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Abstract. The search for information in memory of technological competition process in the market is
analysed using techniques widespread in biomathematics. Here we examined the effects that delayed
information causes in choosing strategies process on the part of manufacturers to supplant a technology
by introducing an alternative one. A differential-equation system with delays is presented to describe
the dynamics of an endogenous model with memory. Situations of competition in which the market has
several manufacturers using the same technologies and are in competition are analyzed. Conditions
for stability and existence of periodic oscilations by means of Hopf bifurcation is investigated.
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1. Introduction

The sharing of the benefits generated by technological knowledge involves a variety of
flows which govern actions of manufacturers and consumers of technological innovation. A
number of business-cycle models postulating that both, internal factors in market as demand
instability, resource avaliability or external ones, as instability of government policies, setbacks
in environmental regulation, influence strongly the global dynamics of all producing activities
(see [1, 2, 9–11, 13]). Recently, technology planners and market agents have been interested
in models that focus their attention on two causal variables, the one that captures the mea-
sure of the potential quantity of consumers in an economic system susceptible to adopt the
new technology and another that captures the measure of quantity of a product with new
technology (see [1, 2, 7, 10]).

In [10], the authors have adopted the transposition of techniques used in biomathematics
to analyze the changes in migration of consumers facing new technologies (see also [3]). In

∗Corresponding author.

Email addresses: jair@ffclrp.usp.br (J. dos Santos), pa.torresan@gmail.com (P. Torresan)

http://www.ejpam.com 156 c© 2014 EJPAM All rights reserved.



J. dos Santos, K. Azevedo and P. Torresan / Eur. J. Pure Appl. Math, 7 (2014), 156-165 157

their model they considered external and internal socioeconomic factors but, they have assume
that each firm takes only into account instantaneous information about both, its own techno-
logic output and the one of their competitors. They show clear-cut results that describe the
dynamics of the competition among manufacturers producing innovation technology. Huang,
in [7], investigates what is the impact that accurate information has on the features on the
dynamics of an oligopolistic market and shows how an improvement in information accuracy
(or elimination of delayed information) may destabilize an existing stable equilibrium.

Our purpose is contributing to understand the basic mechanisms involved in the complexity
of competition and co-existence of new technologies in innovation technology process. We will
see later which techniques from dynamical systems, the memory of the production process
can contain to explanation the fluctuations in indicators of innovation process technology and
ensure reliable assessment of possible impacts upon the socioeconomic factors that affect both
demand and supply through innovation (see [2, 14]).

Form the view point of many researchers, the production process of the market depends
endogenously on its past history and in several researches, on mathematical modelling taking
into account this problem (see [2, 5–7, 9, 11, 13]).

The authors in [5] construct two linear continuous-time dynamic oligopoly models with
partial adjustment towards the best response and analyse the effects on local stability caused by
lagged information. The authors, in [6], establish a class of economic models with two delays,
one of them in production process and another in consumption. They discuss the stability of the
equilibrium point for economic system and the existence of Hopf bifurcation. If the economy
is in recession the government uses fiscal mechanisms or monetary policy and increases its
expenditure to stimulate consumption and investment (pro-cyclical policy, see [12]). Takeuchi
and Yamamura, in [11], investigate how the fiscal policy with a time delay affects stability in
an economy. They assume that there exists a time delay between policy making to adjust the
economy and its implementation which is divided into two factors: recognizing and decision
making, which are lagged actions.

Having to control the uncertainty effect about adoption of new technology, individual man-
ufacturer attempt to delay decision making until they receive more accurate information to
minimize uncertainty and to ensure improvement in performance. So, in their decisions tech-
nology planners and market agents are always concerned about the existence of time delay
between the moment when it is necessary to act and the moment of recognizing the necessity
of action. We assume that they act consciously and that there are lags between the time that
information are obtained and the time when decisions related to it are implemented.

We propose a similar model of endogenous competition as presented by the authors, in
[10]. Let x(t) be the potential quantity of consumers within an economic system at instant
t. Let us denote by y(t) the quantity of a product with new technology put on the market
at instant t. We assume that the evolution rate of the quantity of consumers in an economic
system susceptible to adopt the new technology increases with the function g and decreases
with the sum p0 and p1. The function p0 represents the functional response rate of manufac-
turers with time delay incorporated. The function p1 represents the instantaneous functional
response rate of manufacturers. The function s+ q(y) expresses the rate of specific extinction
of the manufacturers due to intraspecific competition among them. The growth rate of the



J. dos Santos, K. Azevedo and P. Torresan / Eur. J. Pure Appl. Math, 7 (2014), 156-165 158

product with new technology depends on past history with p0 and on the current moment at
p1.

ẋ(t) =x(t)g(x(t))− ym(t)[p0(x(t −σ) + p1(x(t))]

ẏ(t) =y(t){−s− q(y) + γ[p0(x(t − r)) + p1(x(t))]y
m−1(t)}.

(1)

where g, p0, p1, q ∈ C1([0,∞), R), σ > 0, r > 0 and m ≥ 1 is the constant of mutual interfer-
ence.

Assumption 1. Let be p(u) = p0(u) + p1(u). Assume that p(0) = 0, q(0) = 0, and p′(u) > 0,
q′(u)> 0, for u≥ 0. Moreover, there is u0 > 0 such that g(u0) = 0, g(0)u> 0,
limu→0(ug ′(u) + g(u))> 0, g ′(u)< 0 for u ∈ [0;∞).

The same way [10], it follows from Assumption 1 that there are x0 > 0 and y0 > 0 so that

P0 = (x0, y0) is the unique positive equilibrium point of (1), where y0 =
�

x0 g(x0)
p(x0)

�
1
m

and p is
defined in Assumption 1.

Assumption 2. Let (x0, y0) be the positive equilibrium point of the system (1). Le us assume
that

a) x0 g(x0) = ym
0 p(x0) = y0(s+ q(y0)) = [(m− 1)γ]−1 y2

0 q′(y0),

b) p0(x0) = p1(x0), τm =
m

m−1 y0q′(y0)< 1.

c) 0< −p′0(x0)< p′1(x0) and x0 g ′(x0) + g(x0)− ym
0 p′1(x0)< 0 .

System (1) becomes the system (26) in [10] if, 0 < m ≤ 1 and σ = r = 0. Stability
of competition among new technologies available close to P0 was analysed in [10]. Since the
model (1) depends on two delays, that leads to great complexity in the analysis of competition
among new technologies available on the market (see [4]). We observe that in this system the
delays can not be eliminated by any change of variable. Its dynamics are studied in terms of
the local stability of P0 and of the Hopf bifurcation that is proven to exist as one of the delay
crosses some critical value. To achieve our goals, we shall analyse how the roots of (3)) are
distributed with respect to the imaginary axis. This is a classical problem that, in addition to
being important by itself, plays an important role in the study of asymptotic behavior in the
theory of delay differential equations (see [4]).

If we set κ11 = x0 g ′(x0) + g(x0) − ym
0 p′1(x0), κ12 = −mym−1

0 p(x0), κ21 = γp′1(x0)ym
0 ,

κ22 = (m − 1)γym−1
0 p(x0) − y0q′(y0), b11 = −ym

0 p′0(x0), b21 = γym
0 p′0(x0), we obtain the

system
�

ẋ(t) = κ11 x(t) + κ12 y(t) + b11 x(t −σ)
ẏ(t) = κ21 x(t) + κ22 y(t) + b21 x(t − r) (2)

that is the linearized system of (1), close to P0. From Assumption 2a it follows that κ22 = 0.
If a = ym+1

0 q′(y0)(−p′0(x0)), b = ym
0 (−p′0(x0)), c = γy(m+1)

0 q′(y0)p′1(x0) and
d = x0 g ′(x0) + g(x0)− ym

0 p′1(x0), then the characteristic equation of the system (2) is given
by

H(λ) = λ2 − dλ− bλe−λσ − ae−λr + c = 0. (3)
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Let λ = x + i y be a solution of equation (3). Separating real and imaginary parts in (3)
we obtain the following equations system for x and y

�

x2 − (y2 − c)− d x − be−σx[x cos yσ+ y sin yσ]− ae−r x cos y r = 0
2x y − d y + be−σx[x sin yσ− y cos yσ] + ae−r x sin y r = 0.

(4)

The solutions of the system (4) with null real part are solutions of the system
�

b y sin yσ+ a cos y r = −y2 + c
−b y cos yσ+ a sin y r = d y.

(5)

Suppose y 6= 0 is a solution of (5), then we must have

sin(σ− r)y =
(−y2 + c)2 + d2 y2 − b2 y2 − a2

2ab y
:= %(y). (6)

If we define u(y) = s + q(y), we indicate elasticity of u with respect to y at y0 by εq.
Analogously, we have εg , εp0

, εp1
and εp are the elasticities of g, p0, p1 and p at x0, respectively

(see Assumption 1).

Remark 1. Authors in [10] consider the system (1) with σ = r = 0, 0 < m ≤ 1 and the
corresponding to configuration of the equilibrium P0 is E3 (see [10, pp. 364]). They indicate
the diagonal elements of the variational matrix associated to E3 by H = g(x0)[εg + 1− εp] and
R = γ(m− 1)(s+ q(y0))[1− εq] ≤ 0. Using H + R and L = HR−mγ(y0)2m−1p(x0)p′(x0) they
describe the stability of E3.

We follow the alternative offered Bléair and Mackey, [2]which make it possible an endoge-
nous explanation for erratic behaviour of competition with memory among new technologies
available, when the innovation process operates around equilibrium point. The dynamics is
described in terms of elasticities (see also [8]). We also show that the dynamics of the model
(1) depends, essentially, on delays and on elasticities of the rate of evolution of the consumers,
on the functional response rate of manufacturers and on the rate of specific extinction of man-
ufacturers owing to the intraspecific competition among then manufacturers.

From Assumption 2 it follows that

b > 0, c > a > 0, d < 0, εg < 0, εp1
> 2(1+ εg),

0< −εp0
< εp1

, εp =
εp0
+εp1
2 , εq = m− 1,

(7)

It also follows from Assumption 2 that,

2a = −εp0
τm g(x0), 2b = −εp0

g(x0), 2c = εp1
τm g(x0),

2d = g(x0)[2+ 2εg − εp1
],moreover a = τm b and εp1

a = −εp0
c.

(8)

So, we can check, directly, that equation (3) is equivalent to equation

λ2 −
g(x0)

2
{(2+ 2εg − εp1

)λ+ (−εp0
)[λe−λσ +τme−λr]− εp1

τm}= 0. (9)
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2. Stability

For a moment assume that in (8) either 2+ 2εg − εp1
= 0 and εp1

< −εp0
or

−εp0
τm g(x0) > 0 and εp1

τm g(x0) < 0, so it is not true that all roots of the equation (9)
have negative real part, once on the real axis H(0) = τm[εp1

− (−εp0
)] < 0 and H(λ)→∞

as λ → ∞, so, there will be unbounded solutions of (1) and we do not uniform ultimate
boundedness. As can been seen, from certain combination of the elasticities with time delay,
erratic changes can arise around their fundamental values, which causes instability in the
complex system of competition among the new technologies available.

Remark 2. From 0< 17(−εp0
)< 2(3+

p

22
p

2−
p

2)εp1
it follows that

ρ0 =:
�32(ε2

p1
− ε2

p0
)c

8ε2
p1
− 17ε2

p0

�
1
2
<
�8(ε2

p1
+ ε2

p0
)c

ε2
p1
(3−

p
2)

�
1
2 =: ρ1. (10)

For a sake of simplicity, let be ρ2 =:
8
p

2ε
3
2
p1

(
p

2+6)ε
3
2
p1+2
p
εp1
+
q

2(−εp0
)

Theorem 1. In addition to Assumption 1 and 2 we assume
Æ

g(x0)[2+ 2εg − εp1
]<min{−

Æ

2g(x0)(−εp0
);−2

p

εp1
τm}. (11)

If 0< r < σ < π
2 , 0< 17(−εp0

)< 2(3+
p

22
p

2−
p

2)εp1
and

ρ0 < (−d)<min{ρ1,ρ2} (12)

the equilibrium point P0 is locally asymptotically stable (d is defined in (8)).

Proof. Using (7), (8) and since 0< −d < ρ2, we have ȳ < 2 that is a condition of the Propo-
sition 1. It follows from ρ0 < (−d)< ρ1 that 4a+(b+d)2 < 4c and b < 2

p

2Υ(a, c)(d2 − 2c),
where Υ(a, c) = c2−a2

8c2+a2 . Since (11) holds, we can verify that the conditions of Theorem 1
and Proposition 1 of the Appendix are equivalent (see Remark 2). Then under conditions of
Theorem (1), (9) all solutions has negative real part. It follows from Proposition 1 that the
equilibrium point P0 is locally asymptocally stable.

Theorem 1 gives sufficient conditions to ensure that the characteristic roots have negative
real parts. This determines local stability of the equilibrium point for system (1). Under
such conditions, markets agents have to take into account that dependence on memory in
production of innovation is harmless, as for as the economic system operates close enough to
the equilibrium point and indicators of technological innovation process are stable. We have
demonstrated how market planners and technology planners must search for information in
the memory of the system economic to improve the accuracy of them actions and make them
efficient to choose reliable strategies in order to achieve them goals.
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3. Fluctuations

Nevertheless, once some parameters pass through critical values, Theorem 2 tells us that
the system (1) loses stability and a Hopf Bifurcation will take place, that is, a family of periodic
orbits bifurcates from the positive equilibrium point.

Theorem 2. In addition to Assumption 1 and 2 we assume that

0<
q

(−εp0
)g(x0)< τm

q

(−εp0
)g(x0) +

q

[(−εp0
)g(x0)τ2

m + 4τm]. (13)

If
p

2(−εp0
) + εp1

− 2εg − 2= 0, and σ∗ = π
2 , then there are r∗ and y∗ satisfying

0≤ (
π

2
− r∗)y∗ ≤

π

2

so that (σ∗, r∗, y∗) is a solution of the system (6). Moreover, if sin(σ∗ y∗) > [4( y∗

d )
2 + 1]−1,

ℜ
�

λ̇(σ∗, r∗, y∗)|x=0

�

6= 0 and (σ∗, r∗, y∗) is a Hopf bifurcation point and close to P0, the system
(1) oscilates (see (8)).

Proof. With a simple computation we verify that

2ab[%(y) + y%′(y)] = 4y2 + 2[d2 − (b2 − 2c)]y

(see (6)). It follows from
p

2(−εp0
) + εp1

− 2εg − 2 = 0 that d = −
p

2b (see the first item of

the Proposition 1). Let be m% =
ε2

p0
g(x0)−2τmεp1

τ1ε2
p0

g(x0)
and n% =

2τm
4
q

3ε5
p1
(ε2

p1
−ε2

p0
)3

3ε2
p0

and

2(y∗)3 =
n%τm(ε0 g(x0))2

4 . It follows from (13) that 0 ≤ m% ≤ 1 and 0 ≤ n% ≤ 1. We can choose
0 ≤ r∗ ≤ σ∗ satisfying 0 ≤ (σ∗ − r∗)y∗ ≤ σ∗ so that the straight line z = m% y + n% is tangent
to the graphic of the function % in (6) at the point (y∗,%(y∗)). Since % is a convex function
on interval (0,∞), then %(y) ≥ m% y + n% for all y ≥ 0. Analogously, we choose 0 ≤ r̄ ≤ σ∗

and ȳ satisfying 0≤ (σ∗− r̄) ȳ ≤ σ∗ so that the straight line z = msin y + nsin is tangent to the
graphic of the function sine defined in (6) at the point ( ȳ , sin(σ∗ − r̄) ȳ). It is easy see that

msin = msin(r̄, ȳ) = (σ∗ − r̄) cos(σ∗ − r̄) ȳ

and
nsin = nsin(r̄, ȳ) = sin(σ∗ − r̄) ȳ − (σ∗ − r̄) ȳ cos(σ∗ − r̄) ȳ .

Since r∗ and y∗ were chosen so that %′(y∗) = m% and %(y∗) = n%, it follows from (5) and
Implicit Function Theorem that the unique solution of the system

�

msin(r̄, ȳ) = m%
nsin(r̄, ȳ) = n%

(14)

will be (r∗, y∗).
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By using implicit derivative in (3) we can show that

ℜ
�

λ̇(σ, r, y)|x=0

�

= b y2[2y sinσy − d cosσy] + r ba cos(σ− r)y. (15)

Because sin(σ∗ y∗) > [4( y∗

d )
2 + 1]−1, we have ℜ

�

λ̇(σ∗, r∗, y∗)|x=0

�

> 0 (d is defined in (8)).

Remark 3. If the elasticities of the functions involved in model (1) satisfy the conditions of Theo-
rem 2 we are able to localize a non-null purely imaginary root of equation (9) and to show that
as the delay σ crosses the crtical value σ∗ there are two simple roots of equation (9) crossing
transversely the imaginary axis from left to right, while all others have negative real part. We
can also verify that (σ∗, r∗) determines a sequence {(σ∗p, r∗q )}(p,q)∈N2 of critical values that lie in
a smooth manifold K defined by system (14). Using Hopf-bifurcation theory we show that the
manifold K can be chosen in such way that each one of this critical values, near the equilibrium
point P0, is associated to a nonconstant periodic solution of system (1).

4. Conclusions

With endogenous framework, the stabilization of competition on a market that operates
with several manufacturers using same technologies, is accurately analyzed. It is clear from
Theorems 1 and 2 that production delays in commodities markets are potentially destabilizing
factors. Theorem 1 shows that planners can search for information in the memory of an eco-
nomic system without doing harm to parameter systems governing technological innovation
process. Theorem 2 shows that if parameters are close to the boundary of the stability region
the system undergoes Hopf bifurcation. With this phenomenon the technological innovation
process becomes unstable and fluctuating. This lead us to believe that our analysis of the
model (1) is able to offer technology planners a reasonable explanation for cyclical behaviour
in competitive markets, and it suggests how market agents must act to avoided fluctuations.
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Appendix

In order to simplify notation we set

x̄ =
b+
p

b2 + 2a
2

, ȳ =
x̄
2
+

b
2
−

d
2
+

√

√

(
x̄
2
+

b
2
−

d
2
)2 + a+ c. (A1)

Unfortunately, the analysis is not easy, since it involves hard computations.

Proposition 1. Assume (7) are satisfied and

(i) d <min{−
p

2b,−
p

2c}, 2r < 2σ < π,

(ii) 4a+ (b+ d)2 < 4c, ȳ < 2,
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(iii) b < 2
p

2Υ(a, c)(d2 − 2c), where Υ(a, c) = c2−a2

8c2+a2 .

Then, there is ε0 > 0 so that if x̄ < ε0, all roots of the equation (3) have negative real part.

Proof. We observe that a, b and c are positive, d is negative and c > a. We suppose that
y = 0 in (4). The system reduces to

x2 − (be−σx + d)x − ae−r x + c = 0

If ϑ(x) = x2 − (be−σx + d)x − ae−r x + c then ϑ(0) > 0. If x > 0, the first inequality in
(i) gives ϑ(x) > x2 − (b+ d)x − a+ c > 0. From this it follows that p(λ) = 0 has no positive
solution with null imaginary part (see (3)).

Let consider the sets Si for i ∈ {0, 1,2, · · · , 6} given by

S0 ={(x , y) ∈ R : 0< x ≤ x̄ and 0< ȳ ≤ y};

S1 ={(x , y) ∈ R2 : 0< 4σy ≤ π, and 2x > b};

S2 ={(x , y) ∈ R2 : π≤ 4σy ≤ 2π and 0< y ≤ x};

S3 ={(x , y) ∈ R2 : π≤ 2σy ≤ 2π and x > 0};

S4 ={(x , y) ∈ R2 : 0< y ≤ x and y ≥ x̄};

S5 ={(x , y) ∈ R2 : 0< x ≤ y and x ≥ x̄};

S6 ={(x , y) ∈ R2 : π≤ 4σy ≤ 2π and 0< x ≤ y}.

(A2)

For each (x , y) ∈ R2
+, the first equation in (4) becomes equivalent to

Γ1(x , y) = 0, (A3)

where

Γ1(x , y) = x − y −
d x − c
x + y

− be−xσζ1(x , y)−
e−x r

x + y
a cos y r

and
ζ1(x , y) = (x + y)−1[x cos yσ+ y sin yσ].

We note that

|ζ1(x , y)| ≤ 1 and
−ae−r x

x + y
≤
−ae−r x cos r y

x + y
≤

ae−r x

x + y
≤

ae−r x

y
. (A4)

If ε∗(x , y) = −y2+(b+ x−d)y+a+ c, then yΓ1(x , y)< ε∗(x , y) since −d x < −d(x+ y).
If (x , y) ∈ S0, we can verify that ε∗(x , y)< 0 and so, equation A3 has no solution belonging to

S0. In fact, the function y(x) = (b+x−d)+
p
(b+x−d)2+4(a+c)

2 is increasing in x and gives a positive
solution for the second degree equation in y given by ε∗(x , y) = 0.

The second equation in (4) is equivalent to

Γ2(x , y) = 2x y − d y + be−σx[x sinσy − y cosσy] + ae−r x sin r y = 0. (A5)
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Since Γ2(x , y)> y(2x− b) e 2x > b, there is no solution of equation A5 for (x , y) belongs
to S1.

It is easy to see that x sinσy − y cosσy ≥ 0 for (x , y) ∈ S2. Moreover, for all (x , y) ∈ S2,
we have Γ2(x , y) ≥ 2x y − d y + ae−r x sin r y > 0. Thus, there is no solution of (A3) that
belongs to S2.

Let consider (x , y) ∈ S3, then Γ2(x , y)≥ 2x y−d y which is positive because d < 0. Hence,
there is no solution of (A3) that belongs to S3.

For each (x , y) ∈ S4, we define ζ2(x , y) = (x y)−1[x sin yσ − y cos yσ]. we can check
directly that yζ2(x , y) ≥ −2 and y sin y r ≥ −x . Then, Γ2(x , y) > (x−1 y−3)[2y2 − 2b y − a],
which is positive if y ≥ x̄ (see A1), whence (A5) has no solution at S4.

Let (x , y) ∈ S5. Because xζ2(x , y)≥ −2 and (x y)−1 sin(y r)≥ −x−2, then
Γ2(x , y)> (x−3 y−1)[2x2−2bx−a] that is positive if x ≥ x̄ (see (A1)) and so, has no solution
into S5.

We assume (x , y) ∈ S6, since x y ≥ x2 and −b y
p

2
2 < −b ye−σx cosσy ,

σΓ2(x , y)> 2x2σ− π4 (d+ b
p

2) is positive if d < −b
p

2 (see (1)). Hence, there is no solution
of (A3) that belongs to S6.

Finally, the system (4) has no purely imaginary solution. If the roots of the system (4) with
null real part exist, they must be roots of the system (5)

We suppose y 6= 0 is a solution of (5), then we must have sin(σy − r y) = %(y) (see (6))).
It is clear that %(y) = −%(−y), thus we will consider only y > 0. A direct calculation shows
that 2ba y2%̇(y) = 3y4 + (d2 − b2 − 2c)y2 − (c2 − a2) and that

y0 =
�

p

[d2 − (2c + b2)]2 + 12(c2 − a2)− [d2 − (2c + b2)]
6

�
1
2
, (A6)

is a global minimum point of % on the interval (0,∞). Since

ab y2%̇(y) = ab y%(y) + y4 − (c2 − a2),

then y4
0 = (−d2 y2

0 + b2 y2
0 +2c y2

0 −a2+ c2)/3 and 3ab y0%(y0) = 2(c2−a2)+(d2−2c− b2)y2
0 ,

the inequality of (3) and the first inequality in (1) implies that %(y0) > 1. Therefore, (3) has
no purely real root on the right half complex plane. By general arguments on the compacity
of the interval [0, π4 ] and the continuity of %, we arrive at the existence of a ε0 > 0 so that
System (4) has no solution belonging to Sε0

= {(x , y) ∈ R2 : 0 ≤ x < ε0, 0 ≤ 4σy ≤ π}.
If R2

+ = {(x , y) ∈ R2, x > 0, y > 0}, the conditions (i), (ii), (iii) and x̄ < ε0 imply that

R2
+ ⊂ S ∪ Sε0

, where S =
⋃6

i=0Si (see (A2)). So, it can proven that System (4) has no
solution that lies in Cl(R2

+) and the proof of the Theorem is complete.


