On Some New Operations In Probabilistic Soft Set Theory

Çiğdem Gunduz(Aras)*, Hande Poşul
Department of Mathematics, Kocaeli University,Kocaeli 41380, Turkey

Abstract

In this paper, we study the theory of probabilistic soft sets introduced by [7]. We define equality of two probabilistic soft sets, subset, complement of a probabilistic soft set with examples. We also introduce the operations of union, intersection, difference and symmetric difference. We prove that certain De Morgan's laws hold in probabilistic soft set theory with respect to these new definitions.

2010 Mathematics Subject Classifications: 03B52
Key Words and Phrases: Soft sets, Probabilistic soft sets

1. Introduction

In theory, for formal modeling, reasoning, and computing we have traditional tools such as crisp, deterministic, and precise in character but in practical way we see that data in economics, engineering, environment, social science, medical science, etc. are not always all crisp and classical methods because of various types of uncertainties present in these problems can not be used, successfully. There are some theories like theory of probability, theory of fuzzy sets and the interval mathematics which we can consider as mathematical tools for dealing with uncertainties. According to Molodtsov [5], since all these theories have their inherent difficulties the concept of soft set theory as a mathematical tool for dealing with uncertainties which is free from the above difficulties has been initiated in [5]. Soft set theory has a rich potential for applications in several directions [1-4, 6]. Zhu and Wen [7] have proposed the notion of probabilistic soft sets incorporated Molodtsov's soft set theory with probability theory and introduced three operations with probabilistic soft sets the conditional probabilistic soft set. In the present paper, we make a theoretical study of the "Probabilistic soft set theory" in more detail.

[^0]
2. Preliminary

Definition 1. Let U be a universe. A probabilistic set X over U is a set defined by a function μ_{X} representing a mapping

$$
\mu_{X}: U \rightarrow I=[0,1]
$$

satisfying the following conditions:
(i) For each $\tilde{U} \subset U, \sum_{u \in \tilde{U}} \mu_{X}(u) \leq 1$
(ii) If $\tilde{U}=U$, then $\sum_{u \in \tilde{U}} \mu_{X}(u)=1$ or $\sum_{u \in \tilde{U}} \mu_{X}(u)=0$
μ_{X} is called the the probabilistic membership function of X, and the value $\mu_{X}(u)$ is called the probabilistic grade of membership of $u \in U$. Thus a probabilistic set X over U can be represented as follows:

$$
X=\left\{\left(\mu_{X}(u) / u\right): u \in U\right\}
$$

Note that the set of all the probabilistic sets over U will be denoted by $\operatorname{Pr}(U)$.
Example 1. Let $U=\left\{u_{1}, u_{2}, u_{3}, u_{4}\right\}$ be a universal set. Then

$$
X=\left\{\left(0.4 / u_{1}\right),\left(0.1 / u_{2}\right),\left(0.2 / u_{3}\right),\left(0.3 / u_{4}\right)\right\}
$$

is a probabilistic set over U.
Definition 2. A probabilistic set X over U is called empty probabilistic set if its membership function is zero everywhere in U and denoted by \emptyset. i.e,

$$
\mu_{X}: U \rightarrow I, \mu_{X}(u)=0
$$

Example 2. Let $U=\left\{u_{1}, u_{2}, u_{3}, u_{4}, u_{5}\right\}$ is a universal set. Then

$$
X=\left\{\left(0 / u_{1}\right),\left(0 / u_{2}\right),\left(0 / u_{3}\right),\left(0 / u_{4}\right),\left(0 / u_{5}\right)\right\}=\emptyset
$$

is an empty probabilistic set.

3. Probabilistic Soft Set

In this section, we define probabilistic soft sets and their operations. From now on, we will use $\Gamma_{A}^{P}, \Gamma_{B}^{P}, \ldots$ etc, for probabilistic soft sets and $\gamma_{A}^{P}, \gamma_{B}^{P}, \ldots$ etc. for their probabilistic approximate functions, respectively.

Throughout this work, U refers to an initial universe, E is a set of parameters and $A \subset E$.
Definition 3. A probabilistic soft set (prs-set) Γ_{A}^{P} over U is a set defined by a function γ_{A}^{P} representing a mapping

$$
\gamma_{A}^{P}: E \rightarrow \operatorname{Pr}(U) \text { such that } \gamma_{A}^{P}(x)=\emptyset \text { if } x \notin A
$$

Here, γ_{A}^{P} is called probabilistic approximate function of the probabilistic soft set Γ_{A}^{P}. Hence probabilistic soft set Γ_{A}^{P} over U can be represented by the set of ordered pairs

$$
\Gamma_{A}^{P}=\left\{\left(x, \gamma_{A}^{P}(x)\right): x \in E, \gamma_{A}^{P}(x) \in \operatorname{Pr}(U)\right\}
$$

Note that the set of all probabilistic soft set Γ_{A}^{P} over U will be denoted by $\operatorname{Pr} S(U)$.
Example 3. Assume that $U=\left\{u_{1}, u_{2}, u_{3}, u_{4}, u_{5}\right\}$ is a universal set and $E=\left\{x_{1}, x_{2}, x_{3}, x_{4}\right\}$ is a set of all parameters. If $A=\left\{x_{1}, x_{3}, x_{4}\right\}$,

$$
\begin{aligned}
\gamma_{A}^{P}\left(x_{1}\right) & =\left\{0.9 / u_{2}, 0.1 / u_{4}\right\} \\
\gamma_{A}^{P}\left(x_{3}\right) & =\left\{0.2 / u_{1}, 0.2 / u_{2}, 0.2 / u_{3}, 0.2 / u_{4}, 0.2 / u_{5}\right\} \\
\gamma_{A}^{P}\left(x_{4}\right) & =\left\{0.2 / u_{1}, 0.4 / u_{3}, 0.4 / u_{5}\right\}
\end{aligned}
$$

then the prs-set Γ_{A}^{P} is written

$$
\begin{aligned}
\Gamma_{A}^{P}=\{ & \left(x_{1},\left\{0.9 / u_{2}, 0.1 / u_{4}\right\}\right) \\
& \left(x_{3},\left\{0.2 / u_{1}, 0.2 / u_{2}, 0.2 / u_{3}, 0.2 / u_{4}, 0.2 / u_{5}\right\}\right) \\
& \left.\left(x_{4},\left\{0.2 / u_{1}, 0.4 / u_{3}, 0.4 / u_{5}\right\}\right)\right\}
\end{aligned}
$$

Definition 4. Let $\Gamma_{A}^{P} \in \operatorname{Pr} S(U)$. If $\gamma_{A}^{P}(x)=\emptyset$ for all $x \in A$ then Γ_{A}^{P} is called A-impossible prs-set, denoted by Γ_{Φ}^{P}.

Example 4. Assume that $U=\left\{u_{1}, u_{2}, u_{3}, u_{4}, u_{5}\right\}$ is a universal set and $E=\left\{x_{1}, x_{2}, x_{3}, x_{4}\right\}$ is a set of all parameters. If $A=\left\{x_{1}, x_{2}\right\}$, and $\gamma_{A}^{P}\left(x_{1}\right)=\emptyset, \gamma_{A}^{P}\left(x_{2}\right)=\emptyset$, then probabilistic soft set Γ_{A}^{P} is an impossible prs-set, i.e. $\Gamma_{A}^{P}=\Gamma_{\Phi}^{P}$.
Definition 5. Let $\Gamma_{A}^{P}, \Gamma_{B}^{P} \in \operatorname{Pr} S(U)$. Then Γ_{A}^{P} is a prs-subset of Γ_{B}^{P}, denoted by $\Gamma_{A}^{P} \widetilde{\subseteq} \Gamma_{B}^{P}$, if $A \subset B$ and $\gamma_{A}^{P}(x) \subseteq \gamma_{B}^{P}(x)$ for all $x \in A$.

Remark 1. As in the definition of the classical subset, $\Gamma_{A}^{P} \widetilde{\subseteq} \Gamma_{B}^{P}$ does not imply that every element of Γ_{A}^{P} is an element of Γ_{B}^{P}.

Example 5. Assume that $U=\left\{u_{1}, u_{2}, u_{3}, u_{4}, u_{5}\right\}$ is a universal set and $E=\left\{x_{1}, x_{2}, x_{3}\right\}$ is a set of all parameters.

$$
\begin{aligned}
& x_{1} \rightarrow\left\{0.4 / u_{1}, 0.2 / u_{2}, 0.4 / u_{5}\right\} \\
& x_{2} \rightarrow\left\{0.2 / u_{1}, 0.4 / u_{2}, 0.1 / u_{3}, 0.1 / u_{4}, 0.2 / u_{5}\right\} \\
& x_{3} \rightarrow\left\{1 / u_{3}\right\}
\end{aligned}
$$

If $A=\left\{x_{1}\right\}, B=\left\{x_{1}, x_{2}\right\}$, then

$$
\begin{aligned}
\gamma_{A}^{P}\left(x_{1}\right) & =\left\{0.4 / u_{1}, 0.2 / u_{2}\right\} \\
\gamma_{B}^{P}\left(x_{1}\right) & =\left\{0.4 / u_{1}, 0.2 / u_{2}, 0.4 / u_{5}\right\}
\end{aligned}
$$

$$
\gamma_{B}^{P}\left(x_{2}\right)=\left\{0.2 / u_{1}, 0.4 / u_{2}, 0.1 / u_{3}\right\}
$$

Hence

$$
\begin{aligned}
& \Gamma_{A}^{P}=\left\{\left(x_{1},\left\{0.4 / u_{1}, 0.2 / u_{2}\right\}\right)\right\} \\
& \Gamma_{B}^{P}=\left\{\left(x_{1},\left\{0.4 / u_{1}, 0.2 / u_{2}, 0.4 / u_{5}\right\}\right),\left(x_{2},\left\{0.2 / u_{1}, 0.4 / u_{2}, 0.1 / u_{3}\right\}\right)\right\}
\end{aligned}
$$

Then for all $x \in E, \gamma_{A}^{P}(x) \subseteq \gamma_{B}^{P}(x)$, hence $\Gamma_{A}^{P} \widetilde{\subseteq} \Gamma_{B}^{P}$. But it is clear that $\left(x_{1},\left\{0.4 / u_{1}, 0.2 / u_{2}\right\}\right) \in \Gamma_{A}^{P}$, but $\left(x_{1},\left\{0.4 / u_{1}, 0.2 / u_{2}\right\}\right) \notin \Gamma_{B}^{P}$.

Proposition 1. Let $\Gamma_{A}^{P}, \Gamma_{B}^{P} \in \operatorname{Pr} S(U)$. Then
(i) $\Gamma_{A}^{P} \widetilde{\subseteq} \Gamma_{A}^{P}$
(ii) $\Gamma_{A}^{P} \widetilde{\subseteq} \Gamma_{B}^{P}$ and $\Gamma_{B}^{P} \widetilde{\subseteq} \Gamma_{C}^{P} \Rightarrow \Gamma_{A}^{P} \widetilde{\subseteq} \Gamma_{C}^{P}$.

Proof. They can be proved easily by using the probabilistic approximate function of prsset.

Definition 6. Let $\Gamma_{A}^{P}, \Gamma_{B}^{P} \in \operatorname{Pr} S(U)$. Then Γ_{A}^{P} and Γ_{B}^{P} are prs-equal set written as $\Gamma_{A}^{P}=\Gamma_{B}^{P}$, if Γ_{A}^{P} is a prs-subset of Γ_{B}^{P} and Γ_{B}^{P} is a prs-subset of Γ_{A}^{P}.
Proposition 2. Let $\Gamma_{A}^{P}, \Gamma_{B}^{P}, \Gamma_{C}^{P} \in \operatorname{Pr} S(U)$. Then
(i) $\Gamma_{A}^{P}=\Gamma_{B}^{P}$ and $\Gamma_{B}^{P}=\Gamma_{C}^{P} \Rightarrow \Gamma_{A}^{P}=\Gamma_{C}^{P}$
(ii) $\Gamma_{A}^{P} \widetilde{\subseteq} \Gamma_{B}^{P}$ and $\Gamma_{B}^{P} \widetilde{\subseteq} \Gamma_{A}^{P} \Leftrightarrow \Gamma_{A}^{P}=\Gamma_{B}^{P}$.

Proof. The proofs are straightforward.
Definition 7. Let $\Gamma_{A}^{P}, \Gamma_{B}^{P} \in \operatorname{Pr} S(U)$. Then the difference of Γ_{A}^{P} and Γ_{B}^{P}, denoted by $\Gamma_{A}^{P} \backslash \Gamma_{B}^{P}$, is defined by its probabilistic approximate functions:

$$
\gamma_{A \backslash B}^{P}(x)=\gamma_{A}^{P}(x) \backslash \gamma_{B}^{P}(x), \text { for all } x \in E
$$

Definition 8. Let $\Gamma_{A}^{P}, \Gamma_{B}^{P} \in \operatorname{Pr} S(U)$ and $\Gamma_{A}^{P} \widetilde{\subseteq} \Gamma_{B}^{P}$. Then the complement of Γ_{A}^{P} on Γ_{B}^{P}, denoted by $\left(\Gamma_{A}^{P}\right)_{\Gamma_{B}^{p}}^{c}$, is defined by

$$
\left(\gamma_{A}^{P}\right)_{\gamma_{B}^{P}}^{c}(x)=\gamma_{B}^{P}(x) \backslash \gamma_{A}^{P}(x), \text { for all } x \in E
$$

Example 6. Let us consider Example 5. Then,

$$
\left(\Gamma_{A}^{P}\right)_{\Gamma_{B}^{p}}^{c}=\left\{\left(x_{1},\left\{0.4 / u_{5}\right\}\right),\left(x_{2},\left\{0.2 / u_{1}, 0.4 / u_{2}, 0.1 / u_{3}\right)\right\}\right.
$$

Definition 9. Let $\Gamma_{A}^{P}, \Gamma_{B}^{P} \in \operatorname{Pr} S(U)$. Then the union of Γ_{A}^{P} and Γ_{B}^{P}, denoted by $\Gamma_{A}^{P} \widetilde{\cup} \Gamma_{B}^{P}$, is defined by its probabilistic approximate functions:

$$
\gamma_{A \cup B}^{P}(x)=\gamma_{A}^{P}(x) \cup \gamma_{B}^{P}(x), \text { for all } x \in E
$$

Example 7. Assume that $U=\left\{u_{1}, u_{2}, u_{3}, u_{4}, u_{5}\right\}$ is a universal set and $E=\left\{x_{1}, x_{2}, x_{3}, x_{4}\right\}$ is a set of all parameters.

$$
\begin{aligned}
& x_{1} \rightarrow\left\{0.4 / u_{1}, 0.2 / u_{2}, 0.4 / u_{5}\right\} \\
& x_{2} \rightarrow\left\{0.2 / u_{1}, 0.4 / u_{2}, 0.1 / u_{3}, 0.1 / u_{4}, 0.2 / u_{5}\right\} \\
& x_{3} \rightarrow\left\{1 / u_{3}\right\} \\
& x_{4} \rightarrow\left\{0.2 / u_{1}, 0.1 / u_{2}, 0.3 / u_{3}, 0.2 / u_{4}, 0.2 / u_{5}\right\}
\end{aligned}
$$

If $A=\left\{x_{1}, x_{2}\right\}, B=\left\{x_{1}, x_{2}, x_{4}\right\}$, then

$$
\begin{aligned}
r_{A}^{P}\left(x_{1}\right) & =\left\{0.2 / u_{2}, 0.4 / u_{5}\right\} \\
r_{A}^{P}\left(x_{2}\right) & =\left\{0.2 / u_{1}, 0.1 / u_{4}\right\} \\
\gamma_{B}^{P}\left(x_{1}\right) & =\left\{0.4 / u_{1}, 0.2 / u_{2}, 0.4 / u_{5}\right\} \\
\gamma_{B}^{P}\left(x_{2}\right) & =\left\{0.4 / u_{2}, 0.1 / u_{3}\right\} \\
r_{B}^{P}\left(x_{4}\right) & =\left\{0.2 / u_{4}, 0.2 / u_{5}\right\}
\end{aligned}
$$

Hence

$$
\begin{aligned}
& \Gamma_{A}^{P}=\left\{\left(x_{1},\left\{0.2 / u_{2}, 0.4 / u_{5}\right\}\right),\left(x_{2},\left\{0.2 / u_{1}, 0.1 / u_{4}\right\}\right)\right\} \\
& \Gamma_{B}^{P}=\left\{\left(x_{1},\left\{0.4 / u_{1}, 0.2 / u_{2}, 0.4 / u_{5}\right\}\right),\left(x_{2},\left\{0.4 / u_{2}, 0.1 / u_{3}\right\}\right),\left(x_{4},\left\{0.2 / u_{4}, 0.2 / u_{5}\right\}\right)\right\}
\end{aligned}
$$

It is clear that $A \cup B=\left\{x_{1}, x_{2}, x_{4}\right\}$ and

$$
\begin{aligned}
& \gamma_{A \cup B}^{P}\left(x_{1}\right)=\gamma_{A}^{P}\left(x_{1}\right) \cup \gamma_{B}^{P}\left(x_{1}\right)=\left\{0.4 / u_{1}, 0.2 / u_{2}, 0.4 / u_{5}\right\} \\
& \gamma_{A \cup B}^{P}\left(x_{2}\right)=\gamma_{A}^{P}\left(x_{2}\right) \cup \gamma_{B}^{P}\left(x_{2}\right)=\left\{0.2 / u_{1}, 0.4 / u_{2}, 0.1 / u_{3}, 0.1 / u_{4}\right\} \\
& \gamma_{A \cup B}^{P}\left(x_{4}\right)=\gamma_{A}^{P}\left(x_{4}\right) \cup \gamma_{B}^{P}\left(x_{4}\right)=\left\{0.2 / u_{4}, 0.2 / u_{5}\right\}
\end{aligned}
$$

i.e.
$\Gamma_{A}^{P} \tilde{\cup} \Gamma_{B}^{P}=\left\{\left(x_{1},\left\{0.4 / u_{1}, 0.2 / u_{2}, 0.4 / u_{5}\right\}\right),\left(x_{2},\left\{0.2 / u_{1}, 0.4 / u_{2}, 0.1 / u_{3}, 0.1 / u_{4}\right\}\right)\left(x_{4},\left\{0.2 / u_{4}, 0.2 / u_{5}\right\}\right)\right\}$.
Proposition 3. Let $\Gamma_{A}^{P}, \Gamma_{B}^{P}, \Gamma_{C}^{P} \in \operatorname{Pr} S(U)$. Then
(i) $\Gamma_{A}^{P} \widetilde{\cup} \Gamma_{A}^{P}=\Gamma_{A}^{P}$
(ii) $\Gamma_{A}^{P} \tilde{\cup} \Gamma_{B}^{P}=\Gamma_{B}^{P} \tilde{\cup} \Gamma_{A}^{P}$
(iii) $\left(\Gamma_{A}^{P} \tilde{\cup} \Gamma_{B}^{P}\right) \widetilde{\cup} \Gamma_{C}^{P}=\Gamma_{A}^{P} \widetilde{\cup}\left(\Gamma_{B}^{P} \tilde{\cup} \Gamma_{C}^{P}\right)$.

Proof. The proofs can be proved easily by using the Definition 9.
Definition 10. Let $\Gamma_{A}^{P}, \Gamma_{B}^{P} \in \operatorname{Pr} S(U)$. Then the intersection of Γ_{A}^{P} and Γ_{B}^{P}, denoted by $\Gamma_{A}^{P} \widetilde{\cap} \Gamma_{B}^{P}$, is defined by its probabilistic approximate functions:

$$
\gamma_{A \cap B}^{P}(x)=\gamma_{A}^{P}(x) \cap \gamma_{B}^{P}(x), \text { for all } x \in A \cap B, A \cap B \neq \emptyset
$$

Example 8. Let us consider Example 7. Then $A \cap B=\left\{x_{1}, x_{2}\right\}$ and

$$
\begin{aligned}
& \gamma_{A \cap B}^{P}\left(x_{1}\right)=\gamma_{A}^{P}\left(x_{1}\right) \cap \gamma_{B}^{P}\left(x_{1}\right)=\left\{0.2 / u_{2}, 0.4 / u_{5}\right\} \\
& \gamma_{A \cap B}^{P}\left(x_{2}\right)=\gamma_{A}^{P}\left(x_{2}\right) \cap \gamma_{B}^{P}\left(x_{2}\right)=\emptyset
\end{aligned}
$$

Hence

$$
\Gamma_{A}^{P} \widetilde{\cap} \Gamma_{B}^{P}=\left\{\left(x_{1},\left\{0.2 / u_{2}, 0.4 / u_{5}\right\}\right)\right\}
$$

is obtained.
Proposition 4. Let $\Gamma_{A}^{P}, \Gamma_{B}^{P}, \Gamma_{C}^{P} \in \operatorname{Pr} S(U)$. Then
(i) $\Gamma_{A}^{P} \widetilde{\cap} \Gamma_{A}^{P}=\Gamma_{A}^{P}$
(ii) $\Gamma_{A}^{P} \widetilde{\sim} \Gamma_{B}^{P}=\Gamma_{B}^{P} \widetilde{\cap} \Gamma_{A}^{P}$
(iii) $\left(\Gamma_{A}^{P} \widetilde{\cap} \Gamma_{B}^{P}\right) \widetilde{\cap} \Gamma_{C}^{P}=\Gamma_{A}^{P} \widetilde{\cap}\left(\Gamma_{B}^{P} \widetilde{\cap} \Gamma_{C}^{P}\right)$.

Proof. The proofs can be proved easily by using the Definition 10.
Proposition 5. Let $\Gamma_{A}^{P}, \Gamma_{B}^{P}, \Gamma_{C}^{P} \in \operatorname{Pr} S(U)$ and $\Gamma_{A}^{P}, \Gamma_{B}^{P} \widetilde{\subseteq} \Gamma_{C}^{P}$. Then, De Morgan's laws for $\Gamma_{A}^{P}, \Gamma_{B}^{P}$ are valid as follows:
(i) $\left(\Gamma_{A}^{p} \widetilde{\Gamma_{A}}\right)_{\Gamma_{C}^{p}}^{p}=\left(\Gamma_{A}^{p}\right)_{\Gamma_{C}^{p}}^{c} \tilde{\cup}\left(\Gamma_{B}^{p}\right)_{\Gamma_{C}^{p}}^{c}$
(ii) $\left(\Gamma_{A}^{P} \tilde{\cup} \Gamma_{B}^{P}\right)_{\Gamma_{C}^{p}}^{c}=\left(\Gamma_{A}^{P}\right)_{\Gamma_{C}^{p}}^{c} \tilde{n}\left(\Gamma_{B}^{P}\right) \Gamma_{C}^{p}$

Proof. The proofs can be proved easily by using the respective probabilistic approximate functions. So, we only prove (i) case. For all $x \in E$,

$$
\begin{aligned}
\left(\gamma_{A \cap B}^{P}\right)_{\gamma_{C}^{p}}^{c}(x) & =\left(\gamma_{A}^{p} \cap \gamma_{B}^{P}\right)_{\gamma_{C}^{p}}^{c}(x)=\gamma_{C}^{P}(x) \backslash\left(\gamma_{A}^{P} \cap \gamma_{B}^{P}\right)(x) \\
& =\left(\gamma_{C}^{P}(x) \backslash \gamma_{A}^{P}(x)\right) \cup\left(\gamma_{C}^{P}(x) \backslash \gamma_{B}^{P}(x)\right) \\
& =\left(\gamma_{A}^{P}\right)_{\gamma_{C}^{p}}^{c}(x) \cup\left(\gamma_{B}^{P}\right)_{\gamma_{C}^{p}}^{c}(x) .
\end{aligned}
$$

Definition 11. Let $\Gamma_{A}^{P}, \Gamma_{B}^{P} \in \operatorname{Pr} S(U)$. Then the symmetric difference of Γ_{A}^{P} and Γ_{B}^{P}, denoted by $\Gamma_{A}^{P} \widetilde{\Delta} \Gamma_{B}^{P}$, is defined by its probabilistic approximate functions:

$$
\gamma_{A}^{P}(x) \Delta \gamma_{B}^{P}(x)=\left(\gamma_{A}^{P}(x) \backslash \gamma_{B}^{P}(x)\right) \cup\left(\gamma_{B}^{P}(x) \backslash \gamma_{A}^{P}(x)\right), \text { for all } x \in E .
$$

Example 9. Let us consider Example 7. Then

$$
\Gamma_{A}^{P} \widetilde{\Delta} \Gamma_{B}^{P}=\left\{\left(x_{1},\left\{0.4 / u_{1}\right\}\right),\left(x_{2},\left\{0.2 / u_{1}, 0.4 / u_{2}, 0.1 / u_{3}, 0.1 / u_{4}\right\}\right)\left(x_{4},\left\{0.2 / u_{4}, 0.2 / u_{5}\right\}\right)\right\} .
$$

is obtained.

Proposition 6. Let $\Gamma_{A}^{P}, \Gamma_{B}^{P}, \Gamma_{C}^{P} \in \operatorname{Pr} S(U)$. The following conditions are satisfied:
(i) $\Gamma_{A}^{P} \widetilde{\Delta} \Gamma_{B}^{P}=\Gamma_{B}^{P} \widetilde{\Delta} \Gamma_{A}^{P}$
(ii) $\left(\Gamma_{A}^{P} \widetilde{\Delta} \Gamma_{B}^{P}\right) \widetilde{\Delta} \Gamma_{C}^{P}=\Gamma_{A}^{P} \widetilde{\Delta}\left(\Gamma_{B}^{P} \widetilde{\Delta} \Gamma_{C}^{P}\right)$
(iii) $\Gamma_{A}^{P}=\Gamma_{B}^{P} \Leftrightarrow \Gamma_{A}^{P} \widetilde{\Delta} \Gamma_{B}^{P}=\Gamma_{\Phi}^{P}$.

Proof. The proofs can be proved easily by using the respective probabilistic approximate functions. So, we only prove (i) case. For all $x \in E$,

$$
\begin{aligned}
\gamma_{A}^{P}(x) \Delta \gamma_{B}^{P}(x) & =\left(\gamma_{A}^{P}(x) \backslash \gamma_{B}^{P}(x)\right) \cup\left(\gamma_{B}^{P}(x) \backslash \gamma_{A}^{P}(x)\right) \\
& =\left(\gamma_{B}^{P}(x) \backslash \gamma_{A}^{P}(x)\right) \cup\left(\gamma_{A}^{P}(x) \backslash \gamma_{B}^{P}(x)\right) \\
& =\gamma_{B}^{P}(x) \Delta \gamma_{A}^{P}(x)
\end{aligned}
$$

i.e., $\Gamma_{A}^{P} \widetilde{\Delta} \Gamma_{B}^{P}=\Gamma_{B}^{P} \widetilde{\Delta} \Gamma_{A}^{P}$ is obtained.

4. Conclusion

In this paper, we study the theory of probabilistic soft sets. We give some operations such as union, intersection, difference and symmetric difference. We prove that certain De Morgan's laws hold in probabilistic soft set theory with respect to these new definitions.

In addition, this theory not only provides a significant addition to existing theories for handling uncertainties, but also leads to potential areas of further research.

References

[1] M.I. Ali, F. Feng, X. Liu, W.K. Min, and M. Shabir. On some new operations in soft set theory. Computers \& Mathematics with Applications, 57(9):1547-1553, 2009.
[2] N. Çağman and S. Enginoğlu. Soft set theory and uni-int decision making. European Journal of Operational Research, 207(2):848-855, 2010.
[3] P.K. Maji, R. Bismas, and A.R Roy. Soft set theory. Computers \& Mathematics with Applications, 44(4-5):555-562, 2003.
[4] P.K. Maji and A.R. Roy. An application of soft sets in a decision making problem. Computers \& Mathematics with Applications, 44(8-9):1077-1083, 2002.
[5] D. Molodtsov. Soft set theory-first results. Computers and Mathematics with Applications, 37(4-5):19-31, 1999.
[6] A. Sezgin and A.O. Atagün. On operations of soft sets. Computers \& Mathematics with Applications, 61(5):1457-1467, 2011.
[7] P. Zhu and Q. Wen. Probabilistic soft sets. In IEEE International Conference on Granular Computing San Jose, San Jose, CA, 2010. IEEE.

[^0]: *Corresponding author.
 Email address: caras@kocaeli.edu.tr (Ç. Gunduz(Aras))

