) = s(y^{-\sim}) + s((y^{-\sim} * x^{\sim}) \circ y^{-\sim}) - s(y^{-\sim} \circ (y^{-\sim} * x^{\sim})) = s(y) + 1 - s(x^{\sim} \wedge_1 y) = s(y) + 1 - s(x^{\sim} \wedge_1 y) = s(y \circ x^{\sim}) = s(y \circ x^{\sim}) = s(y^{\sim} - \circ x^{-}) = s(y \circ x^{-}).$ Similarly we can get $s(y^{\sim} - \circ x^{-}) = s(y \circ x^{-}).$

Proposition 21. Let A be a lbp-BCI algebra and s be a Bosbach state on A. Then for all $a \in M(A)$ and $x, y \in V(a)$, $s(y * x) = 1 - s(x \wedge_1 y) + s(y)$ and $s(y \circ x) = 1 - s(x \wedge_2 y) + s(y)$.

Proof. Let $a \in M(A)$ and $x, y \in V(a)$. Note that $x \wedge_1 y \leq x, y$ and $x \wedge_2 y \leq x, y$. By 19(1), we have $s(y * x) = s(y * (x \wedge_1 y)) = 1 - s(x \wedge_1 y) + s(y)$ and $s(y \circ x) = s(y \circ (x \wedge_2 y)) = 1 - s(x \wedge_2 y) + s(y)$.

The following results are important for our study.

Proposition 22. Let A be a lbp-BCI algebra and s be a Bosbach state on A. Then for all $a \in M(A)$ and $x, y \in V(a)$, we have (1) $s(x \wedge_1 y) = s(x \wedge_2 y)$. (2) $s(x * y) = s(x \circ y)$.

Proof. (1) First we prove the equality for $x \leq y$.

By Propositions 19(2) and 9(2), we have $s(x \wedge_1 y) = s(y \wedge_1 x) = s(x)$ and $s(x \wedge_2 y) = s(y \wedge_2 x) = s(x)$, that is $s(x \wedge_1 y) = s(x \wedge_2 y)$.

Now assume that x and y are arbitrary elements of V(a), where $a \in M(A)$. Using Propositions 19(2) again and first part of the proof, we have $s(x \wedge_1 y) = s(x \wedge_1 (x \wedge_1 y)) =$ $s((x \wedge_1 y) \wedge_1 x) = s((x \wedge_1 y) \wedge_2 x) \leq s(y \wedge_2 x) = s(x \wedge_2 y).$ X.L. Xin, Y.J. Li, Y.L. Fu / Eur. J. Pure Appl. Math, 10 (3) (2017), 455-472

(2) It follows from Proposition 21 and the first equation.

Consider the real interval [0,1] of reals equipped with the Łukasiewicz implication \rightarrow_{L} defined by

 $x \rightarrow_{\mathbf{L}} y = \min\{1 - x + y, 1\}, \text{ for all } x, y \in [0, 1].$

Definition 8. Let A be a lbp-BCI algebra. A state-morphism on A is a function $m : A \rightarrow [0,1]$ such that: $(SM1) \ m(a) = 0, m(1_a) = 1$ for all $a \in M(A)$. $(SM2) \ m(y * x) = m(y \circ x) = m(x) \rightarrow_L m(y)$, for all $x, y \in A$.

Proposition 23. Let A be a lbp-BCI algebra. Then every state-morphism on A is a Bosbach state on A.

Proof. It is similar to the proof of [[4], Proposition 3.9].

Proposition 24. Let A be a lbp-BCI algebra. A Bosbach state m on A is a state-morphism if and only if $m(x \wedge_1 y) = min\{m(x), m(y)\}$ for all $x, y \in A$, or equivalently, $m(x \wedge_2 y) = min\{m(x), m(y)\}$ for all $x, y \in A$.

Proof. It is similar to the proof of [[4], Proposition 3.10].

Let A be a lbp-BCI algebra and s be a Bosbach state on A. Define a set $Ker(s) := \{x \in A \mid s(x) = 1\}$. Ker(s) is called the kernel of s on A.

Definition 9. Let A be a pseudo BCI algebra and I be a nonempty subset of A. If I satisfies the following conditions:

(1) $0 \in I$,

(2) $x \in I$ and $y * x \in I$ (or $y \circ x \in I$) imply $y \in I$ for all $x, y \in A$, I is called a pseudo ideal of A, simply called an ideal of A.

Let *I* be a pseudo ideal of a pseudo BCI algebra *A*. If *I* satisfies $0 * x \in I$ and $0 \circ x \in I$, we call *I* a closed pseudo ideal of *A*. If *I* satisfies $x * y \in I$ if and only if $x \circ y \in I$, we call *I* a normal pseudo ideal of *A*. If *I* satisfies $x * y \in I$ if and only if $x \circ y \in I$, we call *I* a normal pseudo ideal of *A*. If *I* satisfies $x * y \in I$ if and only if $x \circ y \in I$ for all $a \in M(A), x, y \in V(a)$, we call *I* a local normal pseudo ideal of *A*.

Proposition 25. Let A be a lbp-BCI algebra and s be a Bosbach state on A. Then Ker(s) is a closed and local normal proper ideal of A.

Proof. Obviously, $0 \in Ker(s)$ and $1 \notin Ker(s)$.

Assume that $x, y * x \in Ker(s)$. Then we have 1 = s(x) and s(y * x) = 1. It follows from Definition 5.1 that $s(y) = s(x) + s(y * x) - s(x * y) = 2 - s(x * y) \ge 1$ and thus s(y) = 1. Hence $y \in Ker(s)$. This shows that Ker(s) is a proper ideal of A. For any $x \in A$, we have $0 * x \in M(A)$ and $0 * x \in M(A)$ by Corollary 2. Hence s(0 * x) = 1 and $s(0 \circ x) = 1$. It follows that $0 * x \in Ker(s)$ and $0 \circ x \in Ker(s)$. This shows that I is a closed pseudo ideal of A. By Proposition 22, we can get that A is local normal.

466

Theorem 2. Let A be a pseudo BCI algebra and I be a pseudo ideal of A. Define a binary relation "~" on A by $x \sim y$ if and only if $x * y, y * x \in I$ if and only if $x \circ y, y \circ x \in I$. Then \sim is a congruence relation on A. Denote $C_x = \{y \in A \mid x \sim y\}$. Define $C_x * C_y = C_{x*y}$ and $C_x \circ C_y = C_{x\circ y}$. Denote $A/I = \{C_x \mid x \in A\}$. Then $(A/I, *, \circ, C_0)$ is a pseudo BCI algebra. If I is a closed pseudo ideal of A, then $C_0 = I$.

Proof. Obviously ~ is reflexive and symmetric. Now we prove that it is transitive. Let $x \sim y$ and $y \sim z$. Then $x * y, y * z \in I$. By $(I_1), (x * z) \circ (x * y) \leq y * z$, thus $x * z \in I$. Similarly we can prove $z * x \in I$. This shows that $x \sim z$ and hence ~ is transitive. Thus it is an equivalent relation on A. We also can show that ~ is a congruence relation on A and omit it. Denote $A/I = \{C_x | x \in A\}$. Then binary operations "*" and " \circ " on A/I are well-defined. Moreover we can show that $(A/I, *, \circ)$ satisfies $I_1 - I_5$ in Definition 3.1. It follows that $(A/I, *, \circ, C_0)$ is a pseudo BCI algebra.

Finally we assume that I is a closed pseudo ideal of A. Then for $x \in I$, we have $0 * x \in I$ and $x * 0 = x \in I$. Hence $x \sim 0$, that is, $x \in C_0$. Therefore $C_0 = I$.

Proposition 26. Let s be a Bosbach state on a lbp-BCI algebra A and K = ker(s). Then we have the following.

(1) $x/K \leq y/K$ iff s(x * y) = 1 iff $s(x \circ y) = 1$, where $x/K = \{y \in A | y \sim x\}$ for all $x \in A$. (2) For all $a \in M(A)$ and all $x, y \in V(a)$, we have that $x/K \leq y/K$ iff $s(y \wedge_1 x) = s(x)$ iff $s(y \wedge_2 x) = s(x)$.

(3) x/K = y/K iff s(x * y) = s(y * x) = 1 iff $s(x \circ y) = s(y \circ x) = 1$.

(4) For all $a \in M(A)$ and all $x, y \in V(a)$, x/K = y/K iff $s(x) = s(y) = s(x \wedge_1 y)$ iff $s(x) = s(y) = s(x \wedge_2 y)$.

(5) $(A/K, \leq, *, \circ, 0/K, 1_0/K)$ is a bounded pseudo-BCK algebra where 1_0 is the unit of V(0).

(6) The mapping $\tilde{s} : A/K \to [0,1]$ defined by $\tilde{s}(x/K) := s(x)(x \in A)$ is a Bosbach state on A/K.

Proof. (1) By Theorem 2, we know that $(A/K, \leq, *, \circ, 0/K)$ is a pseudo-BCI algebra. Note that $x/K \leq y/K$ iff x/K * y/K = (x * y)/K = 0/K iff $x * y \in K$ iff s(x * y) = 1. Similarly, $x/K \leq y/K$ iff $x/K \circ y/K = (x \circ y)/K = 0/K$ iff $x \circ y \in K$ iff $s(x \circ y) = 1$.

(2) Let $a \in M(A)$ and $x, y \in V(a)$. As $s(x * y) = 1 - s(y \wedge_1 x) + s(x)$ by Proposition 21, we get $x/K \leq y/K$ iff $s(y \wedge_1 x) = s(x)$. Similarly, we have $x/K \leq y/K$ iff $s(y \wedge_2 x) = s(x)$. (3) It follows easily from (1).

(4) It follows easily from (2).

(5) First we prove $M(A/K) = \{0/K\}$. Let $x/K \le 0/K$. By (1), s(x * 0) = 1. Note that $0 * x \in M(A)$, then we have s(0 * x) = 1. By (3), x/K = 0/K. Thus $0/K \in M(A/K)$.

Conversely let $x/K \in M(A/K)$. Obviously $(0 * (0 * x))/K \leq x/K$. Hence (0 * (0 * x))/K = x/K. Since for any $a \in M(A)$, s(a * 0) = s(0 * a) = 1, we have 0/K = a/K. Thus x/K = (0 * (0 * x))/K = 0/K. This shows that $M(A/K) = \{0/K\}$, and hence $(A/K, \leq, *, \circ, 0/K)$ is a pseudo-BCK algebra.

Now we prove that $1_0/K$ is the greatest element of A/K. First we claim $1_0/K = 1_a/K$ for all $a \in M(A)$. Note that $s(1_0) + s(1_a * 1_0) = s(1_a) + s(1_0 * 1_a)$ and $s(1_0) = s(1_a) = 0$

by Definition 7, we have $s(1_a * 1_0) = s(1_0 * 1_a)$. Moreover $s(1_a * 1_0) + s(a \circ (1_a * 1_0)) = s(a) + s((1_a * 1_0) \circ a)$ by Definition 7. By Corollary 1, $a \circ (1_a * 1_0) \in M(A)$, and so $s(a \circ (1_a * 1_0)) = 1$. Since $(1_a * 1_0) \circ a = (1_a \circ a) * 1_0$ and $1_a \circ a \in V(0)$ by Proposition 12, we have $s((1_a * 1_0) \circ a) = s((1_a \circ a) * 1_0) = s(0) = 1$. Hence $s(1_a * 1_0) = 1$. By (3), $1_0/K = 1_a/K$ for all $a \in M(A)$. Let $x/K \in A/K$. Then $x/K \leq 1_{(0*(0\circ x)))}/K = 1_0/K$. This shows that $1_0/K$ is the greatest element of A/K. It follows that $(A/K, \leq, *, \circ, 0/K, 1_0/K)$ is a bounded pseudo BCK algebra.

(6) The fact that \tilde{s} is a well-defined Bosbach state on A/K is now straightforward.

Definition 10. Let A be a lbp-BCI algebra. Then (1) A is called good if $x^{-\sim} = x^{\sim -}$ for all $x \in A$. (2) A is with the condition (pDN) if $x^{-\sim} = x^{\sim -} = x$ for all $x \in A$.

Proposition 27. Let s be a Bosbach state on a bounded pseudo-BCI algebra A and let K = ker(s). For every element $x \in A$, we have $x^{-\sim}/K = x/K = x^{\sim-}/K$, that is, A/K satisfies the (pDN) condition.

Proof. It is similar to the proof of [[4], Proposition 3.14].

Remark 2. Let s be a Bosbach state on a pseudo-BCI algebra A. According to the proof of Proposition 27, we have $s(x * x^{-\sim}) = 1 = s(x * x^{-\sim})$ and $s(x \circ x^{-\sim}) = 1 = s(x \circ x^{-\sim})$.

Theorem 3. Let A be a lbp-BCI algebra, s be a Bosbach state on A and K = ker(s). Then A/K is \wedge_1 -commutative as well as \wedge_2 -commutative. In addition, A/K is a \wedge -semilattice and good.

Proof. It is similar to the proof of [[4], Proposition 3.16].

Proposition 28. ([4]) Let A be a good pseudo-BCK algebra. We define a binary operation \otimes on A by $x \otimes y := y^{-\sim} * x^{\sim}$. For all $x, y \in A$, the following hold: (1) $x \otimes y = x^{\sim -} \circ y^{-}$. (2) $x \otimes y \leq x, y$. (3) $x \otimes 1 = 1 \otimes x = x^{\sim -}$. (4) $x \otimes 0 = 0 \otimes x = 0$. (5) $(x \otimes y)^{-\sim} = x \otimes y = x^{-\sim} \otimes y^{-\sim}$. (6) \otimes is associative.

An MV-algebra is an algebra $(A, \oplus, ^-, 0)$ of type (2, 1, 0) such that (i) \oplus is commutative and associative, (ii) $x \oplus 0 = x$, (iii) $x \oplus 0^- = 0^-$,(iv) $x^{--} = x$,(v) $y \oplus (y \oplus x^-)^- = x \oplus (x \oplus y^-)^-$. If we define $x * y = x \circ y = y^- \oplus x$, then $(A, *, \circ, 1, 0)$ is a bounded pseudo-BCK algebra.

An MV-state on an MV-algebra A is a mapping $s : A \to [0,1]$ such that s(1) = 1 and $s(a \oplus b) = s(a) + s(b)$ whenever $a \odot b = 0$. Every MV-algebra admits at least one MV-state, and due to [17], every MV-state on A coincides with a Bosbach state on the BCK algebra A and vice versa.

We note that the radical, Rad(A), of an MV-algebra A is the intersection of all maximal ideals of A([7]).

Proposition 29. ([9]). In any MV-algebra A the following conditions are equivalent: (a) Rad(A) = 0.

(b) $nx \le x^-$ for all $n \in N$ implies x = 0.

(c) $nx \leq y^{-}$ for all $n \in N$ implies $x \wedge y = 0$.

(d) $nx \leq y$ for all $n \in N$ implies $x \odot y = x$, where $nx = x_1 \oplus \cdots \times x_n$ with $x_1 = \cdots = x_n = x$.

Remark 3. An MV-algebra A is archimedean in the sense of [9] if it satisfies the condition (b) of Proposition 29 and A is archimedean in Belluces sense [1] if it satisfies the condition (d) of Proposition 29. By Proposition 29 the two definitions of archimedean MV-algebras are equivalent.

Theorem 4. Let s be a Bosbach state on a lbp-BCI algebra A and let K = Ker(s). Then $(A/K, \oplus, -, 0/K)$, where $a/K \oplus b/K = (b * a^-)/K$ and $(a/K)^- = a^-/K$, is an archimedean MV-algebra and the map $\hat{s}(a/K) := s(a)$ is an MV-state on this MV-algebra.

Proof. It is similar to the proof of [[4], Theorem 3.20].

By Theorem 3, A/K is a good pseudo-BCK algebra that is a \wedge -semilattice and \tilde{s} on A/K is a Bosbach state such that $Ker(\tilde{s}) = \{0/K\}$. Due to [[20], Proposition 3.4.7], $(A/K)/Ker(\tilde{s})$ is term-equivalent to an MV-algebra that is archimedean and \tilde{s} is an MV-state on it. Since $A/K = (A/K)/Ker(\tilde{s})$, the same is true also for A/K, and this proves the theorem.

In the following, we give properties of state-morphisms on lbp-BCI algebras.

Lemma 1. Let A be a lbp-BCI algebra and m be a state-morphism on A. Then we have the following.

(1) $m(y^{-\sim} * x^{\sim}) = min\{m(x) + m(y), 1\}$, for all $a \in M(A)$ and $x, y \in V(a)$.

(2) $m(x^{\sim -} \circ y^{-}) = min\{m(x) + m(y), 1\}$, for all $a \in M(A)$ and $x, y \in V(a)$.

Proof. Assume that m is a state-morphism on A, so it is a Bosbach state on A. By Propositions 19 and 20, for for all $a \in M(A)$ and $x, y \in V(a)$, we have $m(y^{-\sim} * x^{\sim}) = m(y * x^{\sim}) = m(x^{\sim}) \rightarrow_{\mathbf{L}} m(y) = m(x)^{\sim} \rightarrow_{\mathbf{L}} m(y) = min\{1 - m(x)^{\sim} + m(y), 1\} = min\{m(x) + m(y), 1\}$. Similarly we can prove $m(x^{\sim -} \circ y^{-}) = min\{m(x) + m(y), 1\}$, for all $a \in M(A)$ and $x, y \in V(a)$.

Proposition 30. Let A be a lbp-BCI algebra and s be a Bosbach state on A. Then the following are equivalent:

(1) s is a state-morphism.

(2) ker(s) is a maximal ideal of A.

Proof. It is similar to the proof of [[4], Proposition 3.22].

Lemma 2. Let m be a state-morphism on a lbp-BCI algebra A and K = ker(m). Then (1) $a/K \le b/K$ if and only if $m(a) \le m(b)$, (2) a/K = b/K if and only if m(a) = m(b).

Proof. It is similar to the proof of [[4], Lemma 3.23].

Proposition 31. Let A be a lbp-BCI algebra and m_1, m_2 be two state-morphisms on A such that $ker(m_1) = ker(m_2)$. Then $m_1 = m_2$.

Proof. By Proposition 23, m_1 and m_1 are two Bosbach states on A. Since $ker(m_1) = ker(m_2)$, we have $A/ker(m_1) = A/ker(m_2)$. By the proof of Proposition 30, we have that $A/ker(m_1)$ is in fact an MV-subalgebra of the MV-algebra of the real interval [0, 1]. But $ker(\hat{m}_1) = 0/K = ker(\hat{m}_2)$. Hence, by [[11], Proposition 4.5], $\hat{m}_1 = \hat{m}_2$, consequently, $m_1 = m_2$.

Let A be a lbp-BCI algebra. We say that a Bosbach state s is extremal if for any $0 < \lambda < 1$ and for any two Bosbach states s_1, s_2 on $A, s = \lambda s_1 + (1 - \lambda)s_2$ implies $s_1 = s_2$. Summarizing previous characterizations of state-morphisms, we have the following result.

Theorem 5. Let s be a Bosbach state on a lbp-BCI algebra A. Then the following are equivalent:

(1) s is an extremal Bosbach state.

(2) $s(x \wedge_1 y) = max\{s(x), s(y)\}$ for all $x, y \in A$.

(3) $s(x \wedge_2 y) = max\{s(x), s(y)\}$ for all $x, y \in A$.

(4) s is a state-morphism.

(5) ker(s) is a maximal ideal.

Proof. It is similar to the proof of [[4], Theorem 3.26].

5. Conclusions

Until now, the states on unbounded algebraic structures have been studied for Hilbert algebras and integral residuated lattices in [2] and [6], respectively.

In this paper, we first study state theory on non-bounded algebraic structures, and introduce a notion of state on pseudo-BCI algebras. In order to adapt a state to pseudo-BCI algebras, we first discuss the structure of pseudo-BCI algebras, which can be decomposed in to the union of it's branches. Note that for all $a \in M(A)$ and $a \neq 0$, V(a) is not a BCK-algebra, hence the structure of pseudo-BCI algebras is different from the structure of pseudo-BCK algebras. Therefore it is valuable to study state theory on pseudo-BCI algebras. Moreover we introduce a notion of local bounded pseudo-BCI algebras and set up the theory of states on such algebraic structure. We also introduce a notion of state-morphisms on local bounded pseudo-BCI algebras and discuss the relations between Bosbach states and state-morphisms. By use of state's theory, we discuss the relation between pseudo-BCI algebras and MV-algebras. In the next work, we will consider the following problem: satisfying what apposite conditions a local bounded pseudo-BCI algebra admits a Bosbach state?

Acknowledgements

This research is partially supported by a grant of National Natural Science Foundation of China (11571281,61602359), China Postdoctoral Science Foundation (2015M582618), China 111 Project (B16037).

References

- [1] L P Belluce. Semisimple and complete MV-algebras. Algebra Univ., 29:1-9, 1992.
- [2] C Buşneag. States on Hilbert algebras. Studia Logica, 94:177-188, 2010.
- [3] C C Chang. Algebraic analysis of many valued logics. Transactions of the American Mathematical society, 88(2):467-490, 1958.
- [4] L C Ciungu and A Dvurečenskij. Measures, states and de Finetti maps on pseudo-BCK algebras. Fuzzy Sets and Systems, 161(22):2870-2896, 2010.
- [5] L C Ciungu, A Dvurečenskij and M Hycko. State BL-algebras. Soft Computing, 15(4):619-634, 2011.
- [6] L C Ciungu. Relative negations in non-commutative fuzzy structures. Soft Computing, 18:15-33, 2014.
- [7] R Cignoli, I M L DOttaviano and D Mundici. Algebraic Foundations of Many-valued Reasoning. Kluwer Academic Publishers, Dordrecht, 2000.
- [8] W A Dudek and Y B Jun. Pseudo-BCI algebras. East Asian Math. J., 24:187-190, 2008.
- [9] A Dvurečenskij and S Pulmannová. New Trends in Quantum Structures. Kluwer Academic Publishers, Dordrecht, Boston, London, 2000.
- [10] A Dvurečenskij. Measures and states on BCK-algebras. Atti Del seminario matematico e fisico universita di modena, 47:511-528, 1996.
- [11] A Dvurečenskij. States on pseudo MV-algebras. Studia Logica, 68:301-327, 2001.
- [12] A Dvurečenskij and T Vetterlein. Algebras in the positive cone of po-groups Order, 19:127-146, 2002.
- [13] G Georgescu and A Iorgulescu. Pseudo-BCKalgebras: An extension of BCKalgebras. in:Proc.DMTCS01: Combinatorics, Computability and Logic, Springer, London, pp.97-114, 2001.
- [14] P Hájek. Metamathematics of Fuzzy Logic. Kluwer Academic Publishers, Dordrecht, 1998.

- [15] A Iorgulescu. Pseudo-Iséki algebras. Connection with pseudo-BL algebras. J. Multiple-Valued Logic Soft Comput., 3-4:263-308, 2005.
- [16] A Iorgulescu. Algebras of Logic as BCK-algebras. Academy of Economic Studies Bucharest, Editura, 2008.
- [17] K Iséki. An algebra related with a propositional calculus. Proc. Japan Acad., 42:26-29, 1966.
- [18] K Iséki. On BCI-algebras. Math. Sem. Notes Kobe Univ., 8(1):125-130, 1980.
- [19] Y B Jun, H K Kim and J Neggers. On pseudo-BCI ideals of pseudo-BCI algebras. Matematiqki Vesnik, 58:39-46, 2006.
- [20] J Kuhr. Pseudo-BCK algebras and related structures. Univerzita Palackého v Olomouci, 2007.
- [21] L Lianzhen. States on finite monoidal t-norm based algebras. Information Sciences, 181:1369-1393, 2011.
- [22] J Meng and Y B Jun. BCK-algebras. Kyungmoon Sa, Seoul, 1994.
- [23] D Mundici. Averaging the truth-value in Łukasiewicz logic. Studia Logica, 55(1):113-127, 1995.
- [24] D Mundici. Interpretation of AFC*-algebras in Łukasiewicz sentential calculus. J. Funct. Anal, 65: 15-53, 1986.