Natural Generalized Inverse and Core of an Element in Semi- groups, Rings and Banach and Operator Algebras
Keywords:
generalized inverses, Koliha-Drazin inverseAbstract
Using the recent notion of inverse along an element in a semigroup, and the natural partial order on idempotents, we study bicommuting generalized inverses and define a new inverse called natural inverse, that generalizes the Drazin inverse in a semigroup, but also the Koliha-Drazin inverse in a ring. In this setting we get a core decomposition similar to the nilpotent, Kato or Mbekhta decompositions. In Banach and Operator algebras, we show that the study of the spectrum is not sufficient, and use ideas from local spectral theory to study this new inverse.Downloads
Published
2012-05-14
Issue
Section
Algebraic Geometry
License
Upon acceptance of an article by the European Journal of Pure and Applied Mathematics, the author(s) retain the copyright to the article. However, by submitting your work, you agree that the article will be published under the Creative Commons Attribution-NonCommercial 4.0 International License (CC BY-NC 4.0). This license allows others to copy, distribute, and adapt your work, provided proper attribution is given to the original author(s) and source. However, the work cannot be used for commercial purposes.
By agreeing to this statement, you acknowledge that:
- You retain full copyright over your work.
- The European Journal of Pure and Applied Mathematics will publish your work under the Creative Commons Attribution-NonCommercial 4.0 International License (CC BY-NC 4.0).
- This license allows others to use and share your work for non-commercial purposes, provided they give appropriate credit to the original author(s) and source.
How to Cite
Natural Generalized Inverse and Core of an Element in Semi- groups, Rings and Banach and Operator Algebras. (2012). European Journal of Pure and Applied Mathematics, 5(2), 160-173. https://www.ejpam.com/index.php/ejpam/article/view/1599