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Abstract. Characterization theorems for the scale invariance property of the insurance premium calcu-
lation principles are presented. Theorems formulated in a form of necessary and sufficient conditions
for the mentioned property to be hold. Conditions are imposed on the auxiliary functions with the help
of which several methods of pricing of insurance contracts are defined. Presented theorems cover cases
of mean value, insurer equivalent/zero utility, customer equivalent/zero utility, and Swiss premium
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1. Introduction

Let us consider a random variable X representing size of the insurance compensation re-
lated to a particular insurance pact. Premium to be paid for the risk X will be denoted as
n[X].

In majority of the cases the random variable X is assumed to be a non-negative one, i.e.,
it takes vale zero if the contract will not produce a claim and will be equal to the claim size if
there will be a claim. In some case, however, negative values of variable X are also allowed;
such negative values are often interpreted as compensations which have to be paid by the
customer to the insurance company.

Let us now define several insurance premium calculation principles which we would like
to investigate.

Net premium is defined as expected value of the losses associated with the risk X, i.e.,

nnet[X] = E[X].
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Mean value premium for the risk X, which in the article will be denoted as 7, ,[X ], based

on a function v(x) € Cy(R) such that v/(x) > 0 and v(x) = 0 for x € R, is defined as a
solution to the equation

V(T [XT) = E[v(X)1. ®

Insurer equivalent utility premium for the risk X, which we denote as ;. [X], is defined
as a solution to the equation

uw)=EUuWw + ni.e.u.[X] —-X)], (2)

where W is insurer’s capital at the moment when the contract is initiated, and the function
U(x) € Cy(R) is insurer’s utility function satisfying conditions U’(x) > 0 and U”(x) < 0 for
x €R.

In some cases insurer’s utility function is selected in such a way that the value U(0) repre-
sents insurer’s utility at the moment when the contract is initiated. In such cases equation (2)
for the risk X is replaced by the equation

U(0) = E[U(m; . [X]=X)] (3)

and corresponding method of pricing of the insurance contracts is called insurer zero utility
premium calculation principle; here the premium is denoted as ; , , [X].

Customer equivalent utility premium for the risk X, which we denote as 7. ., [X], is defined
as a solution to the equation

u(w_nc.e.u.[X]) = E[u(w _X)], 4)

where w is customer’s capital at the moment when the contract is initiated, and the function
u(x) € C4(R) is customer’s utility function satisfying conditions u’(x) > 0 and u”(x) < 0 for
x €R.

In the cases when customer’s utility function is selected in such a way that the value u(0)
represents customer’s utility at the moment when the contract is initiated, equation (4) for the
risk X is replaced by the equation

u(_nc.z.u.[X]) = E[u(_X)] (5)

and corresponding method of pricing of the insurance contracts is called customer zero utility
premium calculation principle; here the premium is denoted as 7., [X].

Swiss premium for the risk X, which in the article will be denoted as 7g,;[X ], based on
a parameter A € [0,1] and a function V(x) € C,(R) such that V'(x) > 0 and V”(x) = 0 for
x € R, is defined as a solution to the equation

V((]- - A)TESwiss[Xv]) = E[V(X - ATESwiss[‘X:l):l' (6)

Observe that, in the case of A = 0, Swiss premium principle is equivalent to mean value
premium principle with v(x) := V(x).
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Observe also that, in the case of A =1, equation (6) can be rewritten as
—V(0) = E[-V(—(n[X]-X))].

Therefore, in the case of A = 1, Swiss premium principle is equivalent to insurer zero utility
premium principle with insurer’s utility function U(x) :=—V(—x).

Sometimes described methods of pricing of the insurance contracts are applied to some
special classes of risks: as an example of such a class one can mention the class of all non-
negative risks, alternatively one could mention the class of all non-negative risks bounded
from above by some fixed real value, etc. In such cases domains of the functions v(x), U(x),
u(x), and V(x) could be subsets of R such that equations (1) — (6) (here choice of the equation
depends on the chosen method of pricing) will preserve their correct mathematical meaning for
all risks from the considered class, moreover, monotonicity and concavity-convexity properties
of the functions v(x), U(x), u(x), and V(x) should also be preserved. It is interesting to see
that in the case of subjecting of the describe premium principles to pricing of some special
classes of risks, classes of the auxiliary functions defining scale invariant premiums can be
larger than in the general case. Theorems 2 and 5 as well as Corollary 3 demonstrate examples
of just such situations.

We will say that a premium calculation principle 7[X ] possesses scale invariance property
if for any admissible risk X and any positive real constant © the following equation holds

n[0X]=0en[X]. 7

More information about just defined methods of pricing of the insurance contracts as well
as properties that can be possessed by an insurance premium calculation principles can be
found, for example, in Asmussen and Albrecher [1], Boland [2], Bowers et al. [3], Bithimann
[4], Dickson [5], Gerber [6], de Vylder et al. [7], de Vylder et al. [8], Kaas et al. [9], Kremer
[10], Rolski et al. [11], Straub [12].

We would like to emphasize that the research related to theorems of characterization type
for properties possessed by certain insurance premium calculation principles was initiated by
the Swiss mathematician Hans-Ulrich Gerber, see Gerber [6]. Corresponding theorems for the
scale invariance property were still missing in the literature.

2. Mean Value Premium Principle

The following theorem describes necessary and sufficient conditions under which mean
value premium calculation principle possesses scale invariance property.

Theorem 1. Mean value premium calculation principle possesses scale invariance property if and
only if v(x) = ax+b, for a > 0, i.e., only in the case when it coincides with net premium principle.

Proof. Let us at the beginning prove the sufficiency of the statement. From equation (1) in
the case of v(x) = ax + b, for a > 0, it follows

an,  [X]+b=E[aX+Db]=aE[X]+b,
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thus
Ty [X]=E[X] = m [X].

On the other hand, again from equation (1) for any © > 0 it follows
an,,[©X]+b=E[a®X + b]=aOE[X]+b,

so we get
nm.v,[ex] = @E[X] = enm.v,[X]:

and we see that scale invariance property holds in this particular case. This completes the
proof of the sufficiency. Let us now check the necessity.

Note that, by the definition, scale invariance property for a particular premium calculation
principle holds if equation (7) holds for any admissible risk X.

To show that mean value premium calculation principle with non-linear functions v(x) will
not possess scale invariance property, we will consider a risk X which takes only two possible
values namely 0 and t with probabilities 1 — p and p respectively. The risk X in this case can
be viewed as a random function of two parameters, namely p and ¢, and therefore within the
proof of Theorem 1 will be denoted as X ;.

For the described risk X ;, equation (1) will take the following form

V(g [X4]) = py(6) + (1 - p)¥(0). ®
Substituting p = 0 into (8), obtain
V(7 [X]) = v(0). C)
Since the function v(-) is a strictly increasing function, then from the equation (9) it follows
Tm[Xo] = 0. (10)

Let us now calculate partial derivatives with respect to the parameter p from both sides of the
equation (8)

V(K1) T [XE] = ¥(6) = ¥(O). an
ap p
Substitution of the value p = 0 into (11) yields
/ t a t
v (ﬂ:m.v.[Xo]) : _nm.v.[X ] =v(t)—v(0). 12)
ap P p:O

Since the function v(-) is a strictly increasing function, then v’(0) > 0. Therefore, taking
into account identity (10) we get from (12) a representation for the partial derivative of the
premium with respect to the parameter p at the point p = 0, namely,

v(t)—v(0)

== W (13)

d

t
%nm.v. [Xp]

p=0
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For any © > 0 equation (1) for the risk ©X ; in the case of scale invariant mean value
principle will have the following form

v(Omy, [X,]) = pv(61) + (1 —p)v(0). (14)

Taking partial derivatives with respect to the parameter p from both sides of the equation (14),
obtain

V(O [X])- € 21 [X] = ¥(©0) v (0). (15)
ap P
Substituting p = 0 into (15), using identity (10) as well as inequality v/(0) > 0, we again get
a representation for the partial derivative of the premium with respect to the parameter p at
the point p = 0, namely,
o _v(0t)—v(0)

_nm.V.[X;] V/(O)-@

p (16)

p=0

Observe that equations (13) and (16) have equal left-hand sides, this means that their
right-hand sides also have to be equal. In this way we finally get an equation which function
v(-) has to satisfy in the case of scale invariant mean value premium calculation principle,

1 ]
namey v(t)—v(0) v(©t)—v(0)

= . 1
v/(0) v/(0)-© a7
Equation (17) can be simplified to the following one
v(0t)—v(0) =0 - (v(t)—v(0)). (18)

Calculating partial derivatives with respect to the parameter t from both sides of the equation
(18), we get
ev'(et)=6ev'(t)

or equivalently, after cancelation of © factor,
vi(et)=v'(t). (19)

By fixing the parameter t in equation (19) to a positive value and varying values of the pa-
rameter © we will make v'(©t) a function of changing variable defined on R, while the value
v/(t) will be fixed to a constant. By doing this we will see that the function v’(x) will take for
all x > 0 one and the same value, let us denote this value by a;. In a very similar way, by fixing
the parameter t in equation (19) to a negative value and varying values of the parameter ©
we will make v/(©t) a function of changing variable defined on R_ while the value v/(t) will
be fixed to a constant. In this way we will see that the function v’(x) will take for all x < 0
one and the same value, let us denote this value by a,. Since the function v(x) was twice
differentiable, then the function v/(x) must be continuous, this yields

a; =a,=v'(0)=:q,
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hence
v/(x) = a, for x € R.

Integrating function v/(x), we get
v(x)=ax + b, for a constant b,

Initial assumption of positivity of first derivative of the function v(x) gives us additional re-
striction on parameter a: parameter a must be a strictly positive constant. This completes the
proof of Theorem 1. O

From the proof of Theorem 1 it follows that v(x) = ax + b, for a > 0, is the only case when
mean value premium calculation principle coincides with net premium principle. Indeed, let
us assume that for some function v(x), different from the linear function, mean value pre-
mium calculation principle will be equivalent to net premium principle. Then, due to linearity
property of the expectation, such method of pricing must be scale invariant, however, in the
proof of Theorem 1 was shown that mean value premium calculation principle possesses scale
invariance property if and only if v(x) = ax + b, for a > 0, so we come to a contradiction.

Using similar argumentations one can conclude that: U(x) = ax + b, for a > 0, is the
only case when insurer’s equivalent/zero utility premium calculation principle coincides with
net premium principle (see Theorem 3); u(x) = ax + b, for a > 0, is the only case when
customer’s equivalent/zero utility premium calculation principle coincides with net premium
principle (see Theorem 4); and V(x) = ax+b, for a > 0, is the only case when Swiss premium
calculation principle coincides with net premium principle (see Theorem 6).

As was already mentioned, in the case when mean value premium principle is applied to
a special class of risks, it is enough to define the function v(x) on a subset A C R preserving
monotonicity and convexity properties, i.e., v(x) must be such that v'(x) > 0 and v/(x) = 0
for all x € A, and, moreover, equation (1) must preserve its correct mathematical meaning for
all risks from the mentioned class. It is interesting to see that in the case of subjecting of mean
value principle to pricing of only strictly positive risks, the class of functions v(x) producing
scale invariant premiums is larger than in the general case. We believe that this observation
deserves to be formulated in a form of theorem.

Theorem 2. Mean value premium calculation principle subjected to consideration of only strictly
positive risks possesses scale invariance property if and only if v(x) = ax* + b, for a > 0 and
K > 1, defined for x € (0, +00).

Observe that for the function v(x) = ax® + b with a > 0 and k > 1 condition v/(x) > 0
violates at the point x = 0, therefore, statement of Theorem 2 does not contradict statement
of Theorem 1.

Proof. Since in the case of strictly positive risk X we get E[X ] > 0, then, combining Jensen
inequality

v(E[X]) < E[v(X)]

with definition equation (1), we see that mean value premium calculation principle will be
well-defined if the function v(x) will be defined just for x € (0,+00) with preservation of
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monotonicity and convexity assumptions, i.e., the function v(x) must be defined on (0, +o0)
such that v/(x) > 0 and v’(x) > 0 for all x € (0, +00).

Let us from the beginning prove the sufficiency of the statement. Indeed in the case of
v(x) = ax® + b, with a > 0 and k > 1, for any strictly positive risk X equation (1) will have
the following form

a(my, [ XD+ b=E[aX*+b]=aE[X"]+ D,

therefore, in the considered case
T [X] = (E[X*DY*.

On the other hand, for the same function v(x), the same risk X, and any © > 0, from equation
(1) it follows
a(mt, [OX])*+b=E[a(0X)" +b]=aO"E[X"]+b

so, here we get
ﬂ:m.v.[@X] = @(E[XK])UK = enm.V.[X]:

and as we see, mean value premium calculation principle subjected to consideration of only
strictly positive risks possesses scale invariance property in the case of v(x) = ax® + b, for
a > 0 and k > 1, defined for x € (0, +00).

Let us now switch to the statement of the necessity. In order to show that mean value
premium calculation principle subjected to consideration of only strictly positive risks with all
other types of function v(x) will not possess scale invariance property, we will consider a risk X
taking values € > 0 and 1 with probabilities p and 1— p respectively. Being a random function
of the parameters ¢ and p, the risk X within the proof of Theorem 2 will be denoted as X ;.

For the described risk X ; equation (1) will have the following form

V(1o [X) 1) = pv(e) + (1 —p)v(D). (20
From the equation (20) it follows
V(nu[XgD) =0-v(e) +1-v(1),
moreover, since v(x) is a strictly increasing function, then
nm_“[Xg] =1. 21)

Calculating partial derivatives with respect to the parameter p from both sides of the equa-
tion (20), obtain

V(s XD 5T [X1 = ¥(e) (1), (22)

Substituting p = 0 into equation (22), we get

VD oK) = vie) (D) (23)
p=0
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Using (21) equation (23) can be rewritten as

V) S]] = (e =) (24)
p=0

Let us now calculate partial derivatives with respect to the parameter p from both sides of
the equation (22)

2

a £
)2 InV.[Xp]:O- (25)

2
nm.v.[xg]) H XD o5

V(T [X2])- (j—p

Substituting p = 0 into the equation (25), and using identity (21), obtain

2
/ 92 ¢
p:()) +v (1) . (an-v-[xp] pzo) =0. (26)

Taking ¢ small enough, namely ¢ < 1, and taking into account strict monotonicity of the
function v(x), without of loss of generality, using (24), we may conclude that

v7(1)- ( Ty [ X ]
ap

d

p=0
2
) . (28)
p=0

d €
p:0>/ ( %nm,v.[xp]

For any © > 0, equation (1) for the risk @X; will take the following form

M [XC]

hence, equation (26) can be rewritten as

V”(l) ( 32 [X ]

v -\ @pr ™

V(T [OXE]) = py(©6) + (1 - p)¥(O). (29)
In the case of scale invariant mean value premium principle equation (29) can be rewritten as
V(O [X5]) = py(©¢) + (1— p)v(O). (30)

Calculating second partial derivative with respect to p from both sides of the equation (30),
obtain

2
(@p)

Substituting p = 0 into the equation (31), canceling © factor, and using identity (21), we

get
2 / 52
p:o) +v (@) ' ( (ap)z ﬂ:m.v.[Xp] pzo)

2
v//(@ﬂ:m.v.[xg]) : 92 : (aa—pﬁmv[X;]) + v/(eﬂ:m.v.[X;]) : A2 mv[X ] 0. (31)

v'(8)-©- (inm.v,[xg ] 0. (32)

op
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Since v/(©) > 0, then using relation (27), equation (32) can be rewritten as

1/ 2
mz_( 92 )/(inmm ) 33)
p=0 ap P p=0

T
v'(©) (@p» ™"

Observe that equations (28) and (33) have equal right-hand sides, this means that their
left-hand sides also have to be equal, in this way we finally get an equation which the function
v(x) has to satisfy in the case of scale invariant mean value premium calculation principle
subjected to consideration of only strictly positive risks, namely,

V(©)-0  v'(1)
v(©e)  v(1)’

[x¢]

for all © > 0. (34)

Assigning v”/(1)/v/(1) =: x (since v/(1) = 0 and v'(1) > 0 then x > 0) and making

substitution z(©) := v/(©) equation (34) can be rewritten in the following equivalent form
dz do
— X_,

p4 (S

therefore
log(2(©®)) = xlog(®) +1og(C;), for some constant C; > 0,

and the function z(©) itself will have a form
2(©) = C,0*.

Switching back to the function v/(+), and switching to the original parameter x € (0, +00),
obtain
v/(x) = Cyx*.

Taking antiderivative, we get
Cl x+1
v(x)=——x + Cs,
(x) x+1 2
therefore, the function v(x) must be a function of the form

v(x) = ax® + b, for some real constants a, b, and «.

Moreover, since C; > 0 and x > 0 then a > 0, and since x > 0 then k > 1.
This completes the proof of Theorem 2. O

3. Insurer Equivalent Utility Premium Principle

Conditions under which scale invariance property will be satisfied by insurer equivalent
utility premium calculation principle are described by the following theorem.

Theorem 3. Insurer equivalent utility premium calculation principle possesses scale invariance
property if and only if U(x) = ax + b, for a > 0, i.e., only in the case when it coincides with net
premium principle.
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Proof. We start from the sufficiency. In the case of U(x) = ax + b, for a > 0, and any initial
capital W, from the equation (2) it follows

aW +b=E[aW +am;.,[X]—aX +b]=aW +am;.,[X]—aE[X]+ D,

thus
ni.e.u.[X] =E[X]= ﬂ:net[X]-

From the equation (2), for any © > 0, any initial capital W, and the same utility function,
it follows

aW +b=E[aW +am; ., [0X]—a®X +b]=aW +am;.,[©X]—aOE[X]+ Db,

hence
7Ti.e.u.[@X:I = @E[X] = eni.e.u.[X]:

and we see that scale invariance property holds in this particular case.

The proof of sufficiency was completed, so we switch to the necessity.

To show that insurer equivalent utility premium calculation principle with non-linear in-
surer’s utility function U(x) will not possess scale invariance property, we will choose a risk
X which takes only two possible values, namely, 0 and t with probabilities 1 — p and p re-
spectively. The risk X can in this case be considered as a random function of two parameters,
namely p and t, and, therefore, within the proof of Theorem 3 it will be denoted by X ;.

For any insurer’s initial capital W, equivalent utility equation (2) for the risk X ; will take
the following form

U(W) = U(W + ni.e.u.[X;] - t) ‘p+ U(W + ﬂ:i.e.u.[X;]) : (1 —P) (35)
Substituting p = 1 into equation (35), we get

UMW) =UW + 7o [X]1— ) - 1+ UW + mie o [X1]) - 0

(36)
:U(W + Tieu [X{] - t)-
Since U(x) is a strictly increasing function, then identity (36) yields
ﬂ:i.e.u.[X{] =t. (37)
Taking partial derivative with respect to p from both sides of the equation (35), obtain
d
0 :U/(W + ni.e.u.[X;] - t) : a_ni.e.u.[X;] ‘p+ U(W + ni.e.u.[X;] - t)
i (38)
+ U/(W + 7T1.e.u.[X£]) : a_ni.e.u.[Xé] ' (1 _p) - U(W + Tci.e.u.[Xlg])
p
Substituting p = 1 into the equation (38), and using identity (37), obtain an equation
/ 9 ¢
UW) | Z=mieulX,] =UW +t)—-UW). (39)
ap p=1
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Since we a searching for the conditions when the premium calculation principle will be
scale invariant, then for any insurer’s initial capital W, and any positive constant ©, insurer’s
equivalent utility equation (2) for the risk ©X ; can be written in the following way

U(W) = U(W + @ni.e.u.[Xlg] - @t) ‘p+ U(W + @ﬁi.e.u.[X;]) : (1 —P)- (40)

Calculating partial derivatives with respect to p from both sides of equation (40), obtain

d
0 =U/(W + @ﬂ:i.e.u.[X;] —@t) CE %ﬂ:i.e.u.[xlt,] ‘Dt U(W + @ni.e,u,[X;] - @t)

(41)
d
+ U/(W + eni.e.u.[XIt,D ‘0 %ni.e.u.[xé] . (1 _p) - U(W + @Tci.e.u.[X;])-
Substituting p = 1 into the equation (41), and using identity (37), we get an equation
/ a t
uw)-e- a—ﬂi.e.u.[Xp] =UW +et)—-U(Ww). (42)
p p:]_
Since © > 0, then equation (42) can be rewritten as
o uw+et)-uw
oWy [ Lr, x| | = LW EOOZUMY) (43)
ap .eu. p p:1 @

Observe that equations (39) and (43) have equal left-hand sides, hence their right-hand sides
also have to be equal; this finally gives us an equation which insurer’s utility function has to
satisfy for the premium calculation principle to be scale invariant, namely

uw+et)—uw)

UW+t)-UW) = 5 (44)
Taking partial derivatives with respect to parameter t from both sides of (44) yields
U'(W+1t)=U'(W +6t). (45)

By fixing values of the parameters W and t, and changing values of the parameter 6, we will
make U’(W + ©t) a function of changing variable while the value U’'(W + t) will be a fixed
constant. Using this technique and taking into account monotonicity of function U(-) and
continuity of function U’(-), since U(-) € C,(R), using equation (45) we conclude that

U'(x)=a>0, for x €R.

Integration yields
U(x)=ax+ b, for x € R, and constant a > 0.

Let us give also a geometrical interpretation showing that non-linear insurer’s utility func-
tions will not satisfy equation (44). Let us consider two triangles: the first one will be formed
by the points (W, U(W)), (W +t,U(W)), (W +t,U(W +t)) and the second one will be formed
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by the points (W, U(W)), (W +Ot,U(W)), (W +©t,U(W + ©Ot)). Observe that both triangles
are right-angled triangles, they have a common vertex at the point (W, U(W)), and, moreover,
the points (W, U(W)), (W +t,U(W)), and (W + ©t, U(W)) lie on the same straight line. With
out of loss of generality equation (44) can be rewritten in the following way

UW+t)—UW) _ UW +0t)—UW)
W+t)—w — (W+0t)—W

(46)

Geometrically, equation (46) can be interpreted as follows: ratio of the catheti in one of the
triangles is equal to ratio of the catheti in the other triangle, hence our two considered triangles
are similar triangles. Due to the common vertex, catheti which lie on a common straight line,
and the vertexes which lie on the same half plane with respect to the mentioned line, we
conclude that the hypotenuses will also lie on a common straight line; in other words, the
points (W + ©t, U(W + ©t)), for any initial capital W, all non-zero t, and all © > 0, will form
a straight line. So, we can conclude that insurer’s utility function U(x) is a linear function,
i.e., a function of the form U(x) = ax + b. Initial assumption of positivity of first derivative of
the function U(x) gives us additional restriction on the parameter a: parameter a must be a
strictly positive constant. This completes the proof of Theorem 3. O

Since initial capital used in the proof of Theorem 3 was chosen arbitrary and no additional
restrictions on insurer’s initial capital were involved, then we can formulate the following
corollary to Theorem 3.

Corollary 1. Insurer zero utility premium calculation principle possesses scale invariance property
if and only if U(x) = ax + b, for a > 0, i.e., only in the case when it coincides with net premium
principle.

Observe that analog of Theorems 2 and 5 does not exist for insurer equivalent/zero utility

premium calculation principle.

4. Customer Equivalent Utility Premium Principle

The following theorem describes conditions under which scale invariance property will be
satisfied by customer equivalent utility premium calculation principle.

Theorem 4. Customer equivalent utility premium calculation principle possesses scale invariance
property if and only if u(x) = ax + b, for a > 0, i.e., only in the case when it coincides with net
premium principle.

Proof. We begin again from the sufficiency. From the definition equation (4), for
u(x) = ax + b with a > 0, and any initial capital w, it follows

aw—am.. [X]+b=Elaw—aX+b]=aw—aE[X]+ b,

hence
Teeu. [X]=E[X]= nnet[X]-
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On the other hand, from the equation (4), for any © > 0, any initial capital w, and the
same utility function, it follows

AW — AT ey [©X]+ b =Elaw—aO®X +b]=aw—aOE[X]+ D,

thus
ch.e.u.[eX] = @E[X] = enc.e.u.[x]:

and we see that scale invariance property holds in this particular case.

The proof of the sufficiency was finished, so we can start to prove the necessity.

To show that customer equivalent utility premium calculation principle with non-linear
customer utility function u(x) will not possess scale invariance property, we will choose a
risk X which takes only two possible values, namely 0 and t with probabilities 1 —p and p
respectively. The risk X can in this case be considered as a random function of two parameters,
namely p and ¢, and, therefore, within the proof of Theorem 4 it will be denoted as X ;.

For any customer’s initial capital w, customer’s equivalent utility equation (4) for the risk
X ; will take the following form

(e = Teon [X]) = u(w— 1) p+u(w) - (1-p). 47)
Substituting p = 0 into the equation (47), obtain
u(w = Meen [Xo]) = u(w). (48)
Since u(x) is a strictly increasing function, then the equation (48) yields
Teen[Xo] =0. (49)

Let us now take partial derivatives with respect to p from both sides of the equation (47)
%,
_u/(w — Tceu. [X;]) "S- Tceun. [Xt] = u(w - t) - u(w)- (50)
op 4

Substituting p = 0 into the equation (50) and using identity (49), we get

—u’(w)-(inc.e.u.[X;] ) =u(w—t)—u(w). (51)

op

p=0

Since we are searching for the conditions when the premium calculation principle will be
scale invariant, then for any customer’s initial capital w and any positive constant ©, customer’s
equivalent utility equation (4) for the risk ©X ; can be written in the following way

u(w—=0mcen[X,)=u(w—06t) p+u(w) (1-p). (52)

We are now taking partial derivative with respect to p from both sides of the equation (52)

d

_u/(w - nc.e.u.[X;]) CA %ch.e.u.[X;] = u(w - @t) - u(a))- (53)
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Substituting p = 0 into the equation (53), and using identity (49), we get

—u'(w)-©- (inc.e.u.[X;] ) =u(w—0t)—u(w). (54)

op

p=0

Since © > 0, then the equation (54) can be rewritten as follows

) _ u(w—61t) —u(w)
p=0 .

(55)

_u/(w) ' ( iﬂ:c.e.u. [Xt] o

ap p

Observe that equations (51) and (55) have equal left-hand sides, this means that their
right-hand sides also have to be equal, and we finally get an equation which customer’s utility
function u(x) has to satisfy for the premium calculation principle to be scale invariant, namely

u(w—0t)—u(w)
o .

ww—t)—u(w)= (56)

Taking partial derivatives with respect to the parameter t from both sides of (56), we get
U(w—t)=u'(w—Ot). (57)

By fixing values of the parameters w and t, and changing values of the parameter ©, we will
make u’(w — ©t) a function of changing variable while the value u’(w — t) will be a fixed
constant. Using this technique and taking into account monotonicity of function u(-) and
continuity of function u’(+), since u(-) € C,(R), using the equation (57) we may conclude that

u'(x)=a>0, for x €R.

Integration yields
u(x)=ax+b, for x € R, and constant a > 0.

Let us give also a geometrical interpretation showing that non-linear customer utility func-
tions will not satisfy equation (56). Let us consider two triangles: the first one will be formed
by the points (w — t,u(w —t)), (w,u(w —t)), (w,u(w)) and the second one will be formed
by the points (w—Ot,u(w — Ot)), (w,u(w—0t)), (w,u(w)). Observe that both triangles are
right-angled triangles, they have a common vertex at the point (w,u(w)), and, moreover, the
points (w, u(w)), (w,u(w —t)), and (w, u(w — Ot)) lie on the same straight line. With out of
loss of generality equation (56) can be rewritten in the following way

u(w)—u(w—t)  u(w)—u(w—06t)
w—(w—1t)  w—(w—6t)

(58)

Geometrically, equation (58) can be interpreted as follows: ratio of the catheti in one of the
triangles is equal to ratio of the catheti in the other triangle, and hence our two considered
triangles are similar triangles. Due to the common vertex, catheti which lie on a common
straight line, and vertexes which lie on the same half plane with respect to the mentioned
line, we conclude that hypotenuses will also lie on a common straight line; in other words, the
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points (w — Ot,u(w — Ot)), for any initial capital w, any non-zero t, and every © > 0, will
form a straight line. So, we can conclude that the customer’s utility function u(x) is a linear
function, i.e., a function of the form u(x) = ax + b. Initial assumption of positivity of first
derivative of the function u(x) gives us additional restriction on the parameter a: parameter
a must be a strictly positive constant. This completes the proof of Theorem 4. O

Since initial capital used in the proof of Theorem 4 was chosen arbitrary and no restrictions
on customer’s initial capital were imposed, then we can formulate the following corollary to
Theorem 4.

Corollary 2. Customer zero utility premium calculation principle possesses scale invariance prop-
erty ifand only if u(x) = ax+Db, for a > 0, i.e., only in the case when it coincides with net premium
principle.

In the case when customer zero utility premium calculation principle is applied to a special
class of risks, it is enough to define the utility function u(x) on a subset A C R preserving
monotonicity and concavity properties, i.e., u(x) must be such that u’(x) > 0 and u”/(x) <0
for all x € A, and, moreover, equation (5) must preserve its correct mathematical meaning
for all risks from the mentioned class. It is interesting to see that in the case of subjecting of
customer zero utility premium calculation principle to pricing of only strictly positive risks the
class of the functions u(x) producing scale invariant premiums is larger than in the general
case. We believe that this observation deserves to be formulated in a form of theorem.

The following theorem is valid only for customer zero utility principle and not for customer
equivalent utility principle.

Theorem 5. Customer zero utility premium calculation principle subjected to consideration of
only strictly positive risks possesses scale invariance property if and only if u(x) = —a(—x)* + b,
for a> 0 and k = 1, defined for x € (—00,0).

Observe that for the function u(x) = —a(—x)*+b with a > 0 and k > 1 condition u’(x) > 0
violates at the point x = 0, therefore, statement of Theorem 5 does not contradict statement
of Theorem 4.

Proof. Since in the case of strictly positive risk X we get E[X ] > 0, then, combining Jensen
inequality

u(—E[X]) = E[u(—=X)]

with definition equation (5), we see that customer zero utility premium calculation principle
will be well-defined if the function u(x) will be defined just for x € (—oo, 0) with preservation
of monotonicity and concavity assumptions, i.e., the function u(x) must be defined on (—o0, 0)
such that u’(x) > 0 and u”(x) < 0 for all x € (—o0,0).

Let us at the beginning prove the sufficiency of the statement. Indeed in the case of
u(x) = —a(—x)* + b, with a > 0 and x > 1, for any strictly positive risk X equation (5) will
have the following form

—a(7e 0 [X])" +b=E[—aX" + b] =—aE[X"] + b,
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therefore, in the considered case
_ Kk1\1/x
Tezu[X]= (E[X*])VF.

On the other hand, for the same function u(x), the same risk X, and any © > 0, from the
equation (5) it follows

—a(7., [©X])* + b =E[—a(0X)* +b]=—aO E[X"]+b
so, here we get
nc.z.u.[@X] = e(E[XK])l/K = enc.z.u.[X]:

and as we see, customer zero utility premium calculation principle subjected to consideration
of only strictly positive risks possesses scale invariance property in the case of
u(x)=—a(—x)*+ b, for a > 0 and x > 1, defined for x € (—o0, 0).

Let us now switch to the statement of the necessity. In order to show that customer zero
utility premium calculation principle subjected to consideration of only strictly positive risks
with all other types of function u(x) will not possess scale invariance property, we will consider
a risk X taking values € > 0 and 1 with probabilities p and 1 —p respectively. Being a random
function of the parameters ¢ and p, the risk X within the proof of Theorem 5 will be denoted
as X°.

For the described risk X; definition equation (5) will have the following form

u(=re,u [Xp) =u(=¢)-p+u(=1)-(1—p). (59
From the equation (59) it follows
u(—"e 0 [Xo D) = u(=1),
moreover, since u(x) is a strictly increasing function, then
Tezu[Xg]=1. (60)

Calculating partial derivatives with respect to the parameter p from both sides of the equa-
tion (59), obtain

e[ 5 e X)) = () (D) (61)

Substituting p = 0 into the equation (61), obtain

=u(—e)—u(-1). (62)
p=0

)
_u/(_nc.z.u. [XS]) : % Tezu. [X;]
Using (60), equation (62) can be rewritten in the following way

=u(—¢)—u(-1). (63)

(1) L, X
dp p=0
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Let us now calculate partial derivatives with respect to the parameter p from both sides of
the equation (61)

32
(dp)?

Substituting p = 0 into the equation (64), and using identity (60), obtain

2
/ 0 e _
pzo) —u (_1) : (Wﬂ-c.z.u.[xp] pzo) =0. (65)

Taking ¢ small enough, namely ¢ < 1, and taking into account strict monotonicity of the
function u(x), without of loss of generality, using (63), we may conclude that

9
op

2
( Tezu. [X E]) ( Tezu. [X ]) _u/(_ﬂ:c.z.u.[X;]) : 7Tc.z.u.l:X;] =0. (64)

//( 1) ( CZU[XE]

ﬂ’-C.Z.u. [X; :I

#0, (66)
and hence, the equation (65) can be rewritten in the following way

p=0
D _ (2 X o ml ) 67)
w(—1) (@p )2 Tezu. =0 ap czuldp oo .

For any © > 0, definition equation (5) for the risk ©X ; will take the following form

u(—Tezu [0X]]) =u(—0¢) - p +u(-0)-(1—p). (68)

In the case of scale invariant customer zero utility premium principle equation (68) can be
rewritten in the following way

u(_@nc.z.u.[X;]) = u(—@g) ‘pt u(_®) : (1 —P) (69)

Calculating second partial derivatives with respect to p from both sides of the equation
(69), obtain

2
o}
7" € 2 €
u (_@nc.z.u.[Xp]) -7 (3p nc.z.u.[Xp])

(70)
/ 3* e
—u (_enc.z.u [ ]) ©- (8 )2 cz.u.[Xp] =0.
Substituting p = 0 into the equation (70), canceling © factor, and using identity (60), we
get
5 2 52
u”(—@) ‘O S Tezu. [X;] - u/(_@) : —Zﬂ:c.z.u. [X;] =0. (71)
ap p=0 (dp) p=0
Since u’(—®) > 0, then using relation (66), equation (71) can be rewritten in the following
way
ll//(_@) e . 82 p [Xg] iTC [XS] ’ (72)
u/(_e) - (ap)z c.z.u. p p=0 ap C.Z.U. p p=0 .
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Observe that equations (67) and (72) have equal right-hand sides, this means that their
left-hand sides also have to be equal, in this way we finally get an equation which the function
u(x) has to satisfy in the case of scale invariant customer zero utility premium calculation
principle subjected to consideration of only strictly positive risks, namely,

u"(-@)-0  u"(-1)
W(=0)  uw(-1)’

for all © > 0. (73)

Assigning —u’/(—1)/u’(—1) =: x (since u”(—1) < 0 and u’(—1) > 0 then x > 0) and

making substitution z(©) := u’(—©) equation (73) can be rewritten in the following equivalent

form
dz de

_:x_’

b4 ©
therefore
log(2(©)) = xlog(®) +1og(C;), for some constant C; > 0,

and the function z(©) itself will have a form
2(©) = C,0".
Switching back to the function u’(—®), obtain
u'(—e) = C,6*. (74)

Switching back to the original parameter x € (—oo,0) representation (74) can be rewritten
in the following way
u'(x) = Cy(—x)*.

Taking antiderivative, obtain

Cl x+1
u(x)=-— —X + Cy,
(x) x+1( ) 2

therefore the function u(x) must be a function of the form
u(x) = —a(—x)* + b, for some real constants a, b, and «.

Moreover, since C; > 0 and x > 0 then a > 0, and since x > 0 then k > 1.
This completes the proof of Theorem 5. O

5. Swiss Premium Principle

The following theorem describes conditions of attainment of scale invariance property by
Swiss insurance premium calculation principle.

Theorem 6. For any A € [0, 1], Swiss premium calculation principle possesses scale invariance
property if and only if V(x) = ax + b, for a > 0, i.e., only in the case when it coincides with net
premium principle.
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Proof. Let us at the beginning prove the sufficiency of the statement. From definition
equation (6) for any risk X, any A € [0, 1], and function V(x) = ax + b, for a > 0, it follows

a(l - A)TESwissl:)(:l +b= E[a(X - A/]TSWiss[‘X]) + b] = (lE[X] - aAnSwiss[X] + b)

so, here we get
nSwiss[X] =E[X]= nnet[X]-

On the other hand, for the same risk X, any A € [0, 1], the same function V(x), and any
© > 0 from definition equation (6) it follows

a(l - A)TESwiss[@‘X] +b= E[a(G)X - ATCSwiss':@Xv]) + b] = aG)E[X] - aATCSwiss[GX] + b,
therefore, in the considered case,
TESwiss[@X] = @E[X] = enSwiss[X],

and as we see, Swiss premium calculation principle possesses scale invariance property in the
case of increasing linear function V(x).

The proof of the sufficiency was finished, so we can start to prove the necessity.

In order to show that Swiss premium calculation principle with non-linear functions V (x)
will not possess scale invariance property let us consider a risk X taking value t (here parameter
t takes non-zero real values) and 0 with probabilities p and 1—p respectively. Being a random
function of the parameters p and t the risk X within the proof of Theorem 6 will be denoted
as X',

Observe that Swiss premium calculation principle is invariant with respect to linear trans-
formations of the function V(x), i.e., principle based on a function V(x) and principle based
on the function V(x) := I,V (x) +L,, for [; > 0, will produce the same premiums for the same
risks. Here condition [; > 0 is imposed because otherwise the assumption of positivity of first
derivative of the function V (x) will vanish.

In order to simplify the computations, we will first obtain all possible representations (in
the case when Swiss premium calculation principle is scale invariant) for the scaled function
V(x) with

l;=1/V’(0) and 1,=-V(0)/V’(0),

and then we will switch back to the original function V(x).
Observe that the just defined function V(x) satisfies the following boundary conditions

V(0)=0, and V'(0) = 1. (75)

Definition equation (6) based on the function V (x) for the risk X; and A €[0, 1] will take
the following form

V((l - A)TCSWiSS[X;]) = V(t - ATESwiss[)(Il;])p + V(_AnSwiss[X;])(]- _p)- (76)
Putting p = 0 into the equation (76), obtain

V(1= A)Tgyiss [ X5 D) = V(= ATgiss[X5 D). (77)
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Since V/(x) > 0 for all x, then from the equation (77) it follows

(1 - A)ﬂ:Swiss[X(t)] = _AnSwiss[Xé]:
which yields
7-‘:Swissl:X(g] =0. (78)

Let us calculate partial derivatives with respect to p from both sides of the equation (76)

— o
14 ((1 - A)”Swiss[xlg]) ' (1 - A) ' %TESWiSS[X;]

=V(t - Aﬂ:Swissl:X;]) _V(_ATCSWiss[X;])
— 0 (79)
—A-V (t _AnSwiss[X‘,;t,]) : %TESwiss[X;] D
)

—A- V/(_AnSwiss[X;]) ' a_nSwiss[X;] : (1 _p)-
p

Putting p = 0 into the equation (79), we get

— 7}
4 ((1 - A)TCSwissl:X(t):l) . (1 - A) . a_nSwiss[X;]

:V(t - Aﬂ:Swiss [X(t)]) - V(_AT[Swiss [X(t)]) (80)

— )
—A-V (_AnSwiss[X(t)]) : %nSwiss[X;]

p=0
Combination of (80) and (78) yields

(81)

— d
14 (0)'(1_A)' %nSwiss[X;] P

— V() —T(0)—A-V(0)- ;—pn3wiss[xf]

p=0 p=0
Substituting boundary conditions V(0) = 0 and V/(O) =1 into the equation (81) we obtain a
representation for the partial derivative with respect to the parameter p of the premium at the
point p = 0, namely,

d

p=0

TCSwiss [X ; ]

On the other hand, equation (6) for the risk @X; based on V(x) for any © > 0 and any
A €[0, 1], will have the following form

V((]- - A)TCSWiSS[@X;]) = V(t@ - Ali-l:Swissl:@AXIg:l) P +V(_A7T8Wiss[exlg]) ' (1 —P) (83)

Since in the case of scale invariant Swiss premium calculation principle for any © > 0 the
following identity must hold

TCSwiss[@X;] = enSwiss[X; ]:
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then, in the case of scale invariant Swiss principle, equation (83) can be rewritten in the
following equivalent form

V((l - A)enSwiss[Xlg]) = V(t@ - A@TfsmSS[X;]) P +V(_A®nSWiSS[X£]) : (1 —P)- (84)

Let us now calculate partial derivatives with respect to the parameter p from both sides of
the equation (84)

— ‘ g f
V(1= A0l X, D+ (1= A)- 0 Z- Trsiss X, ]

=V (Ot — ABTgyis[X ;1) — V(—AOTgyiss[X 1)

— i O , (85)
—A-0-V (@t _A@TESwiss[Xp]) : a_nSwiss[Xp] P
p
— d
— A0V (—AOmg i [XL]) - 35 Pl X1-(1=p).

Substituting p = 0 into the equation (85) and applying identities (78) and (82), obtain
V'(0)-(1—A)-0-V(t)=V(t0)—V(0)—A-0-V'(0)- V(¢). (86)

Using boundary conditions V(0) = 0 and V/(O) =1 equation (86) will be simplified to the
following one

V(t®) = 0V(t). 87)

Taking partial derivatives with respect to the parameter t from both sides of the equation
(87), obtain _, _, _, _,

OV (0t) = OV (t), or equivalently, V (0t) =V (t). (88)

By fixing value of the parameter t in (88) to a constant from R \ {0} and varying values of

the parameter © we will make V’(e t) a function of changing parameter while the value V/(t)

will be fixed to a constant. Taking into account this fact as well as continuity of function V/(-)

(which follows from differentiability) and using boundary condition V/(O) = 1 we conclude
that _,
V(x)=1, for x €R.

Taking antiderivative of the function V/(x) and using boundary condition V(0) = 0 we
find the admissible representation for the function V(x), namely,

V(x)=x, for x €R.
Switching back to the original function V(x) obtain
V(x)=ax+ b, for x € R, and some real constants a and b.

Initial assumption concerning positivity of first derivative of the function V(x) gives us
additional restriction on the parameter a, namely, parameter a must be a strictly positive
constant. ]

Since, in the case of A = 0, Swiss premium principle entirely coincides with mean value
premium principle then we can formulate the following corollary to Theorem 2.
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Corollary 3. In the case of A = 0, Swiss premium calculation principle subjected to consideration
of only strictly positive risks possesses scale invariance property if and only if V(x) = ax* + b, for
a > 0 and k = 1, defined for x € (0, +00).
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