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Abstract. In this paper, results mainly on the structures of some special class of real valued
functions on an interval are discussed. Another significant result is also established. These results
have been derived and presented mainly in the perspective of study of relations between real valued
functions and their derivatives. The results are very fundamental in nature and may be useful in
the next course of generalizations or improvements in this direction.
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1. Introduction

The notion of derivative of functions is a supreme fundamental concept in the differen-
tial and integral calculus and it is foundational for other powerful branches of mathematics
like ordinary and partial differential equations, Numerical Analysis, dynamical systems,
differential geometry etc. That is why the area of structural study of real valued functions
is an interesting as well as important branch of Real Analysis. Results in this direction in-
volve various differentiability structures on corresponding domains, and for different class
of real valued functions. Differentiability and continuity properties of real valued functions
of real variables have been studied vastly. For the primary reading, one can refer [2], and
[3]. Further reading can be done with [4], and [1].
A new approaches to differential calculus based on mathematical structures are always be-
ing tried across the world in different directions and methods. This will lead to presenting
continuous or differentiable functions and solving differential or integral equations. The
concept of derivative of a real-valued function depends on the choice of the coordinate
system used. For functions on finite Euclidean spaces, the derivative is an element of a
countably based continuous domain which can be given an effective structure that charac-
terizes various other properties like fixed points, additivity or any other special properties
of functions.
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Results of the kind to be discussed in this article are considered to be very fundamental
in nature and may be useful in pure and applied sciences. All the results are principally
from the point of view of study on the characteristics of some special class of real valued
functions, and the additional properties they enjoyed in. Let us present the results, which
may be given in more generalized settings in the coming years.

2. Theorems and proofs

Based on the theoretic framework for differential calculus, one can embark on the task
of constructing consequences of mean value theorems for subspace of Euclidean spaces,
which would extend the set-theoretic model for computational geometry in solving models
carved out of the physical problems. In this context, it is quite natural to have a class of
real valued continuous functions defined on an interval I relating its extreme values. It is
equally interesting to link this structure with some restricted class of continuous functions
on I. We will first derive a result as a consequence of Intermediate Value Theorem.

Theorem 1. Let f be a continuous real valued function on (0, 1) such that

max
x∈(0,1)

f(x) > 0, min
x∈(0,1)

f(x) < 0.

Then there exists c ∈ (0, 1) such that

cf(c) = 2

∫ c

0
tf(t)dt. (1)

Proof. If f = 0, then there is nothing to prove. So assume that f is not a zero function.
By hypothesis, there exists a, b ∈ (0, 1) such that a 6= b and

f(a) = max
x∈(0,1)

f(x) > 0, f(b) = min
x∈(0,1)

f(x) < 0.

Define

g(x) = xf(x)− 2

∫ x

0
tf(t)dt.

Clearly g(x) is continuous on (0, 1). Now

g(a) ≥ af(a)− 2

∫ a

0
tf(a)dt = af(a)− a2f(a).

But then
g(a) ≥ af(a)(1− a) > 0.

Also

g(b) ≤ bf(b)− 2

∫ b

0
tf(b)dt,
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which is equivalent
g(b) ≤ bf(b)(1− b) < 0,

since f(b) < 0.
By Intermediate Value Theorem there exists c ∈ (a, b) such that g(c) = 0. Hence (1)

is proved.

Real valued functions on the set of real numbers with any classical structure like
continuity, bijection etc normally enjoy the properties like ’0 going to 0’, even-odd property
or the additivity etc. But a typical function of the kind given below in the next theorem,
being a ’translated’ composition of itself exhibits these properties and that is why the
result seems to be some what interesting to present over here.

Theorem 2. If f : < → < defined by

f(x+ nf(y)) = f(x) + (n− 1)y + f(y) (2)

for n > 1, then
(a) f(0) = 0
(b) f is an odd function
(c) f(x+ y) = f(x) + f(y), ∀x, y ∈ <.

Proof. Let us prove (a) first. Assume that f(0) = a. Now taking x = 0, y = 0, in
(2)we have

f(na) = 2a.

Also if we take x = 0, y = na in (2) we have

f(2na)) = 3a+ (n− 1)na. (3)

Taking x = na, y = 0, again in (2) we have

f(2na) = 3a. (4)

From (3) and (4) it follows that a = 0.
Let us prove the part (b) now. Taking x = 0, in (2), we get

f(nf(y)) = (n− 1)y + f(y) (5)

Now replacing x by nf(x) in the definition and then using (5), we get

f(nf(x) + nf(y)) = f(nf(x)) + (n− 1)y + f(y) = (n− 1)(x+ y) + f(x) + f(y). (6)

Let f(x) + f(−x) = g. Now again taking x as nf(x) and y = −x in (2) and then using (6)
we have

f(nf(x) + nf(−x)) = f(x) + f(−x),

which is equivalent to
f(ng) = g.
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But then
f(nf(ng)) = f(ng). (7)

Also from (5),
f(nf(ng)) = (n− 1)ng + f(ng). (8)

From (7) and (8) it follows that g = 0 since n > 1.
Lastly, we prove that f is an additive function.
Suppose

f(x+ y)− f(x)− f(y) = h(x, y).

Now

f(nh) = f(−n(f(x)+f(y))+nf(x+y)) = f(−n(f(x)+f(y)))+(n−1)(x+y)+f(x+y),

by definition given in (2). Since f is an odd function, and using (6) we get

f(nh) = −f(n(f(x) + f(y))) + (n− 1)(x+ y) + f(x+ y)

= −[(n− 1)x+ f(x) + (n− 1)y + f(y)] + (n− 1)(x+ y) + f(x+ y) = h(x, y),

and hence
f(nh) = h. (9)

Also taking y = nh in (5) we will have

f(nf(nh)) = (n− 1)nh+ f(nh).

By using (9) in the above expression we get

f(nh) = (n− 1)nh+ h. (10)

The equations (9) and (10) make us to conclude h = 0. Thus the proof is complete.

In our next result, we show that a special type of functions associated with the con-
tinuous functions on an interval can take the shape of exponential functions of some
continuous functions. As exponential functions are of great useful while studying differ-
entiability structure and they in turn help us to get the corresponding flavor of uniformly
continuous functions.

Theorem 3. If f and g are real valued continuous functions on [0, 1] such that |g(x)| <
|f(x)| for all x ∈ [0, 1], then f + g can be expressed as feψ where ψ is a real valued con-
tinuous function on [0, 1].

Proof. Since |g(x)| < |f(x)| for all x ∈ [0, 1],then f + g is always a non-zero function
on [0, 1]. If φ = g/f then |φ(x)| < 1, for all x ∈ [0, 1]. Therefore the range of 1 + φ lies in
the positive x-axis. Hence there exist a continuous function on D given by ψ = log(1 +φ)
such that f + g = f(1 + φ) = feψ.
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Theorem 4. Let g : [0, 1]→ < be a non-constant continuous function vanishing nowhere
in its domain and for x ∈ [0, 1] define

f(x) = max {g(y); 0 ≤ y ≤ x} .

Then f is uniformly continuous function in its domain.

Proof. Take g(x) = g(b) for all x > b. It can be easily seen that

|f(x)− f(y)| ≤ max |g(s)− g(t)|

for all s, t ∈ [x, y]. But then

|f(x)− f(y)| ≤ max |g(s)− g(t)|

whenever |s− t| ≤ |x− y|. So given any ε > 0 there is a δ > 0 such that

|s− t| < δ =⇒ |g(s)− g(t)| < ε

since g is a continuous real valued function on a compact set [0, 1] and thereby uniformly
continuous. So using the same δ we have

|f(x)− f(y)| ≤ max |g(s)− g(t)| < ε

whenever |s− t| ≤ |x− y| < δ. Therefore, f is uniformly continuous in its domain.

Our next result is originated from the characterization of continuous functions between
metric spaces. The necessary and sufficient condition for a function f : < → < to be
continuous is image of convergent sequences in the domain is convergent in the range
and limits correspond each other can characterize the continuity only if the image of
the convergent sequence converges? The below theorem is some what motivated by this
question.

Theorem 5. Let f : < → <, be a connected map such that {xn} → a =⇒ {f(xn)} → f(a)
for any convergent sequences {xn}, {f(xn)} in <. Then f must be continuous.

Proof. By hypothesis, if {xn} is a sequence of terms in < such that xn → a then
f(xn) → f(a), provided f(xn) also converges. Note that if xn → a but f(xn) does not
converge then clearly {f(xn)} is an unbounded sequence.

Now we suppose that f fails to be continuous at x = a. Let δ > 0 such that whenever
|x− a| < δ we have

|f(x)− f(a)| < α (11)

for some fixed α > 0 or
|f(x)− f(a)| > (|f(a)|+ α). (12)

If such a δ does not exist, then we can find a sequence {xn} → a such that

|f(xn)− f(a)| ≥ α > 0, or|f(xn)| ≤ (|f(a)|+ α)
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for all n. But then the sequence {f(xn)} is bounded and it will have a subsequence con-
verging to a limit other than f(a). But this is not possible. Therefore our claim of existence
of (11) and (12) is correct.
Let us define a function

g(x, f(x)) = |f(x)|

for |x − a| ≤ δ, where δ is as given previously. Clearly g is a continuous function. Then
g has image points in the set (−∞, |f(a)| + α)

⋃
(|f(a)| + α,∞). The point g(a, f(a)) =

|f(a)| ∈ (−∞, |f(a)|+ α) and the unboundedness of f near a imply that there are points
of the image of g in (|f(a)|+ α,∞). Therefore g (<× f(<)) must be disconnected. Since
g is continuous, < × f(<) must also be disconnected. This is a contradiction to the fact
< × f(<) is connected being a product of two connected sets. Hence our assumption is
wrong and f has no discontinuity. Hence the proof.

Finally we will present an inequality involving real numbers and their behaviour on
the unit circle in Lp settings. It is quite interesting to see such results with a ‘non-normed’
structure.

Theorem 6. If 0 ≤ a ≤ 1, 0 < c ≤ b ≤ 1 and p > 0 then

a+ b{∫ 2π
0 |eiθ + b|pdθ

}1/p
≥ a+ c{∫ 2π

0 |eiθ + c|pdθ
}1/p

. (13)

Proof. To prove the Inequality (13), it suffices to show that∫ 2π

0

(
|eiθ + b|
a+ b

)p
dθ ≤

∫ 2π

0

(
|eiθ + c|
a+ c

)p
dθ,

for which we will show (
|eiθ + b|
a+ b

)p
≤
(
|eiθ + c|
a+ c

)p
, (14)

for any θ ∈ [0, 2π] and 0 ≤ a ≤ 1, c ≤ b ≤ 1.

Let us consider the function f : (0, 1] 7→ R defined by f(x) = |eiθ+x|
a+x defined on (0, 1],

and show that f is non-increasing. Observe that

f ′(x) ≤ 0 if and only if x(a− cos θ) + a cos θ − 1 ≤ 0.

A simple exercise makes us conclude for any real values of θ, we have x(a−cos θ)+a cos θ−
1 ≤ 0, implying that f and fp are non-increasing. Hence the Inequality (14) follows and
thus the proof is complete.
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