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Abstract. In this paper, we focus on the solution procedure of the Multi-Objective Linear Transportation
Problem (MOLTP) with fuzzy parameters, i.e. fuzzy cost coefficients, fuzzy supply quantities and fuzzy
demand quantities. Because of several linear objectives and its fuzzy parameters, this transportation
problem is very complicated and also due to the fuzziness in the costs this problem has non-linear
structure. To overcome these difficulties, we gave an approach with three stages. By using linear
solution techniques, our approach generates compromise solutions which are both compensatory and
Pareto-optimal. In the first stage, the fuzziness in supply and demand quantities is eliminated by using
Zimmermann’s “min” operator to satisfy the balance condition. In the second stage, breaking points
(i.e. the values of cost-satisfaction parameters that changed the optimal solution) and cost-satisfaction
interval sets are obtained for each objective. In the third stage, considering cost- satisfaction interval
sets of all objectives, an overall cost-satisfaction interval set is determined. And then for each member
of this set, our approach generates compensatory compromise Pareto-optimal solutions using Werner’s
µand operator. To our knowledge, combining compensatory (µand) operator with MOLTP has not been
published up to now. An illustrative numerical example is given to explain our approach.
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1. Introduction

The classical transportation problem is a special type of linear programming problem and it

has wide practical applications in manpower planning, personnel allocation, inventory control,

production planning, etc. The parameters of the transportation problem are unit costs (or
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profits), supply and demand quantities. The unit cost ci j is the coefficient of the objective

function and it could represent transportation cost, delivery time, number of goods transported

unfulfilled demand, and many others. Thus multiple objectives may exist concurrently which

lead to the research work on multi-objective transportation problems (MOTP). Also in practice,

the parameters of MOTP are not always exactly known and stable. This imprecision may

follow from the lack of exact information, changeable economic conditions, etc. A frequently

used way of expressing the imprecision is to use the fuzzy numbers. It enables us to consider

tolerances for the model parameters in a more natural and direct way. Therefore, MOTP with

fuzzy parameters seems to be more realistic and reliable.

A lot of researches have been conducted on MOTP with fuzzy parameters. Hussein [8]

dealt with the complete solutions of MOTP with possibilistic coefficients. Das et al. [6] fo-

cused on the solution procedure of the MOTP where all the parameters have been expressed

as interval values by the decision maker. Ahlatcioglu et al. [1] proposed a model for solving

the transportation problem that supply and demand quantities are given as triangular fuzzy

numbers bounded from below and above, respectively. Basing on extension principle, Liu and

Kao [12] developed a procedure to derive the fuzzy objective value of the fuzzy transporta-

tion problem where the cost coefficients, supply and demand quantities are fuzzy numbers.

Using signed distance ranking, defuzzification by signed distance, interval-valued fuzzy sets

and statistical data, Chiang [5] get the transportation problem in the fuzzy sense. Ammar

and Youness [3] examined the solution of MOTP which has fuzzy cost, source and destination

parameters. They introduced the concepts of fuzzy efficient and parametric efficient solu-

tions. Islam and Roy [9] dealt with a multi-objective entropy transportation problem with an

additional delivery time constraint, and its transportation costs are generalized trapezoidal

fuzzy numbers. Chanas and Kuchta [4] proposed a concept of the optimal solution of the

transportation problem with fuzzy cost coefficients and an algorithm determining this solu-

tion. Pramanik and Roy [14] showed how the concept of Euclidean distance can be used for

modeling MOTP with fuzzy parameters and solving them efficiently using priority based fuzzy

goal programming under a priority structure to arrive at the most satisfactory decision in the

decision making environment, on the basis of the needs and desires of the decision making

unit.

In this paper, we present a compensatory fuzzy approach to the Multi-objective Linear

Transportation Problem (MOLTP). All the parameters of the problem are taken as triangular

fuzzy numbers. Our approach has three stages. In the first stage, using Zimmermann’s “min”

operator, the fuzziness in supply and demand quantities is eliminated, that is, the crisp supply

and demand quantities are obtained from fuzzy quantities to satisfy the balance condition.

In the second stage, for each objective, breaking points and cost-satisfaction interval sets are

determined. In the third stage, considering cost-satisfaction interval sets of all objectives,

an overall cost-satisfaction interval set is found. And then for each member of this set, our

approach generates compensatory compromise Pareto-optimal solutions using Werner’s µand

operator.

So, this paper is organized as follows. Next section presents the MOLTP formulation with

fuzzy parameters. Section 3 introduces the compensatory fuzzy aggregation operators briefly.

Section 4 explains our methodology using Werners’ compensatory “fuzzy and” operator. Sec-
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tion 5 gives an illustrative numerical example. Finally, Section 6includes some results.

2. The Formulation of MOLTP with Fuzzy Parameters

The MOLTP is formulated as follows:

min zk(x) =

n
∑

i=1

m
∑

j=1

ck
i j · xi j , k = 1,2, . . . , K

subject to

m
∑

j=1

xi j = ai , i = 1,2, . . . , n

n
∑

i=1

xi j = bj , j = 1,2, . . . , m

∀xi j ≥ 0, i = 1,2, . . . , n, j = 1,2, . . . , m

(1)

Here, xi j is decision variable which refers to product quantity that transported from supply

point i to demand point j. ai and bj are the capacities of the supply and demand points, respec-

tively. And ck
i j is the unit cost for transporting the goods from supply point i to demand point j

for the objective k, (k = 1,2, . . . , K) where K is the number of the objective functions. When at

least one of these parameters is assumed as fuzzy, then a MOLTP with Fuzzy Parameters arises.

In that case ã1, ã2, . . . , ãn, and b̃1, b̃2, . . . , b̃m are called as n fuzzy supply and m fuzzy demand

quantities, respectively. Similarly, c̃k
i j is called as fuzzy unit transportation cost from supply

point i to demand point j for the objective k, (k = 1,2, . . . , K) . For our fuzzy transportation

problem, the fuzzy numbers ãi , b̃ j , and c̃k
i j are considered in the following triangular forms

ãi = (−∞, a2
i , a3

i ), b̃ j = (b
1
j , b2

j ,∞), c̃k
i j = (−∞, c2

i j , ci j3).

The membership function of the fuzzy number ãi and its figure are given in (2) and Figure 1,

respectively. Similarly, the membership functions and figures of the fuzzy numbers and can be

constructed according to their triangular definitions.

µai
(ai) =













1, ai < a2
i

a3
i −ai

a3
i −a2

i

, a2
i ≤ ai ≤ a3

i

0, ai > a3
i

(2)

Figure 1: The membership function of the fuzzy supply quantity ãi.
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Definition 1. [Pareto-optimal solution for MOLTP] Let S be the feasible region of (1). x∗ ∈ S

is said to be a Pareto-optimal solution (strongly efficient or non-dominated) if and only if there

does not exist another x ∈ S such that zk(x) ≤ zk(x∗) for all k = 1,2, . . . , K and zk(x) )= zk(x∗)

for at least one k = 1,2, . . . , K.

Definition 2. [Compromise solution for MOLTP] A feasible solution x∗ ∈ S is called a compromise

solution of (1) if and only if x∗ ∈ E and zk(x∗)≤
∧

x∈S

z(x)where z(x) = (z1(x), z2(x), . . . , zk(x)),
∧

stands for “min” operator and E is the set of Pareto-optimal solutions.

This definition imposes two conditions on the solution for it to be a compromise solution.

First, the solution should be Pareto-optimal. Second, the feasible solution vector x∗ should

have the minimum deviation from the ideal point than any other point in S. That is, the

compromise solution is the closest solution to the ideal one that maximizes the underlying

utility function of the decision maker.

3. Compensatory Fuzzy Aggregation Operators

There are several fuzzy aggregation operators. The detailed information about them exists

in [20] and [16]. The most important aspect in the fuzzy approach is the compensatory or

non-compensatory nature of the aggregation operator. Several investigators [10, 13, 15, 20]

have discussed this aspect.

Using the linear membership function, Zimmermann [19] proposed the “min” operator

model to the Multi-objective linear problem (MOLP). It is usually used due to its easy compu-

tation. Although the “min” operator method has been proven to have several nice properties

[13], the solution generated by min operator does not guarantee compensatory and Pareto-

optimality [7, 11, 18]. The biggest disadvantage of the aggregation operator “min” is that it

is non-compensatory. In other words, the results obtained by the “min” operator represent the

worst situation and cannot be compensated by other members which may be very good. On

the other hand, the decision modeled with average operator is called fully compensatory in

the sense that it maximizes the arithmetic mean value of all membership functions.

Zimmermann and Zysno [21] show that most of the decisions taken in the real world are

neither non-compensatory (min operator) nor fully compensatory and suggested a class of

hybrid compensatory operators with γ compensation parameter.

Basing on the γ-operator, Werners [17] introduced the compensatory “fuzzy and” operator

which is the convex combinations of min and arithmetical mean:

µand = γmin
i
µi +

(1− γ)
m

(
∑

i

µi),

where 0 ≤ µi ≤ 1, i = 1,2, . . . , m and the magnitude of γ ∈ [0,1] represent the grade of

compensation.

Although this operator is not inductive and associative, this is commutative, idempotent,

strictly monotonic increasing in each component, continuous and compensatory. Obviously,

when γ = 1, this equation reduces to µand =min (non-compensatory) operator. In literature,
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it is showed that the solution generated by Werners’ compensatory “fuzzy and” operator does

guarantee compensatory and Pareto-optimality for MOLP [13, 15–18, 21]. Thus this operator

is also suitable for our MOLTP. Therefore, due to its advantages, in this paper, we used Werners’

compensatory “fuzzy and” operator.

4. A Compensatory Fuzzy Approach to MOLTP with Fuzzy Parameters

Our compensatory fuzzy approach has three stages. Stage 1 aims to convert the fuzzy

supply and demand quantities to crisp ones. In Stage 2, fuzzy costs are written as depending

on the cost-satisfaction parameter and then breaking points are obtained. After that cost-

satisfaction interval sets are determined. In Stage 3, (1) is reduced to the MOLTP and it is

solved by using Werners’ compensatory “fuzzy and” operator. In the following subsections,

our approach is explained in detail.

4.1. The First Stage

First of all, the fuzzy supply and demand quantities are converted to crisp forms to satisfy

the balance condition. By using of the “min” fuzzy operator model proposed by Zimmermann

[19], the problem

max min µai
,µbj

, i = 1,2, . . . , m, j = 1,2, . . . , n

subject to

m
∑

i=1

ai −
n
∑

j=1

bj = 0

n
∑

i=1

xi j = bj , j = 1,2, . . . , m

∀ai , b j ≥ 0, i = 1,2, . . . , m, j = 1,2, . . . , n

is solved for obtaining a solution which maximizes the least degree of satisfaction among all

supply and demand quantities. By introducing the auxiliary variable β ,

minµai
,µbj

= β ⇒ µai
≥ β , µbj

≥ β ,

this problem can be converted into the following equivalent maximization problem:

max β

subject to µai
(ai)≥ β , i = 1,2, . . . , m

µbj
(bj)≥ β , j = 1,2, . . . , n

m
∑

i=1

ai −
n
∑

j=1

bj = 0

∀ai , b j ≥ 0, i = 1,2, . . . , m, j = 1,2, . . . , n

β ∈ [0,1]

(3)
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By solving (3), crisp supply-demand quantities are determined at the maximum satisfactory

degree β in order to get the following balance condition:

m
∑

i=1

ai =

n
∑

j=1

bj .

Since the membership function of each supply quantity is the strictly monotone decreasing

for ai in the closed interval [a2
i , a3

i ], and similarly the membership function of each demand

quantity is the strictly monotone increasing for bj in the closed interval [b1
j , b2

j ], from (3) we

have
max β

subject to µ−1
ai
(β)≥ ai , i = 1,2, . . . , m

µ−1
bj
(β)≥ bj , j = 1,2, . . . , n

m
∑

i=1

ai −
n
∑

j=1

bj = 0

∀ai , b j ≥ 0, i = 1,2, . . . , m, j = 1,2, . . . , n

β ∈ [0,1]

(4)

where µ−1
ai
(β) = inf{ai |µai

(ai ≥ β} and µ−1
bj
(β) = inf{bj |µbj

(bj ≥ β}. By introducing the

membership functions of ãi and b̃ j to (4), we obtain:

max β

subject to ai + (a
3
i − a2

i )β ≤ a3
i , i = 1,2, . . . , m

bj − (b
2
j − b1

j )β ≤ b1
j , j = 1,2, . . . , n

m
∑

i=1

ai −
n
∑

j=1

bj = 0

∀ai , b j ≥ 0, i = 1,2, . . . , m, j = 1,2, . . . , n

β ∈ [0,1]

(5)

By solving (5), the crisp values ai and bj are determined in order to satisfy the balance

condition. In this way, the MOLTP with crisp supply - demand parameters but still fuzzy costs



H. Kocken, B. Ozkok, F. Tiryaki / Eur. J. Pure Appl. Math, 7 (2014), 369-386 375

is as follows:

min zk(x) =

n
∑

i=1

m
∑

j=1

c̃k
i j · xi j , k = 1,2, . . . , K

subject to

m
∑

j=1

xi j = ai , i = 1,2, . . . , m

n
∑

i=1

xi j = bj , j = 1,2, . . . , n

m
∑

i=1

ai −
n
∑

j=1

bj = 0

∀xi j ≥ 0, i = 1,2, . . . , m, j = 1,2, . . . , n

(6)

We note that the transportation costs are still fuzzy numbers in (6). The fuzziness of the

costs leads our problem to non-linear structure. We will overcome this difficulty in the next

Stage.

4.2. The Second Stage

To overcome the non-linearity, fuzzy costs are written as depending on a cost-satisfaction

parameter α. Indeed, the membership function of c̃k
i j is monotone decreasing in the interval

[0,1]. So, there exists at least one parameter α ∈ [0,1] satisfying

µck
i j
(ck

i j) = α ⇒ ck
i j = µ

−1
ck
i j

(α).

By introducing the membership function of c̃k
i j , we get the following parametric expression

of ck
i j(i = 1,2, . . . , m; j = 1,2, . . . , n) :

α=
c3k

i j − ck
i j

c3k
i j − c2k

i j

⇒ ck
i j = (c

2k
i j − c3k

i j )α+ c3k
i j . (7)

Since ck
i j depends on α, the optimal solution of (6) also depends on α. Here, for the cost

ck
i j corresponding to the value of α ∈ [0,1], all possible optimal solutions of (6) are found. Let

us define the breaking points as the value of α that changed the optimal solution set and give

an algorithm for finding breaking points of each objective zk(k = 1,2, . . . , K). Let T k be the

breaking points set of objective zk.
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The Breaking Points Algorithm (BPA)

Step 0: (Initialization) Set T k = {0}, Ip = +, p = 0, (t0 = 0).

Step 1: (Obtaining the first optimal solution) Solve the crisp transportation problem corre-

sponding to α= 0 and obtain its optimal solution set.

Step 2: (Finding the Breaking Point) Using Stepping Stone method, determine the breaking

point as

tp+1 = {α ∈ [0,1] | di j(α)≥ 0 for all di j(α) which is empty cell ,α > tp}

where di j(α) is the contribution of empty cell (i, j) to the objective (We note that the

contribution di j(α) must be positive since the objective function is minimization).

Step 3: (Updating) p = p+ 1, T k = T k ∪ {tp}. If tp = 1, then STOP.

Step 4: (Obtaining the next optimal solution) Enter the empty cell (or non-basic variable)

corresponding to tp into the basis as the basic variable. Go to Step 2.

This algorithm is executed for each objective zk(k = 1,2, . . . , K) and then the overall break-

ing points set

Toveral l =
⋃

k∈K

T k

is obtained. The consecutive elements of Toveral l constitute intervals those belong to the overall

cost-satisfaction intervals set Ioveral l . For all possible values of α in each member of Ioveral l ,

the optimal solution set remains the same due to the definition of the breaking point. Thus,

the optimal solution set of problem (6) is analyzed for every possible value of the costs for

each objective.

4.3. The Third Stage

Since the optimal objective value doesn’t change between consecutive breaking points, a

representative point α can be chosen for each member of Ioveral l . Substituting this α value in

each objective’s costs, the fuzzy costs of MOLTP are converted to crisp form for the relevant

interval.

After this, the membership functions of the objectives will be defined to apply our compen-

satory approach. Let Lk and Uk be the lower and upper bounds of the objective function zk,

respectively. Lk and Uk can be determined as follows: Solve the MOLTP as a single objective

TP using each time only one objective and ignoring all others. Determine the corresponding

values for every objective at each solution derived. And find the best (Lk) and the worst (Uk)

values corresponding to the set of solutions.

Alternatively, by solving 2K single-objective TP, the lower and upper bounds Lk and Uk can

also be determined for each objective zk(x)(k = 1,2, . . . , K) as follows:

Lk =min
x∈S

zk(x), Uk =max
x∈S

zk(x) (8)
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where S is the feasible solution space that is satisfied supply-demand and non-negativity con-

straints. For the sake of simplicity, we used the linear membership function:

µk(zk) =











1, zk < Lk
Uk−zk

Uk−Lk
, Lk ≤ zk ≤ Uk

0, zk > Uk

(9)

Here, Lk )= Uk, k = 1,2, . . . , K and in the case of Lk = Uk, µk(zk(x)) = 1. The membership

function µk(zk) is linear and strictly monotone decreasing for zk in the interval [Lk, Uk]. Using

Zimmermann’s minimum operator [19], MOLTP can be written as:

max
x

min
k

µk(zk(x))

subject to x ∈ S
(10)

By introducing an auxiliary variable λ, (10) can be transformed into the following equiv-

alent conventional LP problem:

max λ

subject to µk(zk(x))≥ λ, k = 1,2, . . . , K

x ∈ S

λ ∈ [0,1]

(11)

It is pointed out that Zimmermann’s min operator model doesn’t always yield a strongly-

efficient solution [7, 11, 18]. By using Werners’ operator, (11) is converted to as follows:

max µand = λ+
(1− γ)

K
(λ1 +λ2 + . . .+λK)

subject to x ∈ S

µk(zk(x))≥ λ+λk, k = 1,2, . . . , K

λ+λk ≤ 1, k = 1,2, . . . , K

γ ∈ [0,1]

(12)

Now, corresponding to each member of Ioveral l , (12) will be constructed and relevant com-

promise pareto-optimal solutions will be obtained for different 11 values of the compensation

parameter γ.

So, our compensatory model generates compensatory compromise Pareto-optimal solu-

tions for MOLTP.

We shall prove this assertion in the following theorem.

Theorem 1. If (x ,λx) is an optimal solution of problem (12), then x is a Pareto-optimal solution

for MOLTP, where λx = (λx ,λx
1 ,λx

2 , . . . ,λx
K)
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Proof. Suppose, to the contrary, there exists a feasible solution (y,λy) such that y - x .

This means

zk(y)≤ zk(x), k = 1,2, . . . , K , and zk(y)< zk(x)

for some k. Thus, for the membership functions of objectives, it can be written as

µk(zk(y))≥ µk(zk(x)),∀k = 1,2, . . . , K

and

µk(zk(y))> µk(zk(x)),

for some k. And this implies that there exist λx
k

and λ
y

k
satisfying

µk(zk(y)) = λ
∗ +λ

y

k
≥ µk(zk(x)) = λ

∗ +λx
k ,∀k = 1,2, . . . , K

and

µk(zk(y)) = λ
∗ +λ

y

k
> µk(zk(x)) = λ

∗ +λx
k ,

for some k. Therefore, it holds that

λ
y

k
≥ λx

k , ∀k = 1,2, . . . , K and λ
y

k
> λx

k , for some k.

This means that
K
∑

k=1

λ
y

k
>

K
∑

k=1

λx
k

and so

µand(y) = λ
∗ +
(1− γ)

K
(

K
∑

k=1

λ
y

k
)> λ∗ +

(1− γ)
K

(

K
∑

k=1

λx
k ) = µand(x),

that is, µand(y,λy)> µand(x ,λx), and this is contradictory to the fact that (x ,λx) is an optimal

solution to problem (12). If required, Pareto-optimality test [2] can be applied to the solutions

of (12) and it could be seen that these solutions are Pareto-optimal for MOLTP.

5. An Illustrative Example

Let us consider a MOLTP with the following characteristics:

Supplies: ã1 = (−∞, 40,120), ã2 = (−∞, 150,220), ã3 = (−∞, 100,260),

Demands: b̃1 = (60,200,∞), b̃2 = (20,80,∞), b̃3 = (100,220,∞), b̃4 = (120,240,∞)

Costs:

C̃1 =





(−∞, 1, 2) (−∞, 1, 3) (−∞, 5, 9) (−∞, 4, 8)

(−∞, 1, 2) (−∞, 7, 10) (−∞, 2, 6) (−∞, 3, 5)

(−∞, 7, 9) (−∞, 7, 11) (−∞, 3, 5) (−∞, 3, 7)





C̃2 =





(−∞, 3, 5) (−∞, 2, 6) (−∞, 2, 4) (−∞, 1, 5)

(−∞, 4, 6) (−∞, 7, 9) (−∞, 7, 10) (−∞, 9, 11)

(−∞, 4, 8) (−∞, 1, 3) (−∞, 3, 6) (−∞, 1, 2)




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Stage 1: After constructing the membership functions of fuzzy supply-demand quantities, the

crisp values of ãi and b̃ j are determined as follows by solving (5):

a1 = 88, a2 = 192, a3 = 196, b1 = 116, b2 = 44, b3 = 148, b4 = 168.

So, we obtain the problem corresponding to (6):

min zk(x) =

3
∑

i=1

4
∑

j=1

c̃k
i j · xi j , k = 1,2.

subject to

4
∑

j=1

x1 j = 88,

4
∑

j=1

x2 j = 192,

4
∑

j=1

x3 j = 196,

3
∑

i=1

xi1 = 116,

3
∑

i=1

xi2 = 44,

3
∑

i=1

xi3 = 148,

3
∑

i=1

xi4 = 168,

xi j ≥ 0, i = 1,2,3; j = 1,2,3,4.

Stage 2: Using (7), the parametric expression of c̃k
i j(i = 1,2,3; j = 1,2,3,4; k = 1,2) is con-

structed. For example, c̃1
22 = (−∞, 7, 10)⇒ c1

22 = 10− 3α,α ∈ [0,1].

After this, the BPA is executed for two objectives, separately and the sets of breaking points

T1 = {0,1}, T2 = {0,
3

4
,1}

are obtained. T1 indicates that for all possible values of c̃1
i j (i = 1,2,3; j = 1,2,3,4) (i.e.

∀α ∈ [0,1]), objective function z1 has the same optimal solution set X 1,

X 1 =

-

x11 = 44, x12 = 44, x21 = 72

x24 = 120, x33 = 148, x34 = 48

.

, z1 ∈ [1204,2040]

We also note that although the optimal solution set remains the same, the objective func-

tion value is changing in the closed interval [1204,2040] due to the changing of α. Here, it

can be said that, under the assumption of having only the objective z1, X 1 will be the opti-

mal solution set for any value of c̃1
i j(i = 1,2,3; j = 1,2,3,4). Thus, the fuzziness of the cost

parameters had been eliminated.

Similarly, T2 indicates that for the possible values of c̃2
i j(i = 1,2,3; j = 1,2,3,4) corre-

sponding to ∀α ∈ [0, 3
4] and ∀α ∈ [3

4 , 1], objective function z2 has the optimal solution set

X 2 =

-

x13 = 88, x21 = 116, x22 = 16

x23 = 60, x32 = 28, x34 = 168

.

, z2 ∈ [1579,2212],

and

X 3 =

-

x13 = 72, x14 = 16, x21 = 116

x23 = 76, x32 = 44, x34 = 152

.

, z2 ∈ [1352,1579],
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respectively. Under the assumption of having only the objective z2, these results pointed out

that the amount of transported from supply point 2 to demand point 1 is 116 for any value

of c̃2
i j(i = 1,2,3; j = 1,2,3,4). And also the amount of transported from supply point 1 to

demand point 3 is at least 72. Similar explanations can be made for other variables.

After obtaining the breaking points set T1 and T2, the overall cost-satisfaction intervals

set, Ioveral l , of our example is obtained as

Ioveral l =

/

[0,
3

4
], [

3

4
,1]

0

.

Stage 3: A representative point must be chosen from each member of Ioveral l . Let us determine

the representative point of intervals by arithmetic mean, that is, α1 = 0.375,α2 = 0.875. Thus,

all parameters of the MOLTP has been converted into theirs crisp form. For α1 = 0.375, using

(8), the lower and upper bounds of the objectives are determined to construct the membership

functions as follows:

L1 = 1726.5, U1 = 3151.5, L2 = 1895.5, U2 = 3420.

Using (12), the compensatory model for [0, 3
4] is constructed:

max µand = λ+
(1− γ)

2
(λ1 +λ2)

subject to

4
∑

j=1

x1 j = 88,

4
∑

j=1

x2 j = 192,

4
∑

j=1

x3 j = 196,

3
∑

i=1

xi1 = 116,

3
∑

i=1

xi2 = 44,

3
∑

i=1

xi3 = 148,

3
∑

i=1

xi4 = 168,

z1(x) + 1425λ+ 1425λ1 ≤ 3151.5

z2(x) + 1524.5λ+ 1524.5λ2 ≤ 3420

λ+λ1 ≤ 1, λ+λ2 ≤ 1,

λ,λ1,λ2,γ ∈ [0,1],

xi j ≥ 0, i = 1,2,3; j = 1,2,3,4.

(13)

By solving (13), the results for different 11 values of the compensation parameter γ with

0.1 increment are obtained and given in Table 1. The results are: the compensatory compro-

mise Pareto-optimal solution x; the values of objective functions zk(k = 1,2); the satisfactory

levels of the objectives corresponding to solution x , (i.e. the values of membership functions

µk(k = 1,2) ); the most basic satisfactory level λ ; the compensation satisfactory level µand , re-

spectively. As it can be seen from Table 1, our compensatory model produced the same results

for γ ∈ [0.1,1].

In a similar way, for α2 = 0.875, the lower and upper bounds of the objectives are deter-

mined as follows:

L1 = 1308.5, U1 = 2610.5, L2 = 1465.5, U2 = 2732.
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Thus, the compensatory model for [3
4 , 1] is

max µand = λ+
(1− γ)

2
(λ1 +λ2)

subject to

4
∑

j=1

x1 j = 88,

4
∑

j=1

x2 j = 192,

4
∑

j=1

x3 j = 196,

3
∑

i=1

xi1 = 116,

3
∑

i=1

xi2 = 44,

3
∑

i=1

xi3 = 148,

3
∑

i=1

xi4 = 168,

z1(x) + 1302λ+ 1302λ1 ≤ 2610.5

z2(x) + 1266.5λ+ 1266.5λ2 ≤ 2732

λ+λ1 ≤ 1, λ+λ2 ≤ 1,

λ,λ1,λ2,γ ∈ [0,1],

xi j ≥ 0, i = 1,2,3; j = 1,2,3,4.

(14)

Table 2 shows results obtained by solving (14) for different 11 values of the compensation

parameter γ. In this case, for γ ∈ [0.2,1], the same results are obtained. These solutions and

the values of all membership functions are offered to Decision Maker (DM). If DM is not satis-

fied with the proposed solution then he/she could assign the weights wi , (wi > 0,
∑

i

wi = 1),

on his/her objectives zk(k = 1,2). In this case, the weights wi are inserted to the compensatory

model as the following manner:

µk(z
k)

wk

≥ λ+λk, (k = 1,2)

wk(λ+λk)≤ 1, (k = 1,2)

instead of the constraints

µk(z
k)≥ λ+λk, (k = 1,2)

λ+λk ≤ 1, (k = 1,2).

So, our compensatory model generates the following compensatory compromise Pareto-

optimal solutions X 1∗ and X 2∗ for α ∈ [0, 3
4] and also X 3∗ and X 4∗ for α ∈ [3

4 , 1] for our MOLTP.

X 1∗ =







x11 = 0, x12 = 44, x13 = 44, x14 = 0

x21 = 116, x22 = 0, x23 = 76, x24 = 0

x31 = 0, x32 = 0, x33 = 28, x34 = 168







,
z1(X 1∗) = 2128.5

z2(X 1∗) = 2034

X 2∗ =







x11 = 0, x12 = 44, x13 = 0.5436, x14 = 43.4564

x21 = 116, x22 = 0, x23 = 76, x24 = 0

x31 = 0, x32 = 0, x33 = 71.4564, x34 = 124.5436







,
z1(X 2∗) = 1998.1308

z2(X 2∗) = 2186.0974
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X 3∗ =







x11 = 0, x12 = 44, x13 = 0, x14 = 44

x21 = 116, x22 = 0, x23 = 76, x24 = 0

x31 = 0, x32 = 0, x33 = 72, x34 = 124







,
z1(X 3∗) = 1591.5

z2(X 3∗) = 1612

X 4∗ =







x11 = 0, x12 = 44, x13 = 0, x14 = 44

x21 = 116, x22 = 0, x23 = 57.7152, x24 = 18.2848

x31 = 0, x32 = 0, x33 = 90.2848, x34 = 105.7152







,
z1(X 4∗) = 1536.6456

z2(X 4∗) = 1687.4248
.

All of these solutions pointed out that for all possible values of c̃k
i j (i = 1,2,3; j = 1,2,3,4;

k = 1,2), the certainly transported amounts are:







x11 = 0, x12 = 44,

x21 = 116, x22 = 0,

x31 = 0, x32 = 0,







.

For γ= 1, µand equals to min(non-compensatory) operator that is µand = 0.8094 and gives

the solution X 2∗ for α ∈ [0, 3
4]. This solution remains the same from γ= 1 to γ= 0.1. As seen,

the minimal satisfactory level of all objectives is equal to 0.8094.

For γ= 0, µand equals to average operator (full-compensatory) operator that is

µand = 0.8135 and gives the solution X 1∗ for α ∈ [0, 3
4]. As seen, the satisfactory levels of the

objectives are µ1 = 0.7179 and µ2 = 0.9092, respectively. The efficiency of the transportation

process for our MOLTP is averagely 0.8135.

6. Conclusion

In this paper, we deal with MOLTP whose costs and supply-demand quantities are given

as fuzzy numbers. MOLTP is a well-known problem in the literature. We proposed a solution

procedure with three stages that aims to defuzzificate the parameters of MOLTP. Firstly, fuzzy

supply and demand quantities are converted to their crisp forms to satisfy the balance condi-

tion. And then the optimal solution sets are analyzed for every possible value of the fuzzy costs

for each objective to obtain the overall breaking points set. So, through the breaking points,

an analysis could be presented to DM. Finally, using Werner’s µand operator, our approach gen-

erates a solution for each member of this set. This compromise solution of MOLTP with fuzzy

parameters is both compensatory and Pareto-optimal. It is known that Zimmerman’s “min”

operator is not compensatory and also does not guarantee to generate the Pareto-optimal so-

lutions. Werner’s µand operator is useful about computational efficiency and always generates

Pareto-optimal solutions. And to our knowledge, combining compensatory (µand) operator

with MOLTP has not been published up to now. The proposed approach also makes it possible

to overcome the non-linear nature owing to the fuzziness in the costs. This paper discussed

MOLTP with fuzzy parameters. Further work will involve the multi-index form of this prob-

lem. The necessity of considering multi-index form arises when there exist different type of

product and also when heterogeneous transportation modes called conveyances (i.e. trucks,

air freights, freight trains, ships etc.) are available for the shipments of goods. Thus, in real

world applications, the multi-index form of transportation problem becomes more important.
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Table 1: The results of our compensatory model for [0, 3
4 ], i.e. α1 = 0.375

Value of γ x11 x12 x13 x14 x21 x22 x23 x24 x31 x32 x33 x34 z1 z2 µ1 µ2 λ µand

γ= 0∗ 0 44 44 0 116 0 0 0 0 0 28 168 2128.5 2034 0.7179 0.9092 0.7179 0.8135

γ= 0.1− γ= 1 0 44 0.5436 43.4564 116 0 76 0 0 0 71.4564 124.5436 1998.1308 2186.0974 0.8094 0.8094 0.8094 0.8094

*Alternate optimal solutions exist.
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Table 2: The results of our compensatory model for [ 3
4 , 1], i.e. α1 = 0.875

Value of γ x11 x12 x13 x14 x21 x22 x23 x24 x31 x32 x33 x34 z1 z2 µ1 µ2 λ µand

γ= 0∗ 0 44 0 44 116 0 76 0 0 0 72 124 1591.5 1612 0.7826 0.8843 0.7826 0.8335

γ= 0.1 0 44 0 44 116 0 76 0 0 0 72 124 1591.5 1612 0.7826 0.8843 0.7826 0.8284

γ= 0.2− γ= 1 0 44 0 44 116 0 57.7152 18.2848 0 0 90.2848 105.7152 1536.6456 1687.4248 0.8248 0.8248 0.8248 0.8248

*Alternate optimal solutions exist.


