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Abstract. We consider the non-linear partial differential equation of time-fractional type describing the

spontaneous imbibition of water by an oil-saturated rock (double phase flow through porous media).

The fact that oil and water form two immiscible liquid phases and water represents preferentially wet-

ting phase are the basic assumption of this work. The Homotopy Analysis Method is used to obtain the

saturation of injected water. We obtain the graphical representation of solution using MATLAB R2007b

and Microsoft Excel 2010 with different fractional order (α > 0) and the comparison is made with

the solution obtained in [19] using Adomian Decomposition Method when α = 1 including numerical

values.
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1. Introduction

In Caputo [6] and He [10], the approach used to account for the effects of changing flux is

to embody the effects of memory which has to do with posing problem in terms of fractional

calculus. Levy-flight type of transport is a well known diffusion process which is described by

a fractional system. Motivated by this idea, we propose a fractional type Fingero-Imbibition

phenomena equation in double phase flow through porous media and obtain analytical ap-

proximate solution using Homotopy Analysis Method, HAM.

We consider equation of form

C DαT S(X , T ) =

�

∂ S(X , T )

∂ X

�2

+ S(X , T )
∂ 2S(X , T )

∂ X 2
(1)
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where C DαT is the Caputo fractional derivative with appropriate initial condition.

When there is difference in the viscosity of two flowing phases due to wetting difference,

then we have fingering phenomena. The importance of this phenomenon has gained attention

by various concerned fields such as geophysics, geo-hydrology, reservoir engineering etc, with

little or no attention to the fractional type.

Generally, for the past three decades, fractional calculus has been considered with great

importance due to its various applications in fluid flow, control theory of dynamical systems,

chemical physics, electrical networks, and so on. The quest of getting accurate methods for

solving resulted non-linear model involving fractional order is of almost concern of many re-

searchers in this field today.

Various methods have been put to use successfully to obtain analytical solutions such as

Adomian Decomposition Method (ADM) [2, 19, 20], Variational Iteration Method (VIM) [11,

20], Homotopy Perturbation Method (HPM) [9], and EXP-function Method [24] see also [12–

14, 23]. One of the powerful analytical approach to solving non-linear differential equations

is Homotopy Analysis Method (HAM) [1, 4]. Recent works have been done using this method

(HAM) to obtain analytical solutions of some differential equations given improvement on

the method [3, 5, 7]. Xu et al. [25] recently applied the HAM to linear, homogeneous one

and two dimensional fractional heat-like PDEs subject to the Neumann boundary conditions.

Very recently, HAM was shown to be capable of solving both linear and non-linear systems of

fractional partial differential equations [15].

This paper considers equation (1) subject to some appropriate initial where C DαT (· ) =
∂ α(.)
∂ Tα

is a Caputo fractional differential operator. We compare the result obtained by HAM with

that of ADM [19], when α = 1 to affirm the reliability of the method including numerical

values. We obtain numerical results at the end with different values of α and h (h is auxiliary

parameter introduced in HAM) given the effect of both parameters on solution of fingero-

imbibition phenomena of fractional type in double phase flow through porous media.

2. Preliminaries

Here we state necessary tools to the actualization of the aim of this paper including def-

initions and some known results. This work adopts Caputo’s definition to some concepts of

fractional derivatives which is a modification of the Riemann-Liouville’s definition and has the

advantage of dealing properly with initial value problems. The initial conditions are given in

terms of the field variables and their integer order which is the case in many physical processes.

Definition 1. A real function l is said to be in the space Cµ, µ ∈ R, x > 0, if there exists a real

number p(> µ) such that

l(x) = x p l1(x),

where l1 ∈ C[0,∞) and it is said to be in the space Cm
µ if and only if l(m) ∈ Cµ, m ∈ N.

Definition 2. The Riemann-Liouville’s (RL) fractional integral operator of order 0< α < 1, of a
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function f ∈ L1(a, b) is given as

Jα f (t) =
1

Γ(α)

∫ t

0

(t −τ)α−1 f (τ)dτ, t > 0, (2)

where Γ is the Gamma function and J0 f (t) = f (t).

Definition 3. The Riemann-Liouville’s (RL) fractional derivative of order 0< α < 1, of a function

f is

Dα0+
f (t) = DJ1−α

0+
f (t). (3)

provided the right-hand side exists where D = d/d t.

Definition 4. The fractional derivative in the Caputo’s sense is defined as [21],

C Dα f (t) = Jn−αDn f (t) =
1

Γ(n−α)

∫ t

0

(t −τ)n−α−1 f (n)(τ)dτ, (4)

where n− 1< α≤ n, n ∈ N, t > 0.

Caputo’s fractional derivative also has a useful property [8]

JαC Dα f (t) = f (t)−
n−1
∑

k=0

f (k)(0+)
tk

k!
, (5)

where n− 1< α≤ n.

Lemma 1. Let α≥ 0, β ≥ 0 and f ∈ C L(a, b). Then

Jαa Jβ f (t) = Jα+βa f (t), (6)

for all t ∈ (a, b].

Lemma 2. Let t ∈ (a, b]. Then

�

Jαa (t − a)β
�

(t) =
Γ(β + 1)

Γ(β +α+ 1)
(t − a)β+α, α¾ 0, β > 0. (7)

Remark 1. From the definitions given above, we observed that the Riemann-Liouville fractional

derivative of a constant function is not equal to zero while that of Caputo fractional derivative of

constant function is zero.
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3. Method of Solution

Consider a non-linear fractional partial differential equation of the form

¨

Dαt

�

f (x , t)
�

= A
�

f , fx , fx x

�

+ B
�

f , fx , fx x

�

+ C(x , t) n− 1< α≤ n, t > 0

f (k)(x , 0) = gk(x) k = 0,1,2,3, . . . , n− 1,
(8)

where A is a linear operator and B is a non-linear operator both of which might include other

fractional derivatives of order less than α and C is a known analytic function.

Using (5), we obtain

f (x , t) =

n−1
∑

k=0

gk(x)
tk

k!
+ JαC(x , t) + JαA

�

f , fx , fx x

�

+ JαB
�

f , fx , fx x

�

, n− 1< α≤ n, t > 0.

(9)

3.1. The Zeroth-Order Deformation Equation

Let L denotes an auxiliary linear operator, f0(x , t) is an initial approximation of f (x , t),

satisfied by the initial condition in (8)

In (8), we have linear operator Dαt which in this work is different from linear operator A

and we can choose it to be

L(ϕ) = Dαt

�

ϕ
�

(10)

with corresponding initial approximation

f0(x , t) =

m−1
∑

k=0

gk(x)
tk

k!
+ JαC(x , t). (11)

The non-linear operator by (8) can be defined for simplicity sake as

N(ϕ) = Dαt (ϕ)− A
�

ϕ,ϕx ,ϕϕx x

�

+ B
�

ϕ,ϕx ,ϕx x

�

− C(x , t). (12)

We can now construct the zeroth-order deformation in the frame of Homotopy Analysis Method

(HAM) [17] as

(1− r)L
�

F(x , t; r)− f0(x , t)
�

= rhN (F(x , t; r)) , (13)

with initial conditions:

F (k)(x , 0; r) = gk(x), k = 0,1,2,3, . . . , m− 1. (14)

where h 6= 0 is an auxiliary parameter, r ∈ [0,1] is the embedding parameter and F(x , 0; r) is

an unknown function on the independent variables x , t, and r.

We observe that ϕ = 0 is a solution of L(ϕ) = 0 where r = 0 since f0(x , t) satisfies all the

initial conditions (8).
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So,

F(x , t; 0) = f0(x , t). (15)

Also, the zeroth-order deformation equations (13) and (14) are equivalent to the original

equations (8) provided r = 1 and

F(x , t; 1) = f (x , t). (16)

Using r, we expand, in Taylor series, F as

F(x , t; r) = f0(x , t) +

∞
∑

m=1

fm(x , t)rm. (17)

where

fm(x , t) =
1

m!

∂ mF(x , t; r)

∂ rm

�

�

�

�

r=0

. (18)

If we assume that the auxiliary linear operator L, the initial guess f0 and the auxiliary pa-

rameter h are properly chosen such that the series (18) converges at r = 1, then by (16) we

have

f (x , t) = f0(x , t) +

∞
∑

m=1

fm(x , t). (19)

3.2. The mth-Order Deformation Equation

We consider the vector

~fm = { f0(x , t), f1(x , t), . . . , fm(x , t)}. (20)

Differentiating (13) m times with respect to the (embedding) parameter r, then evaluating at

r = 0 and finally dividing them by m!, we have the so called mth-order deformation equation

(Lioa [16, 17]) as

L
�

fm(x , t)−χm fm−1(x , t)
�

= hRm

�

~fm−1

�

, (21)

with initial conditions

f (k)m (x , 0) = 0, k = 0,1,2, ..., m− 1. (22)

where

Rm

�

~fm−1

�

=
1

(m− 1)!

∂ m−1N(F(x , t))

∂ rm−1

�

�

�

�

r=0

(23)

and

χm =

¨

0 m¶ 1

1 m> 1,
(24)

When we substitute (12) into (23), since A is a linear operator we get

Rm

�

~fm−1

�

=Dαt − A
�

f(m−1), f(m−1)x , f(m−1)x x

�
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−
1

(m− 1)!

∂ m−1B(F, Fx , Fx x)

∂ rm−1

�

�

�

�

r=0

− (1−χm)C(x , t) (25)

According to (10), Jα can be applied to both sides of (21) to get

JαDα
�

fm(x , t)−χm fm−1(x , t)
�

= hJα
�

Rm

�

~fm−1

��

. (26)

Combining property (5) and the initial conditions in (22), we have

fm(x , t) = χm fm−1(x , t) + hJα
�

Rm

�

~fm−1

��

. (27)

And, finally we will approximate the HAM solution (19) for the purpose of computation by

truncated series

ϕm(x , t) =

m−1
∑

k=0

fk(x , t). (28)

Lemma 3 ([3]). Suppose the series

f (x , t) = f0(x , t) +

∞
∑

m=1

fm(x , t)

converges, where fm(x , t) is governed by (21) with definitions (23) and (24).

Then f must be a solution of (8).

3.3. Mathematical Analysis

Considering a finite cylindrical piece of homogeneous porous matrix which is saturated

with native liquid A surrounded completely by an impermeable surface except for an end of

the cylinder labelled as the imbibition face x = 0. This end is opened to an adjacent formation

of injected liquid B, see Diagram 1. The phenomenon of fingering will occur simultaneously

with imbibition for a less viscous and preferentially wetting phase of liquid B which describes a

one-dimensional fingero-imbibition phenomena for which the injection is started by imbibition

and resulting displacement produce instabilities.

We assume that the validity of Darcy’s law for the double phase flow system [22] the

seepage velocities of wetting phase (vw) and the non-wetting (v0) as:

(

vw = −
kw

µw
K
∂ Pw

∂ x

v0 = −
k0

µ0
K
∂ P0

∂ x ,
(29)

where kw, k0 are relative permeability, Pw, P0 are pressure and µw, µ0 are kinematic viscosi-

ties (constant) of wetting phase and non-wetting phase respectively and the permeability of

homogeneous medium is K . The coordinate x is measured along the axis of the cylindrical

medium, the origin being located at the imbibition face x = 0.

We have that

vw = −v0 (30)
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Figure 1: The Fingero-Imbibition (counter-current) Phenomena in Fractured Reservoir.

for a counter current flow.

Hence, (29) give
kw

µw

K
∂ Pw

∂ x
+

k0

µ0

K
∂ P0

∂ x
= 0 (31)

Mehta [18], gives the definition of capillary pressure Pc as

Pc = P0 − Pw (32)

That is
∂ Pc

∂ x
=
∂ P0

∂ x
−
∂ Pw

∂ x
(33)

Then (31) and (33) give
�

kw

µw

+
k0

µ0

�

∂ Pw

∂ x
+

k0

µ0

∂ Pc

∂ x
= 0 (34)

From here, using (34), we can write (29) explicitly as

vw = K

�

kw

µw

��

k0

µ0

�

∂ Pc

∂ x

�

kw

µw

+
∂ k0

∂ µ0

�−1

(35)

For wetting phase, equation of continuity is given by

φ
∂ Sw

∂ t
+
∂ vw

∂ x
= 0 (36)

where Sw is the saturation of the wetting phase and φ is the porosity of the medium.

Substituting the value of vw of (35) into (36), we obtain

φ
∂ Sw

∂ t
+
∂

∂ x

�

K
kwk0

kwµ0 + k0µw

∂ Pc

∂ x

�

= 0 (37)



O. Iyiola, S. Folarin / Eur. J. Pure Appl. Math, 7 (2014), 210-229 217

Equation (37) is a non-linear partial differential equation that describes that the fingero-

imbibition phenomenon of two immiscible fluids flow through homogeneous porous cylindrical

medium with impervious bounding surface on three sides.

We assume standard forms of (Scheidagger and Johnson [22]) for the analytical relation-

ship between the relative permeability, phase saturation and capillary pressure phase satura-

tion knowing that fictitious relative permeability is the function of displacing fluid saturation.

k0 = 1− ξSw, (38)

where ξ= 1.11

kw = Sw (39)

Pc = βSw (40)

The model we are considering involves water and viscous oil and so according to (Scheidegger

[22]), we have

k0kw

kwµ0 + k0µw

≈
k0

µ0

=
1− ξSw

µ0

=
S

µ0

, where S = 1− ξSw. (41)

Hence, by substituting (41), (40), (39), and (38) into (37), we arrived at

∂ Sw

∂ t
=

kβ

µ0φ

∂

∂ x

�

(1− ξSw)
∂ Sw

∂ x

�

(42)

For a dimensionless form of (42), we choose the following new variables

X =
x

L
and T =

kβ

φµ0 L2
t (43)

to get
(

∂ Sw

∂ T =
∂
∂ X

�

(1− ξSw)
∂ Sw

∂ X

�

Sw(X , 0) = f (X ) = e−X .
(44)

The choice of initial condition is due to the fact that the saturation of injected water decreases

exponentially when x increases (Mehta [18]).

Equation (44) with S = 1− ξSw, gives

(

∂ S
∂ T =

∂
∂ X

�

S ∂ S
∂ X

�

S(X , 0) = f (X ) = 1− ξe−X .
(45)

3.4. Main Result

This present paper considers the fingero-imbibition phenomena of time-fractional type

(α > 0 order) through porous media using HAM to obtain analytical solution

(

DαT S = ∂
∂ X

�

S ∂ S
∂ X

�

S(X , 0) = f (X ) = 1− ξe−X .
(46)
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When α= 1, we obtain (45) the usual fingero-imbibition phenomena through porous media.

Equation (46) can be written as in (1)

DαT S(X , T ) =

�

∂ S(X , T )

∂ X

�2

+ S(X , T )
∂ 2S(X , T )

∂ X 2
(47)

We construct zeroth-order deformation from (13)

¨

(1− r)L
�

S̄(X , T ; r)− S̄0(X , T )
�

= rhN
�

S̄(X , T ; r)
�

S̄(X , 0) = f (X ) = 1− ξe−X .
(48)

where

N(ψ) = DαTψ−ψ
2
x −ψψx x (49)

The auxiliary linear operator can be chosen as

L(ψ) = DαTψ (50)

with property

L(ψ) = 0 for ψ = 0. (51)

While the initial guess is

S0(X , T ) = 1− ξe−X . (52)

The high-order deformation equation from (21) as

¨

L
�

Sm(X , T )−χmS(m−1)(X , T )
�

= hRm

�

~S(m−1)(X , T )
�

S(k)m (X , 0) = 0, k = 0,1,
(53)

where

Rm

�

~S(m−1)

�

=
1

(m− 1)!

∂ m−1N [S(X , T ; r)]

∂ rm−1

�

�

�

�

r=0

(54)

Then, Rm

�

~S(m−1)

�

can be given by

Rm

�

~S(m−1)

�

= DαT S(m−1) −
m−1
∑

i=0

Si xS(m−1−i)x −
m−1
∑

i=0

SiS(m−1−i)x x (55)

Accordingly, the governing equation is as follows:

Sm = χmSm−1 + hJα



DαT S(m−1) −
m−1
∑

i=0

Si xS(m−1−i)x −
m−1
∑

i=0

SiS(m−1−i)x x



 (56)

where m¾ 1.

Using (56), we obtain the first few terms of HAM series solutions as follows

S0(X , T ) = 1− ξe−X , (57)
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S1(X , T ) =χ1S0 + hJα
�

C DαT S0 − S2
0x − S0S0x x

�

=− hJα
�

2ξ2e−2X − ξe−X
�

=− 2hξ2e−2X Tα

Γ(α+ 1)
+ hξe−X Tα

Γ(α+ 1)
, (58)

S2(X , T ) =χ2S1 + hJα
�

C DαT S1 − 2S0xS1x − S0S1x x − S1S0x x

�

=− 2hξ2e−2X Tα

Γ(α+ 1)
+ hξe−X Tα

Γ(α+ 1)
− 2h2ξ2e−2X Tα

Γ(α+ 1)

+ h2ξe−X Tα

Γ(α+ 1)
+ 12h2ξ2e−2X T2α

Γ(2α+ 1)

− 18h2ξ3e−3X T2α

Γ(2α+ 1)
− h2ξe−X T2α

Γ(2α+ 1)
. (59)

The remaining terms for m= 3,4, . . . can be obtained using Mathematica or MATLAB

Hence, the HAM series solution is obtained as

S(X , T ) =S0(X , T ) + S1(X , T ) + S2(X , T ) + S3(X , T ) + . . .

=1− ξe−X − 4hξ2e−2X Tα

Γ(α+ 1)
+ 2hξe−X Tα

Γ(α+ 1)

− 2h2ξ2e−2X Tα

Γ(α+ 1)
+ h2ξe−X Tα

Γ(α+ 1)
+ 12h2ξ2e−2X T2α

Γ(2α+ 1)

− 18h2ξ3e−3X T2α

Γ(2α+ 1)
− h2ξe−X T2α

Γ(2α+ 1)
+ . . . . (60)

Table 1 shows the few terms HAM approximation of (1) when α= 0.10,0.25,0.50,0.75,0.90

and 1.00 with h = −0.6 and −1.0 and their respective solution plots by Matlab are given in

Figures 2-3. Curves representing the effect of different values of h on the saturation S for fixed

T and α are shown in Figures 4-5; Figure 6 represents the effect of different values of α on

the saturation for fixed T and h.



O
.

Iy
io

la
,

S
.

Fo
la

rin
/

E
u

r.
J.

P
u

re
A

p
p
l.

M
a
th

,
7

(2
0

1
4

),
2

1
0

-2
2

9
2

2
0

Table 1: HAM Approximation of (1) Varying α and h

α= 0.10 α= 0.25 α = 0.50 α= 0.75 α= 0.90 α= 1.00

T X h= −0.6 h= −1.0 h= −0.6 h= −1.0 h= −0.6 h= −1.0 h= −0.6 h= −1.0 h= −0.6 h= −1.0 h= −0.6 h= −1.0

0.02 0.1000 -0.7577 -3.0573 -0.1072 -0.8505 0.0624 -0.0345 0.0330 0.0213 0.0171 0.0136 0.0099 0.0083

0.2000 -0.4092 -2.0031 0.0119 -0.5400 0.1279 0.0350 0.1128 0.0939 0.1037 0.0954 0.0995 0.0946

0.3000 -0.1685 -1.2864 0.1039 -0.3206 0.1898 0.0984 0.1871 0.1629 0.1833 0.1715 0.1815 0.1740

0.4000 -0.0010 -0.8020 0.1775 -0.1629 0.2483 0.1576 0.2560 0.2280 0.2563 0.2420 0.2563 0.2471

0.5000 0.1174 -0.4758 0.2389 -0.0464 0.3038 0.2133 0.3198 0.2893 0.3232 0.3073 0.3245 0.3142

0.6000 0.2034 -0.2559 0.2921 0.0429 0.3562 0.2663 0.3787 0.3468 0.3844 0.3676 0.3867 0.3757

0.7000 0.2682 -0.1063 0.3396 0.1143 0.4056 0.3168 0.4330 0.4905 0.4404 0.4231 0.4433 0.4321

0.8000 0.3196 -0.0022 0.3833 0.1742 0.4521 0.3650 0.4830 0.4505 0.4915 0.4741 0.4949 0.4836

0.9000 0.3624 0.0730 0.4240 0.2267 0.4957 0.4108 0.5289 0.4970 0.5389 0.5210 0.5418 0.5306

1.0000 0.4010 0.1304 0.4625 0.2743 0.5365 0.4544 0.5710 0.5400 0.5806 0.5640 0.5844 0.5736

0.04 0.1000 -0.9102 -3.5498 -0.2189 -1.2668 0.0599 -0.1306 0.0522 0.0213 0.0334 0.0231 0.0232 0.0181

0.2000 -0.5073 -2.3261 -0.0613 -0.8213 0.1240 -0.0412 0.1236 0.0848 0.1131 0.0952 0.1072 0.0961

0.3000 -0.2308 -1.4956 0.0548 -0.5125 0.1833 0.0338 0.1911 0.1461 0.1873 0.1638 0.1848 0.1693

0.4000 -0.0404 -0.9360 0.1431 -0.2965 0.2388 0.0990 0.2547 0.2053 0.2561 0.2287 0.2563 0.2377

0.5000 0.0924 -0.5613 0.2129 -0.1431 0.2912 0.1578 0.3144 0.2621 0.3199 0.2899 0.3221 0.3014

0.6000 0.1868 -0.3109 0.2705 -0.0310 0.3409 0.2121 0.3702 0.3163 0.3788 0.3473 0.3825 0.3606

0.7000 0.2564 -0.1430 0.3200 0.0539 0.3881 0.2631 0.4223 0.3678 0.4331 0.4009 0.4378 0.4154

0.8000 0.3100 -0.0287 0.3642 0.1214 0.4328 0.3115 0.4707 0.4166 0.4831 0.4509 0.4885 0.4660

0.9000 0.3537 0.0518 0.4048 0.1779 0.4752 0.3577 0.5156 0.4625 0.5290 0.4873 0.5349 0.5127

1.0000 0.3914 0.1114 0.4428 0.2275 0.5152 0.4019 0.5572 0.5057 0.5711 0.5403 0.5773 0.5557

0.06 0.1000 -1.0111 -3.8724 -0.3102 -1.5916 0.0461 -0.2376 0.0649 0.0098 0.0471 0.0270 0.0354 0.0251

0.2000 -0.5721 -2.5373 -0.1209 -1.0388 0.1136 -0.1205 0.1304 0.0694 0.1209 0.0918 0.1143 0.0958

0.3000 -0.2719 -1.6318 0.0156 -0.6585 0.1738 -0.7285 0.1930 0.1271 0.1904 0.1545 0.1878 0.1634

0.4000 -0.0661 -1.0227 0.1165 -0.3958 0.2289 0.0471 0.2526 0.1829 0.2556 0.2150 0.2562 0.2276

0.5000 0.0762 -0.6159 0.1937 -0.2126 0.2803 0.1118 0.3092 0.2370 0.3166 0.2728 0.3196 0.2883

0.6000 0.1764 -0.3455 0.2555 -0.0820 0.3288 0.1695 0.3626 0.2891 0.3734 0.3278 0.3783 0.3453

0.7000 -0.2491 -0.1655 0.3070 0.0139 0.3747 0.2222 0.4129 0.3393 0.4262 0.3799 0.4324 0.3987

0.8000 0.3044 -0.0443 0.3520 0.0876 0.4184 0.2717 0.4601 0.3872 0.4752 0.4290 0.4822 0.4486

0.9000 0.3487 0.0395 0.3927 0.1473 0.4600 0.3185 0.5042 0.4329 0.5205 0.4751 0.5281 0.4949

1.0000 0.3864 0.1006 0.4305 0.1984 0.4995 0.3633 0.5454 0.4762 0.5622 0.5182 0.5702 0.5380
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(a) α= 0.1 (b) α= 0.25

(c) α= 0.5 (d) α= 0.75

(e) α= 0.9 (f) α= 1.0

Figure 2: HAM Solution for h= −0.6 and Various α
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(a) α= 0.1 (b) α= 0.25

(c) α= 0.5 (d) α= 0.75

(e) α= 0.9 (f) α= 1.0

Figure 3: HAM Solution for h= −1.0 and Various α
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(a) α= 0.1 (b) α= 0.25

(c) α= 0.5 (d) α= 0.75

(e) α= 0.9 (f) α= 1.0

Figure 4: Effect of h on the HAM Solution for Fixed T = 0.02 and Various α
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(a) α= 0.1 (b) α= 0.25

(c) α= 0.5 (d) α= 0.75

(e) α= 0.9 (f) α= 1.0

Figure 5: Effect of h on the HAM Solution for Fixed T = 0.04 and Various α
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(a) T = 0.02, h= −0.6 (b) T = 0.02, h= −1.0

(c) T = 0.04, h= −0.6 (d) T = 0.04, h= −1.0

(e) T = 0.06, h= −0.6 (f) T = 0.06, h= −1.0

Figure 6: Effect of α on the HAM Solution for Various T and h
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When α = 1 and h = −0.03, the problem solved by [19], using Adomian Decomposition

Method, ADM , coincides with our problem and so the solutions were compared in Table 2 and

is represented in Figure 7.

Table 2: Comparison of Solutions Using HAM vs. ADM

T = 0.02 T = 0.04 T = 0.06

X SHAM SADM X SHAM SADM X SHAM SADM

0.1000 0.0099 0.0146 0.1000 0.0232 0.0315 0.1000 0.0354 0.0471

0.2000 0.0995 0.1052 0.1000 0.1072 0.1178 0.1000 0.1143 0.1294

0.3000 0.1815 0.1878 0.1000 0.1848 0.1969 0.1000 0.1878 0.2053

0.4000 0.2563 0.2629 0.1000 0.2563 0.2692 0.1000 0.2562 0.2751

0.5000 0.3245 0.3313 0.1000 0.3221 0.3354 0.1000 0.3196 0.3392

0.6000 0.3867 0.3834 0.1000 0.3825 0.3958 0.1000 0.3783 0.3981

0.7000 0.4433 0.4499 0.1000 0.4378 0.4510 0.1000 0.4324 0.4520

0.8000 0.4949 0.5012 0.1000 0.4885 0.5013 0.1000 0.4822 0.5012

0.9000 0.5418 0.5479 0.1000 0.5349 0.5471 0.1000 0.5281 0.5464

1.0000 0.5844 0.5902 0.1000 0.5773 0.5888 0.1000 0.5702 0.5876

(a) T = 0.02 (b) T = 0.04

(c) T = 0.06

Figure 7: Comparison of HAM solution and ADM solution for Various T
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4. Discussion and conclusion

The basis for many scientific and engineering applications is now depending largely on

the study of physics of flow through porous media. The applications ranges from hydrologist

in his study of the migration of underground water, the petroleum engineer in his study of

movement of oil, gas and water through the reservoir of oil or gas field, the chemical engineer

in connection with filtration processes. We also have applications in soil mechanics, ceramic

engineering, oil recovery process, water purification and powder metallurgy. In the recent

years, Caputo [6] and He [10], fractional order have been incorporated into existing differen-

tial equations which have deep meaning and applications inexhaustible giving hope for future

research work in the field of sciences and other related fields.

In this work, we propose the fractional Fingero-imbibition equation to model the spon-

taneous imbibition of water by an oil-saturated rock in a double phase flow through porous

media. Homotopy Analysis Method (HAM) was implemented to obtain the approximate ana-

lytical solution of (1). The convergence region of the series solution obtained by HAM can be

adjusted and controlled by the auxiliary parameter h such adjustments are demonstrated rep-

resented in Figures 4-5. It is interesting to note that different values α have significant effect

on the saturation level and so it is worth investigating. The results are shown in Figure 6.

Our results extend the work of Meher et al. in [19] by moving away from the classical

Fingero-imbibition equation to fractional order and also using HAM (instead of ADM) which

has been proven to be more accurate due to the presence of control parameter h. Several

numerical results are presented including graphs to illustrates different scenario. Table 2 and

Figures 7a-7c give the analysis of the comparison made between HAM and that of ADM in

[19] when α = 1 and for some fixed T to show the efficiency and accuracy of the suggested

method. The numerical simulations are obtained using MATLAB R2007b and Microsoft Excel

2010.
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