A New Generalization of the Operator-Valued Poisson Kernel

Sharifa Al-Sharif ${ }^{1}$, Fatima Salem ${ }^{1}$, Basem Frasin ${ }^{2}$
${ }^{1}$ Department of Mathematics, Yarmouk University, Irbed, Jordan
${ }^{2}$ Department of Mathematics, Al al-Bayt University, Almafrag, Jordan

Abstract. The purpose of this paper is to give a new generalization of the operator-valued Poisson kernel and discuss integral formulas for them.

2010 Mathematics Subject Classifications: 45P05, 47A60; 46E40, 47B38
Key Words and Phrases: Poisson kernel, Operator-valued Poisson kernel

1. Introduction

Let \mathscr{H} be a complex Hilbert space and $\mathfrak{L}(\mathscr{H})$ denote the algebra of all bounded linear operators from \mathscr{H} into \mathscr{H}. For $T \in \mathfrak{L}(\mathscr{H})$, its spectrum $\sigma(T)$ is the non-empty compact subset of the complex plane \mathbb{C} consisting of all $\lambda \in \mathbb{C}$ such that $T-\lambda I$ is non-invertible in $\mathfrak{L}(\mathscr{H})$, where I is the identity operator on \mathscr{H}. We write \mathbb{D} for the open unit disk in \mathbb{C}, $\mathbb{D}=\{z:|z|<1\}$.

Let $A \in \mathfrak{L}(\mathscr{H})$. For a complex valued function f analytic on a domain \mathbb{E} of the complex plane containing the spectrum $\sigma(A)$ of A, we recall Riesz-Dunford integral $f(A)$ which is given by

$$
\begin{equation*}
f(A)=\frac{1}{2 \pi i} \int_{C} f(z)(z I-A)^{-1} d z \tag{1}
\end{equation*}
$$

where C is a positively oriented simple closed rectifiable contour containing $\sigma(A)$.
By differentiating the integral in equation (1) with respect to A we get

$$
\begin{equation*}
f^{\prime}(A)=\frac{1}{2 \pi i} \int_{C} f(z)(z I-A)^{-2} d z \tag{2}
\end{equation*}
$$

Email addresses: sharifa@yu.edu.jo (S. Sharif) fatimabayui@yahoo.com (F. Salem), bafrasin@yahoo.com (B. Frasin)

If we differentiate the integral in equation (2) with respect to $A,(n-1)$ times, we get

$$
\begin{equation*}
f^{(n)}(A)=\frac{n!}{2 \pi i} \int_{C} f(z)(z I-A)^{-n-1} d z, \quad(n=0,1,2, \ldots) \tag{3}
\end{equation*}
$$

Note that, expression (3) is an extension of the Riesz-Dunford integral in equation (1). For $r e^{i t} \in \mathbb{D}$, the (scalar) Poisson kernel $P_{r, t}$ is defined by

$$
\begin{align*}
P_{r, t}\left(e^{i \theta}\right) & =\frac{1-r^{2}}{\left(1-r e^{i t} e^{-i \theta}\right)\left(1-r e^{-i t} e^{i \theta}\right)} \\
& =\frac{1}{1-r e^{i t} e^{-i \theta}}+\frac{1}{1-r e^{-i t} e^{i \theta}}-1 \\
& =\sum_{n \geq 0} r^{n} e^{i n t} e^{-i n \theta}+\sum_{n \geq 0} r^{n} e^{-i n t} e^{i n \theta}-1 \tag{4}
\end{align*}
$$

The integral formula of the (scalar) Poisson kernel

$$
\frac{1}{2 \pi} \int_{0}^{2 \pi} P_{r, t}\left(e^{i \theta}\right) d \theta=1
$$

holds, where r is a real parameter satisfying $|r|<1$, see[3].
For $T \in \mathfrak{L}(\mathscr{H}), \sigma(T) \subset \overline{\mathbb{D}}$ and $r e^{i t} \in \mathbb{D}$, the author in [2], define the operator-valued Poisson kernel $K_{r, t}(T)$ as follows

$$
\begin{equation*}
K_{r, t}(T)=\left(I-r e^{i t} T^{*}\right)^{-1}+\left(I-r e^{-i t} T\right)^{-1}-I \tag{5}
\end{equation*}
$$

and prove the following theorem.
Theorem 1. For $T \in \mathfrak{L}(\mathscr{H})$ such that $\sigma(T) \subset \overline{\mathbb{D}}$, we have

$$
\begin{aligned}
K_{r, t}(T) & =\left(I-r e^{i t} T^{*}\right)^{-1}\left(I-r^{2} T^{*} T\right)\left(I-r e^{-i t} T\right)^{-1} \\
& =\sum_{n \geq 0} r^{n} e^{i n t} T^{* n}+\sum_{n \geq 0} r^{n} e^{-i n t} T^{n}-I
\end{aligned}
$$

Afterwards, in [1] Bulut proved the following theorem.
Theorem 2. For $T \in \mathfrak{L}(\mathscr{H})$ such that $\sigma(T) \subset \overline{\mathbb{D}}$, we have

$$
\begin{equation*}
\frac{1}{2 \pi} \int_{0}^{2 \pi} K_{r, t}(T) d t=I \tag{6}
\end{equation*}
$$

where r is a real parameter satisfying $|r|<1$.

A generalization of the (scalar) Poisson kernel, (4) in [3] is given by

$$
\begin{equation*}
Q_{a, b, t}\left(e^{i \theta}\right)=\frac{1-a b}{\left(1-a e^{i t} e^{-i \theta}\right)\left(1-b e^{-i t} e^{i \theta}\right)} \tag{7}
\end{equation*}
$$

where a and b are complex parameters satisfying $|a|<1$ and $|b|<1$.
In [1], Bulut introduced a generalization of the operator-valued Poisson kernel $K_{r, t}(T)$ for $T \in \mathfrak{L}(\mathscr{H}), \sigma(T) \subset \overline{\mathbb{D}}$ and $r e^{i t} \in \mathbb{D}$ in the following way

$$
\begin{equation*}
Q_{a, b, t}(T)=\left(I-a e^{i t} T^{*}\right)^{-1}+\left(I-b e^{-i t} T\right)^{-1}-I \tag{8}
\end{equation*}
$$

where a and b are complex parameters satisfying $|a|<1$ and $|b|<1$ and prove the following theorem.
Theorem 3 ([1]). Let $T \in \mathfrak{L}(\mathscr{H})$ such that $\sigma(T) \subset \overline{\mathbb{D}}$. Then

$$
\begin{equation*}
\frac{1}{2 \pi} \int_{0}^{2 \pi} Q_{a, b, t}(T) d t=I \tag{9}
\end{equation*}
$$

where a and b are complex parameters satisfying $|a|<1$ and $|b|<1$.
Remark 1. We note that (8) and (9) are generalizations of (5) and (6), respectively, by taking $a=b=r$.

2. A New Generalization of the Operator-Valued Poisson Kernel

In this section, we set the following definition and open problem.
Definition 1. Let $T \in \mathfrak{L}(\mathscr{H})$ such that $\sigma(T) \subset \overline{\mathbb{D}}$. For $n=0,1,2, \ldots$, let

$$
I_{n}=\operatorname{def} \frac{1}{2 \pi} \int_{0}^{2 \pi} Q_{a, b, t}^{n+1}(T) d t
$$

where a, b, are complex parameters satisfying $|a|<1$ and $|b|<1$.
Open Problem: Compute $I_{n}, n=0,1,2, \ldots$.
In the following theorem we give a partial answer to the open problem to certain class of operators in $\mathfrak{L}(\mathscr{H})$.
Theorem 4. Let $T \in \mathfrak{L}(\mathscr{H})$ such that $\sigma(T) \subset \overline{\mathbb{D}}$ and $\left(I-a e^{i t} T^{*}\right)$ is self adjoint. Then

$$
\begin{equation*}
\int_{0}^{2 \pi} Q_{a, \bar{a}, t}(T)^{n+1} d t=\sum_{k=0}^{n+1} \sum_{l=0}^{k}\binom{n+1}{k}\binom{k}{l}(-I)^{l} \tag{10}
\end{equation*}
$$

for $n=0,1,2, \ldots$, and a complex parameter a satisfying $|a|<1$.

Proof. Let

$$
\begin{align*}
I_{n} & =\int_{0}^{2 \pi} Q_{a, \bar{a}, t}(T)^{n+1} d t=\frac{1}{2 \pi} \int_{0}^{2 \pi}\left(\left(I-a e^{i t} T^{*}\right)^{-1}+\left(I-\bar{a} e^{-i t} T\right)^{-1}-I\right)^{n+1} d t \\
& =\frac{1}{2 \pi} \int_{0}^{2 \pi} \sum_{k=0}^{n+1}\binom{n+1}{k}\left(I-a e^{i t} T^{*}\right)^{-n-1+k}\left(\left(I-\bar{a} e^{-i t} T\right)^{-1}+(-I)\right)^{k} d t \\
& =\frac{1}{2 \pi} \int_{0}^{2 \pi} \sum_{k=0}^{n+1} \sum_{l=0}^{k}\binom{n+1}{k}\binom{k}{l}\left(I-a e^{i t} T^{*}\right)^{-n-1+k}\left(I-\bar{a} e^{-i t} T\right)^{-k+l}(-I)^{l} d t \\
& =\frac{1}{2 \pi} \int_{0}^{2 \pi} \sum_{k=0}^{n+1} \sum_{l=0}^{k}\binom{n+1}{k}\binom{k}{l}\left(I-a e^{i t} T^{*}\right)^{-n-1+k}\left(\left(I-a e^{i t} T^{*}\right)^{*}\right)^{-k+l}(-I)^{l} d t \\
& =\frac{1}{2 \pi} \int_{0}^{2 \pi} \sum_{k=0}^{n+1} \sum_{l=0}^{k}\binom{n+1}{k}\binom{k}{l}\left(I-a e^{i t} T^{*}\right)^{-n-1+l}(-I)^{l} d t \\
& =\frac{1}{2 \pi} \int_{0}^{2 \pi} \sum_{k=0}^{n+1} \sum_{l=0}^{k}\binom{n+1}{k}\binom{k}{l} e^{-(n+1-l) i t}\left(e^{-i t} I-a T^{*}\right)^{-n-1+l}(-I)^{l} d t . \tag{11}
\end{align*}
$$

By the change of variables, with $z=e^{-i t}$, (11) becomes

$$
\begin{aligned}
I_{n} & =\frac{-1}{2 \pi i} \oint_{|z|=1}^{n+1} \sum_{k=0}^{n} \sum_{l=0}^{k}\binom{n+1}{k}\binom{k}{l}\left(z I-a T^{*}\right)^{-n-1+l}(-I)^{l} z^{n-l} d z \\
& =\frac{-1}{2 \pi i} \sum_{k=0}^{n+1} \sum_{l=0}^{k}\binom{n+1}{k}\binom{k}{l} \oint_{|z|=1}\left(z I-a T^{*}\right)^{-n-1+l}(-I)^{l} z^{n-l} d z,
\end{aligned}
$$

where the integral along $|z|=1$ is taken in the negative direction. Hence, by the RieszDunford integral (3), we have

$$
I_{n}=\sum_{k=0}^{n+1} \sum_{l=0}^{k}\binom{n+1}{k}\binom{k}{l}(-I)^{l}, \quad(n=0,1,2, \ldots)
$$

Corollary 1. For $T \in \mathfrak{L}(\mathscr{H})$ such that $\sigma(T) \subset \overline{\mathbb{D}}$ and $\left(I-a e^{i t} T^{*}\right)$ is self adjoint, we have

$$
\begin{equation*}
\frac{1}{2 \pi} \int_{0}^{2 \pi} Q_{a, \bar{a}, t}(T)^{2} d t=I \tag{12}
\end{equation*}
$$

where a is complex parameter satisfying $|a|<1$.
Remark 2. By taking $n=0$ in (10), we obtain (9).
Definition 2. For $T \in \mathfrak{L}(\mathscr{H})$ such that $\sigma(T) \subset \overline{\mathbb{D}}$, we set a generalization of the operator-valued Poisson kernel, $Q_{a, b, t}(T)$ in the following way:

$$
\begin{equation*}
R_{a, b, c, d, t}(T)=\left(I-a e^{i t} T^{*}\right)^{-1}+\left(I-b e^{-i t} T\right)^{-1}+\left(I-c e^{i t} T^{*}\right)^{-1}-\left(I-d e^{-i t} T\right)^{-1}-I, \tag{13}
\end{equation*}
$$

where a, b, c, and d are complex parameters satisfying $|a|<1,|b|<1,|c|<1$, and $|d|<1$.
Remark 3. Note that $R_{a, b, c, d, t}(T) \in \mathfrak{L}(\mathscr{H})$.
Lemma 1. For $T \in \mathfrak{L}(\mathscr{H})$ such that $\sigma(T) \subset \overline{\mathbb{D}}$, we have

$$
\begin{equation*}
R_{a, b, c, d, t}(T)=\sum_{n \geq 0} a^{n} e^{i n t} T^{* n}+\sum_{n \geq 0} b^{n} e^{-i n t} T^{n}+\sum_{n \geq 0} c^{n} e^{i n t} T^{* n}-\sum_{n \geq 0} d^{n} e^{-i n t} T^{n}-I . \tag{14}
\end{equation*}
$$

Proof. Since $\left\|a e^{i t} T^{*}\right\|<1,\left\|b e^{-i t} T\right\|<1,\left\|c e^{i t} T^{*}\right\|<1$, and $\left\|d e^{-i t} T\right\|<1$, we have

$$
\begin{aligned}
& \sum_{n \geq 0} a^{n} e^{i n t} T^{* n}=\left(I-a e^{i t} T^{*}\right)^{-1} \\
& \sum_{n \geq 0} b^{n} e^{-i n t} T^{n}=\left(I-b e^{-i t} T\right)^{-1} \\
& \sum_{n \geq 0} c^{n} e^{i n t} T^{* n}=\left(I-c e^{i t} T^{*}\right)^{-1}
\end{aligned}
$$

and

$$
\sum_{n \geq 0} d^{n} e^{-i n t} T^{n}=\left(I-d e^{-i t} T\right)^{-1}
$$

By the above four equalities and (13), we get (14).
For an operator $T \in \mathfrak{L}(\mathscr{H})$ and a polynomial $r(z)=\sum_{k=0}^{s} c_{k} z^{k} \in \mathbb{C}[z]_{\mathbb{D}}, r(T) \in \mathfrak{L}(\mathscr{H})$ is defined by

$$
r(T)=\sum_{k=0}^{s} c_{k} T^{k}
$$

Lemma 2. Let $T \in \mathfrak{L}(\mathscr{H})$ such that $\sigma(T) \subset \overline{\mathbb{D}}$. For $r(z) \in \mathbb{C}[z]_{\mid \overline{\mathbb{D}}}$, we have

$$
r(b T)-r(d T)+c_{0} I=\frac{1}{2 \pi} \int_{0}^{2 \pi} r\left(e^{i t}\right) R_{a, b, c, d, t}(T) d t
$$

where a, b, c, and d are complex parameters satisfying $|a|<1,|b|<1,|c|<1$, and $|d|<1$.

Proof. Let $r(z)=\sum_{k=0}^{s} c_{k} z^{k}$. By (14), and since $\int_{0}^{2 \pi} e^{i l t} d t=0$ for $l \in \mathbb{Z} /\{0\}$, we get

$$
\begin{aligned}
& \int_{0}^{2 \pi} r\left(e^{i t}\right) R_{a, b, c, d, t}(T) d t \\
& \quad=\int_{0}^{2 \pi} \sum_{k=0}^{s} c_{k} e^{i k t}\binom{\sum_{n \geq 0} a^{n} e^{i n t} T^{* n}+\sum_{n \geq 0} b^{n} e^{-i n t} T^{n}}{+\sum_{n \geq 0} c^{n} e^{i n t} T^{* n}-\sum_{n \geq 0} d^{n} e^{-i n t} T^{n}-I} d t \\
& \quad=2 \pi c_{0} I+\sum_{k=0}^{s} \int_{0}^{2 \pi} c_{k} b^{k} T^{k} d t+2 \pi c_{0} I-\sum_{k=0}^{s} \int_{0}^{2 \pi} c_{k} d^{k} T^{k} d t-2 \pi c_{0} I \\
& \quad=2 \pi \sum_{k=0}^{s} c_{k} b^{k} T^{k}-2 \pi \sum_{k=0}^{s} c_{k} d^{k} T^{k}+2 \pi c_{0} I \\
& \quad=2 \pi r(b T)-2 \pi r(d T)+2 \pi c_{0} I .
\end{aligned}
$$

Corollary 2. Note that, if r identically equal to 1 , then

$$
\begin{equation*}
\frac{1}{2 \pi} \int_{0}^{2 \pi} R_{a, b, c, d, t}(T) d t=I \tag{15}
\end{equation*}
$$

for $|a|<1,|b|<1,|c|<1,|d|<1$ and $T \in \mathfrak{L}(\mathscr{H})$ such that $\sigma(T) \subset \overline{\mathbb{D}}$.
In the next theorem, we give a different proof of equation (15) independent of a polynomial. For this purpose we will use the Riesz-Dunford integral formula.

Theorem 5. Let $T \in \mathfrak{L}(\mathscr{H})$ such that $\sigma(T) \subset \overline{\mathbb{D}}$. Then

$$
\frac{1}{2 \pi} \int_{0}^{2 \pi} R_{a, b, c, d, t}(T) d t=I
$$

where a, b, c, and d are complex parameters satisfying $|a|<1,|b|<1,|c|<1$, and $|d|<1$.
Proof. From (13), we have

$$
\begin{equation*}
\frac{1}{2 \pi} \int_{0}^{2 \pi} R_{a, b, c, d, t}(T) d t=\frac{1}{2 \pi} \int_{0}^{2 \pi}\binom{\left(I-a e^{i t} T^{*}\right)^{-1}+\left(I-b e^{-i t} T\right)^{-1}+}{\left(I-c e^{i t} T^{*}\right)^{-1}-\left(I-d e^{-i t} T\right)^{-1}-I} d t \tag{16}
\end{equation*}
$$

We set

$$
\begin{align*}
& I_{1}=\frac{1}{2 \pi} \int_{0}^{2 \pi}\left(I-a e^{i t} T^{*}\right)^{-1} d t \tag{17}\\
& I_{2}=\frac{1}{2 \pi} \int_{0}^{2 \pi}\left(I-b e^{-i t} T\right)^{-1} d t \tag{18}\\
& I_{3}=\frac{1}{2 \pi} \int_{0}^{2 \pi}\left(I-c e^{i t} T^{*}\right)^{-1} d t \tag{19}\\
& I_{4}=\frac{1}{2 \pi} \int_{0}^{2 \pi}\left(I-d e^{-i t} T\right)^{-1} d t \tag{20}
\end{align*}
$$

and

$$
\begin{equation*}
I_{5}=\frac{1}{2 \pi} \int_{0}^{2 \pi} I d t \tag{21}
\end{equation*}
$$

Therefore, it follows from (16)- (21) that

$$
\begin{equation*}
\frac{1}{2 \pi} \int_{0}^{2 \pi} R_{a, b, c, d, t}(T) d t=I_{1}+I_{2}+I_{3}-I_{4}-I_{5} \tag{22}
\end{equation*}
$$

It is clear that

$$
\begin{equation*}
I_{5}=I \tag{23}
\end{equation*}
$$

Next, we shall calculate I_{1}, I_{2}, I_{3} and I_{4}. Firstly, we have

$$
I_{1}=\frac{1}{2 \pi} \int_{0}^{2 \pi}\left(I-a e^{i t} T^{*}\right)^{-1} d t=\frac{1}{2 \pi} \int_{0}^{2 \pi} e^{-i t}\left(e^{-i t} I-a T^{*}\right)^{-1} d t
$$

Making substitution $z=e^{-i t}$ in the last integral, we get

$$
I_{1}=\frac{-1}{2 \pi i} \int_{|z|=1}\left(z I-a T^{*}\right)^{-1} d z
$$

where the integral along $|z|=1$ is taken in the negative direction. Hence, by the RieszDunford integral in the equation (1), we have

$$
\begin{equation*}
I_{1}=I \tag{24}
\end{equation*}
$$

Similarly, we get

$$
\begin{equation*}
I_{3}=I \tag{25}
\end{equation*}
$$

Secondly, we have

$$
I_{2}=\frac{1}{2 \pi} \int_{0}^{2 \pi}\left(I-b e^{-i t} T\right)^{-1} d t=\frac{1}{2 \pi} \int_{0}^{2 \pi} e^{i t}\left(e^{i t} I-b T\right)^{-1} d t
$$

If we set $z=e^{i t}$, then the last integral is of the form

$$
I_{2}=\frac{1}{2 \pi i} \int_{|z|=1}(z I-b T)^{-1} d z
$$

where the integral along $|z|=1$ is taken in the positive direction. Hence, by the Riesz-Dunford integral (1), we have

$$
\begin{equation*}
I_{2}=I \tag{26}
\end{equation*}
$$

Similarly, we get

$$
\begin{equation*}
I_{4}=I \tag{27}
\end{equation*}
$$

Therefore, from (22)-(27), we get (15).

Remark 4. By taking $c=0$ and $d=0$ in (13) and (15) we find that (13) and (15) are generalizations of (8) and (9), respectively.

3. The Finite Sum of the Operator- Valued Poisson Kernel

In this section we definite a new generalization of the operator-valued Poisson kernel $M_{\left(a_{k}, b_{k}\right)_{k=0}^{n}, t}(T)$ in $2(n+1)$ complex parameters. Let us begin by the following definition.

Definition 3. For $T \in \mathfrak{L}(\mathscr{H})$ such that $\sigma(T) \subset \overline{\mathbb{D}}$, define the finite sum of the operator-valued Poisson kernel in the following way.

$$
\begin{align*}
M_{\left(a_{k}, b_{k}\right)_{k=0}^{n}, t}(T) & =\left(I-a_{0} e^{i t} T^{*}\right)^{-1}+\left(I-b_{o} e^{-i t} T\right)^{-1} \\
& +\sum_{k=1}^{n}\left(I-a_{k} e^{i t} T^{*}\right)^{-1}-\sum_{k=1}^{n}\left(I-b_{k} e^{-i t} T\right)^{-1}-I \tag{28}
\end{align*}
$$

where a_{k} and b_{k} are complex parameters satisfying $\left|a_{k}\right|<1$ and $\left|b_{k}\right|<1,0 \leq k \leq n$, and for $n=0,1,2, \ldots$.

Remark 5. By taking $n=0$ and $n=1$ in (28), we obtain (8) and (13), respectively.
Remark 6. Note that $M_{\left(a_{k}, b_{k}\right)_{k=0}^{n}, t}(T) \in \mathfrak{L}(\mathscr{H})$.

Lemma 3. For $T \in \mathfrak{L}(\mathscr{H})$ such that $\sigma(T) \subset \overline{\mathbb{D}}$, we have

$$
\begin{align*}
M_{\left(a_{k}, b_{k}\right)_{k=0, t}^{n}}(T) & =\sum_{m \geq 0} a_{0}^{m} e^{i m t} T^{* m}+\sum_{m \geq 0} b_{o}^{m} e^{-i m t} T^{m} \\
& +\sum_{m \geq 0} \sum_{k=1}^{n} a_{k}^{m} e^{i m t} T^{* m}-\sum_{m \geq 0} \sum_{k=1}^{n} b_{k}^{m} e^{-i m t} T^{m}-I . \tag{29}
\end{align*}
$$

Proof. Since $\left\|a_{k} e^{i t} T^{*}\right\|<1$, and $\left\|b_{k} e^{-i t} T\right\|<1,0 \leq k \leq n$, we have

$$
\sum_{k=0}^{n}\left(I-a_{k} e^{i t} T^{*}\right)^{-1}=\sum_{m \geq 0} \sum_{k=0}^{n} a_{k}^{m} e^{i m t} T^{* m},
$$

and

$$
\sum_{k=0}^{n}\left(I-b_{k} e^{-i t} T\right)^{-1}=\sum_{m \geq 0} \sum_{k=0}^{n} b_{k}^{m} e^{-i m t} T^{m}
$$

respectively. By the two equalities above and (28), we get (29).
For an operator $T \in \mathfrak{L}(\mathscr{H})$ and a polynomial $r(z)=\sum_{j=0}^{s} c_{j} z^{j} \in \mathbb{C}[z]_{\mid \mathbb{D}}, r(T) \in \mathfrak{L}(\mathscr{H})$ is defined by

$$
r(T)=\sum_{j=0}^{s} c_{j} T^{j}
$$

Lemma 4. Let $T \in \mathfrak{L}(\mathscr{H})$ such that $\sigma(T) \subset \overline{\mathbb{D}}$. For $r(z) \in \mathbb{C}[z]_{\overline{\mathbb{D}}}$. Then

$$
r\left(b_{0} T\right)-\sum_{k=1}^{n} r\left(b_{k} T\right)+n c_{0} I=\frac{1}{2 \pi} \int_{0}^{2 \pi} r\left(e^{i t}\right) M_{\left(a_{k}, b_{k}\right)_{k=0, t}^{n}}(T) d t
$$

where a_{k} and b_{k} are complex parameters satisfying $\left|a_{k}\right|<1$ and $\left|b_{k}\right|<1,0 \leq k \leq n$, and for $n=0,1,2, \ldots$.

Proof. From (29) and since $\int_{0}^{2 \pi} e^{i l t} d t=0$ for $l \in \mathbb{Z} /\{0\}$, we get

$$
\begin{aligned}
\int_{0}^{2 \pi} r\left(e^{i t}\right) M_{\left(a_{k}, b_{k}\right)_{k=0}^{n}, t}(T) d t & =\sum_{j=0}^{s} \sum_{m \geq 0} c_{j} a_{0}^{m} T^{* m} \int_{0}^{2 \pi} e^{i(m+j) t} d t \\
& +\sum_{j=0}^{s} \sum_{m \geq 0} c_{j} b_{0}^{m} T^{m} \int_{0}^{2 \pi} e^{i(j-m) t} d t
\end{aligned}
$$

$$
\begin{aligned}
& +\sum_{j=0}^{s} \sum_{m \geq 0} \sum_{k=1}^{n} c_{j} a_{k}^{m} T^{* m} \int_{0}^{2 \pi} e^{i(j+m) t} d t \\
& -\sum_{j=0}^{s} \sum_{m \geq 0} \sum_{k=1}^{n} c_{j} b_{k}^{m} T^{m} \int_{0}^{2 \pi} e^{i(j-m) t} d t-\sum_{j=0}^{s} c_{j} \int_{0}^{2 \pi} e^{i j t} d t \\
& =2 \pi c_{0} I+2 \pi \sum_{j=0}^{s} c_{j} b_{0}^{j} T^{j}+2 \pi \sum_{k=1}^{n} c_{0} I \\
& -2 \pi \sum_{j=0}^{s} \sum_{k=1}^{n} c_{j} b_{k}^{j} T^{j}-2 \pi c_{0} I \\
& =2 n \pi c_{0} I+2 \pi r\left(b_{0} T\right)-2 \pi \sum_{k=1}^{n} r\left(b_{k} T\right) .
\end{aligned}
$$

Corollary 3. Note that if r identically equal to 1 , we have

$$
\begin{equation*}
\frac{1}{2 \pi} \int_{0}^{2 \pi} M_{\left(a_{k}, b_{k}\right)_{k=0}^{n}, t}(T) d t=I \tag{30}
\end{equation*}
$$

for complex parameters a_{k} and b_{k} satisfying $\left|a_{k}\right|<1$ and $\left|b_{k}\right|<1,0 \leq k \leq n, n=0,1,2, \ldots$ and $T \in \mathfrak{L}(\mathscr{H})$ such that $\sigma(T) \subset \overline{\mathbb{D}}$.

Now, we give a different proof of equation (30) independent of a polynomial.
Theorem 6. Let $T \in \mathfrak{L}(\mathscr{H})$ such that $\sigma(T) \subset \overline{\mathbb{D}}$. Then

$$
\frac{1}{2 \pi} \int_{0}^{2 \pi} M_{\left(a_{k}, b_{k}\right)_{k=0}^{n}, t}(T) d t=I
$$

where a_{k} and b_{k} are complex parameters satisfying $\left|a_{k}\right|<1$ and $\left|b_{k}\right|<1,0 \leq k \leq n$, $n=0,1,2, \ldots$.

Proof. From (28), we have

$$
\begin{equation*}
\frac{1}{2 \pi} \int_{0}^{2 \pi} M_{\left(a_{k}, b_{k}\right)_{k=0}^{n}, t}(T) d t=\frac{1}{2 \pi} \int_{0}^{2 \pi}\binom{\left(I-a_{0} e^{i t} T^{*}\right)^{-1}+\left(I-b_{o} e^{-i t} T\right)^{-1}+}{\sum_{k=1}^{n}\left(I-a_{k} e^{i t} T^{*}\right)^{-1}-\sum_{k=1}^{n}\left(I-b_{k} e^{-i t} T\right)^{-1}-I} d t \tag{31}
\end{equation*}
$$

We set

$$
\begin{align*}
& I_{1}=\frac{1}{2 \pi} \int_{0}^{2 \pi}\left(I-a_{0} e^{i t} T^{*}\right)^{-1} d t \tag{32}\\
& I_{2}=\frac{1}{2 \pi} \int_{0}^{2 \pi}\left(I-b_{0} e^{-i t} T\right)^{-1} d t \tag{33}\\
& I_{3}=\frac{1}{2 \pi} \int_{0}^{2 \pi} \sum_{k=1}^{n}\left(I-a_{k} e^{i t} T^{*}\right)^{-1} d t \tag{34}\\
& I_{4}=\frac{1}{2 \pi} \int_{0}^{2 \pi} \sum_{k=1}^{n}\left(I-b_{k} e^{-i t} T\right)^{-1} d t \tag{35}
\end{align*}
$$

and

$$
\begin{equation*}
I_{5}=\frac{1}{2 \pi} \int_{0}^{2 \pi} I d t \tag{36}
\end{equation*}
$$

Therefore, it follows from (32)- (36) that

$$
\begin{equation*}
\frac{1}{2 \pi} \int_{0}^{2 \pi} M_{\left(a_{k}, b_{k}\right)_{k=0}^{n}, t}(T) d t=I_{1}+I_{2}+I_{3}-I_{4}-I_{5} \tag{37}
\end{equation*}
$$

It is clear that

$$
\begin{equation*}
I_{5}=I \tag{38}
\end{equation*}
$$

Following similarly the proof of Theorem 5, we get

$$
\begin{align*}
& I_{1}=I \tag{39}\\
& I_{2}=I \tag{40}
\end{align*}
$$

Next, we shall calculate I_{3} and I_{4}. First, we have

$$
I_{3}=\frac{1}{2 \pi} \int_{0}^{2 \pi} \sum_{k=1}^{n}\left(I-a_{k} e^{i t} T^{*}\right)^{-1} d t=\sum_{k=1}^{n}\left(\frac{1}{2 \pi} \int_{0}^{2 \pi} e^{-i t}\left(e^{-i t} I-a_{k} T^{*}\right)^{-1} d t\right)
$$

Making substitution $z=e^{-i t}$ in the last integral, we get

$$
I_{3}=\sum_{k=1}^{n}\left(\frac{-1}{2 \pi i} \int_{|z|=1}\left(z I-a_{k} T^{*}\right)^{-1} d z\right)
$$

where the integral along $|z|=1$ is taken in the negative direction. Hence, by the RieszDunford integral in the equation (1), we have

$$
\begin{equation*}
I_{3}=\sum_{k=1}^{n} I=n I \tag{41}
\end{equation*}
$$

Similarly, we get

$$
I_{4}=\frac{1}{2 \pi} \int_{0}^{2 \pi} \sum_{k=1}^{n}\left(I-b_{k} e^{-i t} T\right)^{-1} d t=\sum_{k=1}^{n}\left(\frac{1}{2 \pi} \int_{0}^{2 \pi} e^{i t}\left(e^{i t} I-b_{k} T\right)^{-1} d t\right)
$$

If we set $z=e^{i t}$, then the last integral is of the form

$$
I_{4}=\sum_{k=1}^{n}\left(\frac{1}{2 \pi i} \int_{|z|=1}\left(z I-b_{k} T\right)^{-1} d z\right)
$$

where the integral along $|z|=1$ is taken in the positive direction. Hence, by the Riesz-Dunford integral (1), we have

$$
\begin{equation*}
I_{4}=\sum_{k=1}^{n} I=n I \tag{42}
\end{equation*}
$$

Therefore, from (37)-(42) we get (30).

References

[1] S Bulut. A note on the operator-valued poisson kernel. European Journal of Pure and Applied Mathematics, 2(2):296-301, 2009.
[2] I Chalendar. The operator-valued poisson kernel and its application. Irish Mathematical Society Bulletin, 51:21-44, 2003.
[3] H Haruki. A new generalization of the poisson kernel. Journal of Applied Analysis and Stochastic Analysis, 10(2):191-196, 1997.

