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Abstract. This paper concerns the investigation of the stresses, displacement and temperature due to
the axisymmetric thermal shock loading on the inner boundary in a transversely isotropic thin annular
disc. The analysis encompasses thermo-elasticity without energy dissipation theory (TEWOED (GN-
II)) and three-phase-lag theory of the generalized thermo-elasticity to account for the finite velocity
of the temperature. The Laplace transform method is used to transform the coupled equations into
the space domain, where two different methods, eigen-value approach and the Galerkin finite element
technique are employed to solve the resulting equations in the transformed domain. The inverse of the
transformed solution is carried out by applying a method of Bellman et al. Stresses, displacement and
temperature distributions have been computed numerically and presented graphically in a number of
figures. A comparison of the results for different theories (GN-II and Three-phase-lag model) and for
two different methods are presented.
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1. Introduction

Generalized thermo-elasticity theories have been developed with the objective of removing
the paradox of infinite speed of thermal signals inherent in the conventional coupled dynami-
cal theory of thermo-elasticity in which parabolic type heat conduction equation is considered,
contradict physical facts. During the last three decades, generalized theories involving finite
speed of heat transportation (hyperbolic heat transport equation) in elastic solids have been
developed to remove this paradox. The first generalization is proposed by Lord and Shulman
[23] and is known as extended thermo-elasticity theory (ETE), which involves one thermal re-
laxation time parameter (single-phase-lag model). The second generalization to the coupled
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thermo-elasticity theory is developed by Green and Lindsay [12], which involving two relax-
ation times is known as temperature rate dependent thermo-elasticity (TRDTE). Experimental
studies indicate that the relaxation times can be of relevance in the cases involving a rapidly
propagating crack tip, shock waves propagation, laser technique etc. Because of the experi-
mental evidence in support of finiteness of heat propagation speed, the generalized thermo-
elasticity theories are considered to be more realistic than the conventional theory in dealing
with practical problems involving very large heat fluxes at short intervals like those occurring
in laser units and energy channels. The third generalization is known as low-temperature
thermo-elasticity introduced by Hetnarski and Ignaczak [16] called H-I theory. Most engi-
neering materials such as metals possess a relatively high rate of thermal damping and thus
are not suitable for use in experiments concerning second sound propagation. But, given
the state of recent advances in material science, it may be possible in the foreseeable future
to identify (or even manufacture for laboratory purposes) an idealized material for the pur-
pose of studying the propagation of thermal waves at finite speed. The fourth generalization
is concerned with the thermo-elasticity without energy dissipation (TEWOED) and thermo-
elasticity with energy dissipation (TEWED) introduced by Green and Naghdi [13, 14, 15] and
provides sufficient basic modifications in the constitutive equations that permit treatment of a
much wider class of heat flow problems, labelled as types I, II, III. The natures of these three
types of constitutive equations are such that when the respective theories are linearized, type-
I is the same as the classical heat equation (based on FourierŠs law) whereas the linearized
versions of type-II and type-III theories permit propagation of thermal waves at finite speed.
The entropy flux vector in type II and III ( i.e. thermo-elasticity without energy dissipation
(TEWOED) and thermo-elasticity with energy dissipation (TEWED)) models are determined
in terms of the potential that also determines stresses. When Fourier conductivity is dominant
the temperature equation reduces to classical Fourier law of heat conduction and when the
effect of conductivity is negligible the equation has undamped thermal wave solutions with-
out energy dissipation. Applying the above theories of generalized thermo-elasticity, several
problems have been solved by Bagri and Eslami [1, 3, 2], Kar and Kanoria [17, 18, 19], Das
et al. [8, 21], Roychoudhuri and Datta [29], Roychoudhury and Bandyopadhyay [28], Chan-
drasekharaiah [5, 6], Wang et al. [32], Ghosh and Kanoria [10, 11], Mallik and Kanoria [24],
Ootao et al. [25], Shao et al. [30], Wang and Mai [33] etc.
The fifth generalization to the thermo-elasticity theory is known as the dual-phase-lag thermo-
elasticity developed by Tzou [31] and Chandrasekhariah [7]. Tzou considered microstruc-
tural effects into the delayed response in time in the macroscopic formulation by taking into
account that increase of the lattice temperature is delayed due to photon-electron interactions
on the macroscopic level. Tzou [31] introduced two-phase-lags to both the heat flux vector

and the temperature gradient. According to this model, classical Fourier’s law −→q = −K
−→∇ T

has been replaced by −→q (P, t +τq) = −K
−→∇ T (P, t +τT ), where the temperature gradient

−→∇ T

at a point P of the material at time t +τT corresponds to the heat flux vector −→q at the same
point at time t + τq. Here K is the thermal conductivity of the material. The delay time τT

is interpreted as that caused by the microstructural interactions and is called the phase-lag of
the temperature gradient. The other delay time τq is interpreted as the relaxation time due
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to the fast transient effects of thermal inertia and is called the phase-lag of the heat flux. For
τq = τT = 0, the Fourier’s law in two-phase-lag model is identical with classical Fourier’s law.
If τq = τ and τT = 0, Tzou [31] refers to the model as single-phase-lag model. Roychoudhuri
[26] studied one-dimensional thermo-elastic wave propagation in an elastic half-space in the
context of dual-phase-lag model.
The sixth generalization is known as three-phase-lag thermo-elasticity which is due to Roy-

choudhuri [27]. According to this model−→q (P, t+τq) = −[K−→∇ T (P, t+τT )+K∗
−→∇ν(P, t+τν)],

where
−→∇ν (ν̇ = T) is the thermal displacement gradient and K∗ is the additional material

constant and τν is the phase lag for thermal displacement gradient. To study some prac-
tical relevant problems and have found that in heat transfer problems involving very short
time intervals and in the problems of very high heat fluxes, the hyperbolic equation gives
significantly different results than the parabolic equation. According to this phenomenon the
lagging behavior in the heat conduction in solid should not be ignored particularly when the
elapsed times during a transient process are very small, say about 10−7 second or the heat flux
is very much high. Three-phase-lag model is very useful in the problems of nuclear boiling,
exothermic catalytic reactions, phonon-electron interactions, phonon-scattering etc., where
the delay time τq captures the thermal wave behavior (a small scale response in time), the
phase-lag τT captures the effect of phonon-electron interactions (a microscopic response in
space), the other delay time τν is effective since, in the three-phase-lag model, the thermal
displacement gradient is considered as a constitutive variable whereas in the conventional
thermo-elasticity theory temperature gradient is considered as a constitutive variable. Re-
cently, Kar and Kanoria [20] studied thermo-visco-elastic problem of a spherical shell in the
context of three-phase-lag model.
However, over the last few decades anisotropic materials have been increasingly used. There
are materials which have natural anisotropy such as zinc, magnesium, sapphire, wood, some
rocks and crystals, and also there are artificially manufactured materials such as fibre-reinforced
composite materials, which exhibit anisotropic character. The advantage of composite mate-
rials over the traditional materials lies on their valuable strength, elastic and other properties
[22]. A reinforced material may be regarded to some order of approximation, as homoge-
neous and anisotropic elastic medium having a certain kind of elastic symmetry depending on
the symmetry of reinforcement. Some glass fibre reinforced plastics may be regarded as trans-
versely isotropic. Thus problems of solid mechanics should not be restricted to the isotropic
medium only. Increasing use of anisotropic media demands that the study of elastic problems
should be extended to anisotropic medium also.
To the authors’ knowledge, under three-phase-lag effect no solution of transversely isotropic
materials has been reported. With this motivation in mind the present analysis is to study the
thermo-elastic stresses, displacement and temperature distribution in a transversely isotropic
thin annular disc due to the axisymmetric thermal shock loading on the inner boundary of
the disc in the context of TEWOED [14] of type-II and three-phase-lag model of generalized
thermo-elasticity. The Laplace transformation method is used to transform the equations from
the time domain to the Laplace domain. Two different methods, (A) eigen-value approach and
(B) the Galerkin finite element technique are employed to solve the resulting equations in the
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transformed domain. In the first method (eigen value approach) the fundamental equations
have been expressed in the form of vector-matrix differential equation which is then solved
by eigen value approach [21] and in the second method (Galerkin finite element method)
the radius of the disc is discretized into a finite elements along the radial direction where the
Galerkin finite element method is employed to derive the force and stiffness matrices of the
base element. Then the system of equations is solved to find the nodal values of the stresses,
temperature and displacement. Finally, inversion of the Laplace transform is done following
Bellman et al. [4]. The results obtained theoretically have been computed numerically and
are presented graphically for Sapphire material. A complete and comprehensive analysis and
comparison of the results for different theories (GN-II and Three-phase-lag model) as well as
in two different methods are also presented.

2. Basic Equations and Constitutive Eelations

We consider a homogeneous transversely isotropic thermo-elastic thin annular disc of in-
ner radius a and outer radius b having initially undisturbed state at an uniform temperature
T0, under axisymmetric thermal shock load applied into its inner boundary. We use plane
polar co-ordinates (r,θ) with the centre of the hole as the origin.
In the present problem (due to central symmetry) the displacement and temperature are as-
sumed to be functions of r and time t only. The stress-strain-temperature relations in the
generalized theory are [22]

τr r = C11
∂ u

∂ r
+ C12

u

r
−β11T, (1)

τθθ = C12
∂ u

∂ r
+ C11

u

r
− β22T (2)

and the generalized heat conduction equation in the three-phase-lag model [27] is

K∗∇2T +τ∗ν∇2 Ṫ + KτT∇2 T̈ =

�
1+τq

∂

∂ t
+

1

2
τ2

q

∂ 2

∂ t2

�
×

�
ρCe T̈ + T0

∂ 2

∂ t2

�
β11
∂ u

∂ r
+ β22

u

r

��
, (3)

where τi j (i, j = r,θ) is the stress tensor, T is the temperature increase over the reference
temperature T0, C11 and C12 are elastic constants, β11 and β22 are thermal modulii, K is
the coefficient of thermal conductivity along radial direction, K∗ is the additional material
constant along radial direction, ρ is the mass density, Ce is the specific heat of the solid at
constant strain, τT and τq are the the phase-lag of temperature gradient and the phase-lag of
heat flux respectively. Also τ∗ν = K+τνK

∗, where τν is the phase-lag of thermal displacement
gradient. Equations (1) - (3), when K = τT = τq = τν = 0, reduce to the equations of
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thermo-elasticity without energy dissipation (TEWOED(GN-II)) theory.
The stress equation of motion in plain polar co-ordinates is given by

∂ τr r

∂ r
+

1

r
(τr r −τθθ ) = ρ

∂ 2u

∂ t2 . (4)

For transversely isotropic body β11 = β22 [9]. Introducing the following dimensionless quan-
tities

U =
C11

aβ11T0
u, (R,S) =

�
r

a
,

b

a

�
, (σR,σθ ) =

1

β11T0
(τr r ,τθθ ), Θ =

T

T0
,

η =
Gt

a
, (C1, C2) =

1

C11
(C11, C12), G2 =

C11

ρ
, (τ′q,τ′ν ,τ

′
T ) =

G

a

�
τq,τν ,τT

�

equations (1), (2), (3) and (4) become

σR =
∂ U

∂ R
+ C2

U

R
−Θ, (5)

σθ = C2
∂ U

∂ R
+

U

R
−Θ, (6)

�
C2

T + (C
2
K +τ

′
νC

2
T )
∂

∂ η
+τ′T C2

K

∂ 2

∂ η2

��
∂ 2Θ

∂ R2
+

1

R

∂Θ

∂ R

�
=

�
1+τ′q

∂

∂ η
+

1

2
τ′2q
∂ 2

∂ η2

��
∂ 2Θ

∂ η2 + ε
∂ 2

∂ η2

�
∂ U

∂ R
+

U

R

��
(7)

and
∂ 2U

∂ R2 +
1

R

∂ U

∂ R
− U

R2 =
∂Θ

∂ R
+
∂ 2U

∂ η2 , (8)

where C2
T =

K∗
ρCeG2 , C2

K =
K

aρCeG
, and ε =

β2
11T0

ρCeC11
are dimensionless constants, ε is the thermo-

elastic coupling constant, CT is the nondimensional thermal wave velocity and CK is the damp-
ing co-efficient. When CK = 0 and τT = τq = τν = 0, the corresponding equations become
the equations of thermo-elasticity without energy dissipation theory (TEWOED(GN-II)) for
Green-Naghdi model.
The thermal and mechanical boundary conditions are given by

qin = −
∂Θ

∂ R
, U = 0 on R= 1, (9)

Θ = 0, σR = 0 on R= S. (10)

The term qin = qin(t) in equation (9) is the time dependent heat flux applied to the inner
boundary (R= 1) of the disc. We assume that the medium is at rest and undisturbed initially.
The initial conditions can be written as

U =
∂ U

∂ η
=
∂ 2U

∂ η2 = 0 and Θ =
∂Θ

∂ η
=
∂ 2Θ

∂ η2 = 0 at η= 0,1≤ R≤ S. (11)
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3. Method of Solution

Let
¦

U(R, p),Θ(R, p)
©
=

∫ ∞

0

�
U(R,η),Θ(R,η)

	
e−pηdη (12)

with Re(p) > 0 denote the Laplace transform of U and Θ respectively.
On taking the Laplace transform, equations (7) and (8) reduce to

d2Θ

dR2
+

1

R

dΘ

dR
= C

�
Θ+ ε

�
dU

dR
+

U

R

��
(13)

and
d2U

dR2 +
1

R

dU

dR
− U

R2 = p2U +
dΘ

dR
, (14)

where

C =
p2
�

1+τ′qp+ 1
2
τ
′2
q p2
�

(1+τ′ν p)C2
T + p(1+τ′T p)C2

K

. (15)

3.1. Eigen-value Approach

Differentiating equation (13) with respect to R and using equation (14) we get

d2

dR2

�
dΘ

dR

�
+

1

R

d

dR

�
dΘ

dR

�
− 1

R2

�
dΘ

dR

�
= C

�
εp2U + (1+ ε)

dΘ

dR

�
. (16)

From equations (14) and (16) we have the vector-matrix differential equation as follows

LeV = eAeV , (17)

where

L ≡ d2

dR2 +
1

R

d

dR
− 1

R2 , (18)

and

eV =
�

U ,
dΘ

dR

�T
, eA=
�

D11 D12

D21 D22

�
, (19)

D11 = p2, D12 = 1, D21 = Cεp2 and D22 = C(1+ ε).

To solve the vector matrix differential equation (17) we assume that

eV = eX (m)ω(R, m), (20)

where m is a scalar, eX is a vector independent of R and ω(R, m) is a non-trivial solution of the
scalar differential equation

Lω = m2ω. (21)
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The solution of the equation (21) is

ω = [A1 I1(mR) +A2K1(mR)]. (22)

Substituting equations (20) and (21) into the equation (17) we get

eAeX = m2 eX , (23)

where eX (m) is the eigenvector corresponding to the eigenvalue m2.
The characteristic equation corresponding to eA can be written as

m4 − (D11 + D22)m
2 + (D11D22 − D12D21) = 0. (24)

The roots of the characteristic equation (24) are of the form m2 = m2
1 and m2 = m2

2, where

m2
1 +m2

2 = D11 + D22, m2
1m2

2 = D11D22 − D12D21. (25)

The eigenvectors X (m j), j = 1,2 corresponding to eigenvalues m2
j
, j = 1,2 can be calculated

as

eX (m j) =

�
X1(m j)

X2(m j)

�
=

�
D12

−(D11 −m2
j )

�
, j = 1,2. (26)

Therefore, the equation (20) can be written as

eV = eX (m j)[A1 I1(m1R)+ B1K1(m1R)] +

eX (m j)[A1I1(m2R)+ B1K1(m2R)], j = 1,2. (27)

Therefore, from the equations in (19) we can write

U =
∑

i=1,2

[Ai I1(miR) + BiK1(miR)] (28)

and
dΘ

dR
= −
∑

i=1,2

(p2 −m2
i )[Ai I1(miR) + BiK1(miR)], (29)

where I1(miR) and K1(miR) are the modified Bessel functions of order one of first and second
kind respectively. Ai and Bi ’s i = 1,2 are independent of R but depend on p and are to be
determined from the boundary conditions.
Using the recurrence relations of modified Bessel functions [34] we obtain from the equation
(29)

Θ =
∑

i=1,2

(p2 −m2
i )

mi

[Ai I0(miR)+ BiK0(miR)], (30)

since

P1(mR) = − d

dR

�
P0(mR)

m

�
; P = I , K . (31)
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Taking the Laplace transform of the equations (5) and (6) and using equations (28) and (30)
we get

σR = −
∑

i=1,2

Ai

�
1− C2

R
I1(miR)+

p2

mi

I0(miR)

�

−
∑

i=1,2

Bi

�
1− C2

R
K1(miR) +

p2

mi

K0(miR)

�
(32)

and

σθ =
∑

i=1,2

Ai

�
1− C2

R
I1(miR) +

¨
(1− C2)mi −

p2

mi

«
I0(miR)

�

+
∑

i=1,2

Bi

�
1− C2

R
K1(miR)+

¨
(1− C2)mi −

p2

mi

«
K0(miR)

�
. (33)

Using the boundary conditions U = 0, dΘ

dR
= −qin on R = 1 and Θ = 0, σR = 0 on R = S and

using the recurrence relations [34] from the equations (28), (29), (30) and (32) we obtain



A1

A2

B1

B2


 =




W11 W12 W13 W14

W21 W22 W23 W24

W31 W32 W33 W34

W41 W42 W43 W44




−1


0
−qin

0
0


 , (34)

where

W1i = P1(m j), W2i = −(p2−m2
j )P1(m j), (35)

W3i =
p2 −m2

j

m j

P0(m jS), W4i =
1− C2

S
P1(m jS) +

p2

m j

P0(m jS) (36)

where P = I for i = j =1,2; P = K for i = 3, j = 1 and i = 4, j = 2.
From the equation (24) we obtain

m1, m2 =
1

2
(
p
α±pβ), where α,β = (p±pC)2+ Cε. (37)

Therefore, m1 and m2 are real and positive quantities.

3.2. Finite element analysis

In the finite element method, total domain is divided into a finite set of subintervals, i.e.
line elements along the radial direction of the disc. The Galerkin finite element method is
used to derive the stiffness and force matrices for the base element (e). For any base element
(e) the displacement U and the temperature Θ can be approximated as

U = [N](e){U∗}(e), Θ = [N](e){Θ∗}(e), (38)
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where [N](e) is the shape function approximating the displacement and temperature fields
in the base element (e). The matrices {U∗}(e) and {Θ∗}(e) represent the nodal values of the
displacement and temperature respectively. Using the equation (38) and the Galerkin finite
element method over the volume of the base element V (e), equations (14) and (13) become

∫

V (e)

�¨
d2

dR2
+

1

R

d

dR
− 1

R2
− p2

«
U − dΘ

dR

�
NmdV = 0 (39)

and ∫

V (e)

�¨
d2

dR2 +
1

R

d

dR
− C

«
Θ− εC
�

d

dR
+

1

R

�
U

�
NmdV = 0, (40)

where Nm is the shape function. Equations (39) and (40) may be reduced to the weak form.
Using the local coordinates R∗ = R− Ri, where Ri is the radius of the ith node of the base
element, Equations (39) and (40) reduce to (dropping the asterisk for convenience)
∫ L

0

¨
−
��

1

R+Ri

d

dR
− 1

(R+Ri)
2 − p2
�

U − dΘ

dR

�
Nm(R+Ri)

+
d

dR
{(R+ Ri)Nm}

dU

dR

«
dR= (R+Ri)Nm

dU

dR

���
L

0
, (41)

∫ L

0

�
−
��

1

R+ Ri

d

dR
− C

�
Θ− εC
�

d

dR
+

1

R+ Ri

�
U

�
Nm(R+ Ri)

+
d

dR
{(R+ Ri)Nm}

dΘ

dR

«
dR= (R+Ri)Nm

dΘ

dR

���
L

0
, (42)

where L = R j − Riis the length of the elements along the radial direction. The right-hand
side terms of the equations (41) and (42) cancel each other between two adjacent elements,
except the first node of the first element and the last node of the last element of the solution
domain. These two nodes are located on the inner and outer boundaries of the disc. Thus
applied boundary conditions may be considered as

qin = −
dΘ

dR

���
1
, U1 = 0, (43)

ΘM = 0, S
dU

dR

���
M
= −C2U M , (44)

where U1 and U M are the radial displacements at the inner and outer boundaries of the disc
respectively. The subscripts 1 and M denote the first and last nodes of the solution domain
respectively.
Substituting the equation (38) into the equations (41) and (42) we obtain (dropping the
asterisks for convenience)
∫ L

0

Un

�
d

dR
{(R+ Ri)Nm}

dNn

dR
− Nm

dNn

dR
+

NmNn

R+Ri

+ p2(R+Ri)NmNn

�
dR
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+

∫ L

0

Θn

�
(R+Ri)Nm

dNn

dR

�
dR= (R+ Ri)Nm

dU

dR

���
L

0
, (45)

∫ L

0

Un

�
εC

�
(R+Ri)Nm

dNn

dR
+NmNn

��
dR+

∫ L

0

Θn

�
d

dR
{(R+ Ri)Nm}

dNn

dR

−Nm

dNn

dR
+ C(R+ Ri)NmNn

�
dR= (R+ Ri)Nm

dΘ

dR

���
L

0
, (46)

Now the transfinite element equations (45) and (46) are expressed in the matrix form as
�
(K11) (K12)

(K21) (K22)

��
U

Θ

�
=

�
F

Q

�
. (47)

The submatrices (K11), (K12), (K21), (K22), F , and Q are

Kmn
11 =

∫ L

0

�
d

dR
{(R+Ri)Nm}

dNn

dR
− Nm

dNn

dR
+

NmNn

R+ Ri

+ p2(R+ Ri)NmNn

�
dR, (48)

Kmn
12 =

∫ L

0

�
(R+ Ri)Nm

dNn

dR

�
dR, (49)

Kmn
21 =

∫ L

0

εC

�
(R+Ri)Nm

dNn

dR
+ NmNn

�
dR, (50)

Kmn
22 =

∫ L

0

�
d

dR
{(R+ Ri)Nm}

dNn

dR
− Nm

dNn

dR
+ C(R+Ri)NmNn

�
dR, (51)

F =




0
0
·
·
0

−C2UM




and Q =




qin

0
·
·
·
0




. (52)

4. Numerical Results and Discussions

The solution in the space-time domain is obtained numerically by using Bellman et al. [4]
method for fixed value of the space variable and for η = ηi , i = 1(1)7, where ηi ’s are com-
puted from roots of the shifted Legendre polynomial of degree 7 (see Appendix). The compu-
tations for the state variables are carried out for different values of R (1 ≤ R ≤ S) and values
of ηi = 0.0257750,0.138382,0.352509,0.693147,1.21376,2.04612,3.67119. The material
chosen for numerical evaluation is Sapphire. The physical data for Sapphire are†

ρ = 3.96× 103kg/m3, ε= .0168, C11 = 4.96× 1010N/cm2, C12 = 1.15× 1010N/cm2

†as recorded on www.matweb.
om
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and the relaxation time parameters and material parameters are taken as τq = 2.0×10−7sec,
τT = 1.5× 10−7sec, τν = 1.0× 10−7sec, whereas CT = 2 and CK = 1.2.
The dimensionless inner and outer radii are taken as R = 1 and S = 2 respectively. The di-
mensionless input heat flux is defined as the Heaviside unit step function. That is qin(η) = 0
for η ≤ 0 and qin(η) = 1/s for η > 0.
The results of the numerical evaluation of the thermo-elastic stresses, displacement and tem-
perature are illustrated in figs. 1 to 8 using the Galerkin finite element method and eigen
value approach. For the Galerkin finite element method the graphs are represented by FIN3P
and FINGN-II respectively whereas for eigen-value approach these are denoted by 3PHASE
and GN-II respectively. In all the figures 1 to 8 we observe that both the methods (eigen-value
approach and Galerkin finite element method) produce similar qualitative behavior but the
magnitudes differ slightly. This is obvious since the two methods are independent. Finite
element method is fully numerical method, whereas, the eigen-value approach is partially
analytical and partially numerical. Fig.1 shows the radial stress σR along the radial distance
R for time η = .35. Since, by the assumption, the inner and outer boundaries of the disc
are constrained and traction free respectively, the disc expand outwards. Also heat flux is
applied on the inner boundary.Thus the stress waves propagate from inner boundary to outer
boundary. It is also observed that the radial stress is compressive due to the application of the
thermal shock on the inner boundary. Also the stress in each case is found to vanish on the
outer boundary, which agrees with the imposed boundary condition.
Fig.2 is plotted to show the variation of the circumferential stress σθ along R for fixed time
η = .35. The elastic wave front is seen near the outer boundary.It is noticed that circumfer-
ential stress in each case is compressive. Also each σθ attains its maximum magnitude on the
inner boundary, since inner boundary is rigid and the heat flux is applied on it.
Fig.3 is drawn to show the variation of the displacement U versus R for time η = .35. It is
seen that the boundary condition for the displacement is satisfied on the inner boundary. The
magnitudes of the displacements for the GN-II three-phase-lag models are almost the same in
1 ≤ R ≤ 1.2 whereas, the displacements propagate with different magnitudes in 1.2 < R ≤ 2.
It is also noticeable that the magnitudes of the displacements for the case of the GN-II model
asymptotically tend to zero much earlier than for those three-phase-lag model.
Fig.4 depicts radial variation of the temperature Θ for fixed time η = .35. The boundary con-
dition is satisfied on the outer boundary. It is also observed that the magnitude of each Θ is
large in the case of three-phase-lag model in comparison to the GN-II model.
Figs.5-6 show the stresses σR and σθ versus time η for fixed R = 1.4. It is noticed that when
the time is small, the magnitudes of both the stresses for three-phase-lag model are large in
comparison with those of the GN-II model. The opposite behavior is observed when time in-
creases. This is due to the fact that there is no energy dissipation term in the GN-II model. It is
also noticeable that as time increases both the stresses change their sign due to the reflection
from the outer boundary.
Fig.7 is plotted for displacement U against η for R= 1.4. The magnitude of each displacement
is large for the GN-II model in comparison with those of three-phase-lag model.
Fig.8 depicts the variation of temperature Θ versus time η for R= 1.4. Here the magnitude of
the temperature for the GN-II model is less in 0 ≤ η ≤ .75 and 1.8 ≤ η ≤ 3.67 in comparison
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with those of three-phase-lag model, whereas, in the domain .75 < η < 1.8, the magnitude
of the temperature for the GN-II model is large in comparison to that other model. For all the
above numerical calculations FORTRAN − 77 programming Language has been used.

Figure 1: Radial Stress vs R for η= 0.35.

Figure 2: Cir
umferential Stress vs R for η = 0.35.

Figure 3: Radial Displa
ement vs R for η = 0.35.
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Figure 4: Variation of Temperature vs R for η = 0.35.

Figure 5: Radial Stress vs Time for R= 1.4.

Figure 6: Cir
umferential Stress vs Time for R= 1.4.
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Figure 7: Displa
ement vs Time for R= 1.4.

Figure 8: Temperature vs Time for R= 1.4.
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Appendix

Let the Laplace transform of σi(R,η) be given by

σ j(R, p) =

∫ ∞

0

e−pησ j(R,η)dη. (53)
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We assume that σ j(R,η) is sufficiently smooth to permit the use of the approximate method
we apply.

Putting x = e−η in equation (53) we obtain

σ j(R, p) =

∫ 1

0

x p−1 g j(R, x)d x , (54)

where
g j(R, x) = σ j(R,−log x). (55)

Applying the Gaussian quadrature rule to the equation (54) we obtain the approximate rela-
tion

n∑

i=1

Wi x
p−1
i

g j(R, x i) = σ j(R, p), (56)

where x i ’s(i = 1,2, . . . , n) are the roots of the shifted Legendre polynomial and Wi ’s
(i = 1,2, . . . , n) are the corresponding weights [4] and p = 1(1)n.

For p = 1(1)n, the equations (56) can be written as

W1 g j(R, x1) +W2 g j(R, x2) + . . .+Wn g j(R, xn) = σ j(R, 1)

W1 x1 g j(R, x1) +W2 x2 g j(R, x2) + . . .+Wn xn g j(R, xn) = σ j(R, 2)

. . .

. . .

W1 xn−1
1 g j(R, x1) +W2 xn−1

2 g j(R, x2) + . . .+Wn xn−1
n g j(R, xn) = σ j(R, n)

Therefore



g j(R, x1)

g j(R, x2)

·
·
·

g j(R, xn)




=




W1 W2 · · · Wn

W1 x1 W2 x2 · · · Wn xn

· · · · · ·
· · · · · ·
· · · · · ·

W1 xn−1
1 W2 xn−1

2 · · · Wn xn−1
n




−1


σ j(R, 1)
σ j(R, 2)
·
·
·

σ j(R, n)




. (57)

(As the matrix is the product of diag {Wi}multiplied by Vander Monde matrix, it can be shown
that the matrix is non-singular). Hence g j(R, x1), g j(R, x2), . . ., g j(R, xn) are known. From
equations in (57) we can calculate the discrete values of g j(R, x i) i,e, σ j(R,ηi); (i =1,2,. . . ,7)
and finally using interpolation we obtain the stress components σi(R,η); (i = R,θ).
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Table 1: Roots and Weights of the Shifted Legendre Polynomial.
n Roots Corresponding Weights
1 2.5446043828620886E-2 6.4742483084434816E-2
2 1.2923440720030282E-1 1.3985269574463828E-1
3 2.9707742431130145E-1 1.9091502525255938E-1
4 5.0000000000000000E-1 2.0897959183673466E-1
5 7.0292257568869853E-1 1.9091502525255938E-1
6 8.7076559279969706E-1 1.3985269574463828E-1
7 9.7455395617137909E-1 6.4742483084434816E-2


