EUROPEAN JOURNAL OF PURE AND APPLIED MATHEMATICS

Vol. 2, No. 1, 2009, (58-72) ISSN 1307-5543 – www.ejpam.com

Annulets in Almost Distributive Lattices

G. C. Rao^{1*} and M. Sambasiva Rao^2

¹ Department of Mathematics, Andhra University
 Visakhapatnam, Andhra Pradesh, India-530003
 ² Department of Mathematics, M.V.G.R.College of Engineering
 Chintalavalasa, Vizianagaram, Andhra Pradesh, India-535003

Abstract. We introduce the concept of annulets in an Almost Distributive lattice(ADL) *R* with 0. We characterize both generalized stone ADL and normal ADL in terms of their annulets. We characterize \star -ADLs by means of their annulets. It is proved that the lattice $\mathscr{A}_0(R)$ of all annulets of a generalized stone ADL *R* is a relatively complemented sublattice of the lattice $\mathscr{A}(R)$ of all ideals of *R*. Finally, it is proved that $\mathscr{A}_0(R)$ is relatively complemented iff *R* is sectionally \star -ADL.

AMS subject classifications: 06D99, 06D15.

Key words: Almost Distributive Lattice(ADL), Boolean algebra, dense elements, maximal element, Annihilator ideal, Annulet, normal ADL, *-ADL, generalized stone ADL, Disjunctive ADL.

1. Introduction

The concept of an Almost Distributive Lattice(ADL) was introduced by Swamy. U.M. and Rao.G.C [8] as a common abstraction to most of the existing ring theoretic and lattice theoretic generalizations of a Boolean algebra. Later a more general class called *-ADLs was introduced in the paper [10]. The characterization of *-ADL by means of it's dense elements was studied in [11]. In [5], Mandelker studied the properties of relative annihilators and

http://www.ejpam.com

^{*}Corresponding author. *Email addresses:* gcraomaths@yahoo.co.in (G. Rao), mssraomaths35@rediffmail.com (M. Rao)

characterized the distributive lattice in terms of relative annihilators. In this paper the concept of Annulet as an ideal of the form $(x]^* = \{ a \in R \mid x \land a = 0 \}$ in an ADL *R* with 0 is introduced, analogous to that in a distributive lattice[4]. It is proved that the set $\mathscr{A}_0(R)$ of all annulets of an ADL *R* with 0 can be made into a distributive lattice and sublattice of the Boolean algebra $\mathscr{A}(R)$ of all annihilator ideals of *R*.

We characterize the generalized stone ADL and normal ADL in terms of their annulets. We introduce a more general class of ADLs called disjunctive ADLs with suitable examples and prove that a disjunctive normal *ADL* is dually isomorphic to the lattice $\mathscr{A}_0(R)$. We characterize \star -ADLs by means of their annulets. If *R* is a generalized stone ADL, then it is proved that the lattice $\mathscr{A}_0(R)$ is a relatively complemented sublattice of the lattice $\mathscr{A}(R)$ of all ideals of *R*. Finally, it is proved that $\mathscr{A}_0(R)$ is relatively complemented iff *R* is sectionally \star -ADL.

2. Preliminaries

An Almost Distributive Lattice (ADL) is an algebra (R, \lor, \land) of type (2,2) satisfying

1. $(x \lor y) \land z = (x \land z) \lor (y \land z)$ 2. $x \land (y \lor z) = (x \land y) \lor (x \land z)$ 3. $(x \lor y) \land y = y$ 4. $(x \lor y) \land x = x$ 5. $x \lor (x \land y) = x$. for any $x, y, z \in R$.

If *R* has an element 0 and satisfies $0 \land x = 0$ and $x \lor 0 = x$ along with the above properties, then *R* is called an ADL with 0.

Every non-empty set X can be regarded as an ADL as follows. Let $x_0 \in X$. Define two

binary operations \lor , \land on *X* by

$$x \lor y = \begin{cases} x & \text{if } x \neq x_0 \\ y & \text{if } x = x_0 \end{cases} \qquad \qquad x \land y = \begin{cases} y & \text{if } x \neq x_0 \\ x_0 & \text{if } x = x_0 \end{cases}$$

Then (X, \lor, \land, x_0) is an ADL with x_0 as zero element and is called a discrete ADL.

If $(R, \lor, \land, 0)$ is an ADL, for any $a, b \in R$, define $a \le b$ if and only if $a = a \land b$ (or equivalently, $a \lor b = b$), then \le is a partial ordering on *R*.

Theorem 2.1. For any $a, b, c \in R$, we have the following:

- 1. $a \lor b = a \Leftrightarrow a \land b = b$
- 2. $a \lor b = b \Leftrightarrow a \land b = a$
- 3. $a \land b = b \land a$ whenever $a \le b$
- 4. \land is associative in R
- 5. $a \wedge b \wedge c = b \wedge a \wedge c$
- 6. $(a \lor b) \land c = (b \lor a) \land c$
- 7. $a \wedge b = 0 \Leftrightarrow b \wedge a = 0$
- 8. $a \lor b = b \lor a$ whenever $a \land b = 0$
- 9. $a \lor (b \land c) = (a \lor b) \land (a \lor c)$
- 10. $a \land (a \lor b) = a, (a \land b) \lor b = b, and a \lor (b \land a) = a$
- 11. $a \leq a \lor b$ and $a \land b \leq b$
- 12. $a \land a = a$ and $a \lor a = a$
- 13. $0 \lor a = a \text{ and } a \land 0 = 0$
- 14. If $a \leq c$ and $b \leq c$ then $a \wedge b = b \wedge a$ and $a \vee b = b \vee a$
- 15. $a \lor b = a \lor b \lor a$.

An element $m \in R$ is called maximal if it is maximal in the partial ordered set (R, \leq) . That is, for any $x \in R, m \leq x \Rightarrow m = x$.

Theorem 2.2. Let R be an ADL and $m \in R$. Then the following are equivalent:

- 1. *m* is a maximal element with respect to \leq
- 2. $m \lor x = m$, for all $x \in R$
- 3. $m \land x = x$, for all $x \in R$
- 4. $x \lor m$ is maximal for all $x \in R$.

A non-empty subset *I* of *R* is called an ideal(filter) of *R* if $a \lor b \in I(a \land b \in I)$ and $a \land x \in I(x \lor a \in I)$ whenever $a, b \in I$ and $x \in R$. If *I* is an ideal of *R* and $a, b \in R$, then $a \land b \in I \Leftrightarrow b \land a \in I$. The set $\mathscr{I}(R)$ of all ideals of *R* is a complete distributive lattice with least element {0} and the greatest element *R* under set inclusion in which, for any $I, J \in \mathscr{I}(R), I \cap J$ is the infimum of *I*, *J* and the supremum is given by $I \lor J = \{i \lor j \mid i \in I, j \in J\}$. For any $a \in R$, $[a] = \{a \land x \mid x \in R\}$ is the principal ideal generated by *a*. Similarly, for any $a \in R, [a] = \{x \lor a \mid x \in R\}$ is the filter generated by *a*. An ideal *I* of *R* is called a direct summand of *R* if there exists an ideal *J* in *R* such that $I \cap J = (0]$ and $I \lor J = R$.

Theorem 2.3. For any $a, b \in R$, we have the following:

- 1. $(a] \lor (b] = (a \lor b] = (b \lor a]$
- 2. $(a] \cap (b] = (a \land b] = (b \land a]$
- 3. $[a) \lor [b] = [a \land b] = [b \land a]$
- 4. $[a) \cap [b] = [a \lor b] = [b \lor a]$

Thus the set $\mathscr{PI}(R)$ of all principal ideals of *R* is a sublattice of the distributive lattice $\mathscr{I}(R)$ of ideals of *R*. A proper ideal *P* of *R* is said to be prime if for any $x, y \in R, x \land y \in P \Rightarrow$ either $x \in P$ or $y \in P$. It is clear that a subset *P* of *R* is a prime ideal *iff* R - P is a prime filter.

For any $A \subseteq R$, $A^* = \{ x \in R \mid a \land x = 0 \text{ for all } a \in A \}$ is an ideal of R. We write $(a]^*$ for $\{a\}^*$. Then clearly $(0]^* = R$ and $R^* = (0]$. An element $a \in R$ is called dense if $(a]^* = (0]$. The set of all dense elements of R is denoted by D. An ideal I of R is called dense if $I^* = (0]$. An ADL R with 0 is called a *-ADL [10], if for each $x \in R$, there exists an element $x' \in R$ such that $(x]^{**} = (x']^*$. R is a *-ADL iff to each $x \in R$, there exists $x' \in R$ such that $x \land x' = 0$ and $x \lor x'$ is dense. Every *-ADL possesses a dense element. An ADL R with 0 is called relatively

complemented if each interval $[a, b], a \leq b$, in *R* is a complemented lattice.

An ideal *I* of *R* is called an annihilator ideal if $I = I^{**}$, or equivalently, $I = S^* = \{ y \in R \mid y \land s = 0 \text{ for all } s \in S \}$ for some non-empty subset *S* of *R*. We denote the set of all annihilator ideals of *R* by $\mathscr{A}(R)$. The set $\mathscr{A}(R)$ forms a complete Boolean algebra with bounds $\{0\}, R$ and the complement of any $I \in \mathscr{A}(R)$ is I^* with respect to the operations \land and $\lor given by I \land J = I \cap J$ and $I \lor J = (I^* \cap J^*)^*$.

3. Annulets

In this section, we introduce the concept of annulets in *R* and study some basic properties of these annulets. We prove charactarization theorems of a few algebraic structures with the help of their annulets. We begin with the following definition.

Definition 3.1. Let R be an ADL with 0 and $x \in R$. Then define the annulet $(x]^*$ as follows: $(x]^* = \{ y \in R \mid x \land y = 0 \}$

Clearly $(x]^*$ is an ideal in R and hence an annihilator ideal. Let us denote $\mathscr{A}_0(R) = \{ (x]^* \mid x \in R \}.$

Annulets have many important properties. We give some of them in the following lemma which can be proved directly.

Lemma 3.2. Let *R* be an ADL with 0 and $x, y \in R$. Then we have:

1. $x \le y \Rightarrow (y]^* \subseteq (x]^*$ 2. $(x \land y]^* = (y \land x]^*$ 3. $(x \lor y]^* = (y \lor x]^*$ 4. $(x \lor y]^* = (x]^* \cap (y]^*$ 5. $(x]^* \lor (y]^* \subseteq (x \land y]^*$.

Note: Since each annulet is an annihilator ideal, we can have the following:

$$(x]^* \underline{\vee} (y]^* = [(x]^{**} \cap (y]^{**}]^* = [(x \land y]^{**}]^* = (x \land y]^*$$

$$(x]^* \wedge (y]^* = (x]^* \cap (y]^* = (x \lor y]^*.$$

Now we prove in the following theorem that the set $\mathcal{A}_0(R)$ of all annulets of an ADL *R* forms a distributive lattice.

Theorem 3.3. Let R be an ADL with 0. Then $(\mathscr{A}_0(R), \cap, \underline{\vee})$ is a distributive lattice and a sublattice of the Boolean algebra $\langle \mathscr{A}(R), \cap, \underline{\vee}, {}^*, (0], R \rangle$ of annihilator ideals of R. $\mathscr{A}_0(R)$ has the same greatest element $R = (0]^*$ as $\mathscr{A}(R)$ while $\mathscr{A}_0(R)$ has the smallest element iff R possesses a dense element.

Proof: Let $(x]^*, (y]^* \in \mathscr{A}_0(R)$, where $x, y \in R$. Then

1.
$$(x]^* \land (y]^* = (x]^* \cap (y]^* = (x \lor y]^* \in \mathcal{A}_0(R)$$
 and

2. $(x]^* \underline{\lor} (y]^* = (x \land y]^* \in \mathscr{A}_0(R).$

Hence $\mathscr{A}_0(R)$ is a sublattice of $\mathscr{A}(R)$. Since $\mathscr{A}(R)$ is distributive, we have that $\mathscr{A}_0(R)$ is also distributive. Clearly $(0]^*$ is the greatest element of $\mathscr{A}(R)$. Now for any $(x]^* \in \mathscr{A}_0(R)$, we get $(x]^* \cap (0]^* = (x \lor 0]^* = (x]^*$ and $(x]^* \lor (0]^* = (x \land 0]^* = (0]^*$. It shows that $(0]^*$ is the greatest element in $\mathscr{A}_0(R)$. Now, it remains to prove the final condition of the theorem. Assume $\mathscr{A}_0(R)$ has the smallest element, say $(d]^*$ where $d \in R$. Suppose $x \in (d]^*$. Then $x \land d = 0$. Since $(d]^*$ is the least element, we get $(x]^* = (x]^* \lor (d]^* = (x \land d]^* = (0]^* = R$. Hence x = 0. Thus $(d]^* = (0]$. Therefore *d* is a dense element in *R*.

Conversely, suppose that *R* possesses a dense element, say *d*. So $(d]^* = (0]$. Clearly $(d]^* \in A_0(R)$. Now for any $x \in R$, consider $(x]^* \cap (d]^* = (x]^* \cap (0] = (0]$. Also $(x]^* \underline{\lor}(d]^* = [(x]^{**} \cap (d]^{**}]^* = [(x]^{**} \cap (0]^*]^* = [(x]^{**} \cap R]^* = (x]^{***} = (x]^*$. Hence $(d]^*$ is the smallest element in $\mathscr{A}_0(R)$.

The following definition of a normal ADL is taken from [7].

Definition 3.4. An ADL R with 0 is called normal ADL iff for all $x, y \in R$

$$(x]^* \vee (y]^* = (x \wedge y]^*.$$

Swamy.U.M., Rao.G.C., Nanaji Rao.G.[9] and [10], have studied the properties of a psuedocomplemented ADL and later introduced the concept of stone ADL [10] as a psuedo-complemented

ADL *R* with 0, in which $x^* \lor x^{**} = 0^*$, for all $x \in R$. Now we give the definition of a generalized stone ADL in the following.

Definition 3.5. An ADL R with 0 is called a generalized Stone ADL iff $(x]^* \lor (x]^{**} = R$ for each $x \in R$.

Example 3.6. Let $A = \{0, a\}$ and $B = \{0, b_1, b_2\}$ be two discrete ADLs. Write $R = A \times B = \{(0,0), (0, b_1), (0, b_2), (a, 0), (a, b_1), (a, b_2)\}$. Then $(R, \lor, \land, 0')$ is an ADL where 0' = (0, 0), under point-wise operations.

Now $((a,0)]^* \lor ((a,0)]^{**} = \{(0,0), (0,b_1), (0,b_2)\} \lor \{(0,0), (a,0)\} = R.$ $((0,b_1)]^* \lor ((0,b_1)]^{**} = \{(0,0), (a,0)\} \lor \{(0,0), (0,b_1), (0,b_2)\} = R.$ Also $((a,b_1)]^* \lor ((a,b_1)]^{**} = \{(0,0)\} \lor R = R.$ Hence $(R, \lor, \land, 0')$ is a generalized stone ADL.

We now characterize normal ADL and the generalized stone ADL in terms of annulets.

Theorem 3.7. *Let* R *be an ADL with 0. Consider the following conditions:*

- (1). Each annulet is a direct summand of R
- (2). *R* is a generalized stone ADL
- (3). *R* is normal
- (4). $\mathscr{A}_0(R)$ is a sublattice of the lattice $\mathscr{I}(R)$ of all ideals of R.

Then (1) is equivalent to (2), (3) is equivalent to (4), and (2) implies (3). If R is a \star -ADL, then (4) implies (1).

Proof: (1) \Rightarrow (2): Let $x \in R$. Then by (1), there exists an ideal J of R such that $(x]^* \cap J = (0]$ and $(x]^* \vee J = R$. Now $(x]^* \cap J = (0]$ implies that $J \subseteq (x]^{**}$. Hence $R = (x]^* \vee J \subseteq (x]^* \vee (x]^{**}$. Thus $R = (x]^* \vee (x]^{**} \quad \forall x \in R$.

(2) \Rightarrow (1): Assume that *R* is a generalized stone *ADL*. Let $x \in R$.

We have always $(x]^* \cap (x]^{**} = (0]$. By (2), we get $(x]^* \vee (x]^{**} = R$.

(2) \Rightarrow (3): Assume that *R* is a generalized stone ADL. Let $x, y \in R$. Always we have $(x]^* \lor (y]^* \subseteq (x \land y]^*$. Let $a \in (x \land y]^*$. Then $a \land x \land y = 0$.

$$\Rightarrow (a \land x \land y] = (0]$$

$$\Rightarrow (x] \cap (a \land y] = (0]$$

$$\Rightarrow (a \land y] \subseteq (x]^*$$

$$\Rightarrow (x]^{**} \subseteq (a \land y]^*$$

$$\Rightarrow (x]^{**} \cap (a \land y] = (0]$$

$$\Rightarrow (x]^{**} \cap \{(a] \cap (y]\} = (0]$$

$$\Rightarrow \{(x]^{**} \cap (a]\} \cap (y] = (0]$$

$$\Rightarrow (x]^{**} \cap (a] \subseteq (y]^*$$

It is clear that $(x]^* \cap (a] \subseteq (x]^*$

Thus we get that $\{(x]^* \cap (a]\} \lor \{(x]^{**} \cap (a]\} \subseteq (x]^* \lor (y]^*$ $\Rightarrow \{(x]^* \lor (x]^{**}\} \cap (a] \subseteq (x]^* \lor (y]^*$ $\Rightarrow R \cap (a] \subseteq (x]^* \lor (y]^*$ (since *R* is a generalized stone ADL) $\Rightarrow (a] \subseteq (x]^* \lor (y]^*$ $\Rightarrow a \in (x]^* \lor (y]^*$

Hence $(x \land y]^* \subseteq (x]^* \lor (y]^*$. Thus $(x \land y]^* = (x]^* \lor (y]^*$. Therefore *R* is normal. Now we prove the equivalency of (3) and (4).

 $(3) \Rightarrow (4)$: Assume that *R* is normal. Let $x, y \in R$. We have always $(x]^* \cap (y]^* = (x \lor y]^* \in \mathscr{A}_0(R)$. Since *R* is normal, we get $(x]^* \lor (y]^* = (x \land y]^* \in \mathscr{A}_0(R)$. Therefore $\mathscr{A}_0(R)$ is a sublattice of $\mathscr{I}(R)$.

(4) ⇒ (3): Assume the condition (4). Let $x, y \in R$. Then by (4), $(x]^* \vee (y]^* = (z]^*$, for some $z \in R$. Now $(z]^{**} = \{(x]^* \vee (y]^*\}^* = (x]^{**} \cap (y]^{**} = (x \land y]^{**}$. Hence $(x]^* \vee (y]^* = (x \land y]^*$. Therefore *R* is normal.

(4) ⇒ (1): Suppose *R* is a $\star - ADL$. Assume that $\mathscr{A}_0(R)$ is a sublattice of $\mathscr{I}(R)$. Let $x \in R$. Then there exists $x' \in R$ such that $(x]^{**} = (x']^*$. We have always $(x]^* \cap (x]^{**} = (0]$. Now $(x]^* \vee (x]^{**} = (x]^* \vee (x']^* = (z]^*$, for some $z \in R$ (by condition (4)). Hence $(z]^{**} = \{(x]^* \vee (x']^*\}^* = (x]^{**} \cap (x']^{**} = (x]^{**} \cap (x]^{***} = (0]$.

Thus $(x]^* \lor (x]^{**} = (z]^* = (0]^* = R$. Thus $(x]^*$ is a direct summand of R. \Box

Definition 3.8. An ADL R with 0, is called disjunctive iff for all $a, b \in R$,

$$(a]^* = (b]^*$$
 implies $a = b$.

Example 3.9. Let $R = \{0, a, b, c\}$ be a set. Define \lor and \land on R as follows:

V					٨				
0	0	а	b	С	0	0	0	0	0
а	а	а	а	а	а	0	а	b	с
b	b	а	b	а	b	0	b	b	0
с	с	а	а	с	С	0	с	0	с

Then clearly $(R, \lor, \land, 0)$ is an ADL with 0.

Now, $(a]^* = \{0\}, (b]^* = \{0, c\} and (c]^* = \{0, b\}.$

Thus $x \neq y$ implies that $(x]^* \neq (y]^*$ for all $x, y \in R$. Hence R is disjunctive.

Theorem 3.10. A disjunctive ADL R is dually isomorphic to $\mathscr{A}_0(R)$.

Proof: Let *R* be a disjunctive ADL. Define a mapping $\Phi : R \longrightarrow \mathscr{A}_0(R)$ by $\Phi(x) = (x]^*$, for all $x \in R$. Clearly Φ is well-defined.

(i). Let $x, y \in R$ be such that $\Phi(x) = \Phi(y)$. Then $(x]^* = (y]^*$. Since *R* is disjunctive, we get that x = y. Therefore Φ is One-one.

(ii). Let $y \in \mathcal{A}_0(R)$. Then $y = (x]^*$, for some $x \in R$. Now for this x, $\Phi(x) = (x]^* = y$. Therefore Φ is onto.

(iii). Let $(x]^*, (y]^* \in \mathscr{A}_0(R)$, where $x, y \in R$. Then $\Phi(x \land y) = (x \land y]^* = (x]^* \underline{\lor} (y]^* = \Phi(x) \underline{\lor} \Phi(y)$. Again $\Phi(x \lor y) = (x \lor y]^* = (x]^* \cap (y]^* = \Phi(x) \land \Phi(y)$. Hence Φ is a dual isomorphism.

In an ADL *R* with 0, we know that a maximal element is always a dense element. Now we prove the converse in disjunctive ADL.

Theorem 3.11. If *R* is a disjunctive ADL, then every dense element of *R* is a maximal element. **Proof:** Assume that *R* is disjunctive. Let *m* be a dense element of *R*. That is $(m]^* = (0]$. For any $x \in R, (m \lor x]^* = (m]^* \cap (x]^* = (0] \cap (x]^* = (0] = (m]^*$. Since *R* is disjunctive, we get that $m \lor$ x = m. Therefore *m* is a maximal element of *R*.

We now characterize a \star -ADl in terms of it's lattice of annulets in the following theorem.

Theorem 3.12. Let R be an ADL with 0. Then R is a \star -ADL iff $\mathscr{A}_0(R)$ is a Boolean subalgebra of $\mathscr{A}(R)$.

Proof: Assume that *R* is a \star -ADL.

Then *R* has a dense element, say *d*. Then $(d]^* = (0]$ is the least element and $(0]^*$ is the greatest element of the sublattice $\mathscr{A}_0(R)$ of $\mathscr{A}(R)$. Let $x \in R$. Since *R* is a *-ADL, there exists $x' \in R$ such that $(x]^{**} = (x']^*$.

We now show that $(x']^*$ is the complement of $(x]^*$ in $\mathcal{A}_0(R)$, for each $x \in R$.

Now $(x]^* \cap (x']^* = (x]^* \cap (x]^{**} = (0]$ and $(x]^* \vee (x']^* = [(x]^{**} \cap (x']^{**}]^* = [(x]^{**} \cap (x]^{***}]^* = [(x]^{**} \cap (x]^*]^* = (0]^*$. Thus $\mathscr{A}_0(R)$ is a Boolean subalgebra of $\mathscr{A}(R)$. Conversely assume that $\mathscr{A}_0(R)$ is a Boolean subalgebra of $\mathscr{A}(R)$.

Let $x \in R$. Then $(x]^* \in \mathscr{A}_0(R)$. Since $\mathscr{A}_0(R)$ is a subalgebra of $\mathscr{A}(R)$, there exists $(y]^* \in \mathscr{A}_0(R)$, with $y \in R$ such that $(x]^* \cap (y]^* = (0]$ and $(x]^* \vee (y]^* = (0]^*$.

Now $(x]^* \vee (y]^* = (0]^* \Rightarrow (x \land y]^* = (0]^* = R \Rightarrow x \land y = 0$. Again, $(x]^* \cap (y]^* = (0] \Rightarrow (x \lor y]^* = (0] \Rightarrow x \lor y$ is a dense element. Thus we proved that for each $x \in R$, there exists $y \in R$ such that $x \land y = 0$ and $x \lor y$ is a dense element. Therefore R is a \star -ADL.

Definition 3.13. An ADL R with 0 is called sectionally \star -ADL iff for any $x \neq 0 \in R$, the interval [0, x] is a \star -ADL.

Before proving the next theorem, we need the following lemma.

Lemma 3.14. Let I,J be two ideals in an ADL R. If $I \cap J$ and $I \vee J$ (i.e. The infimum and the supremum of I,J in the distributive lattice $\mathscr{I}(R)$) are both principal ideals, then I,J are also principal ideals.

Proof: Suppose $I \lor J = (a]$ and $I \cap J = (b]$, for some $a, b \in R$.

Now $a \in I \lor J \Rightarrow a = c \lor d$ for some $c \in I$ and $d \in J$. Then $c \lor (b \land d) \in I$. So that

 $(c \lor (b \land d)] \subseteq I$. We now prove that $I = (c \lor (b \land d)]$. Let $x \in I$. Then $x \in I \lor J = (a]$. So $x = a \land x = (c \lor d) \land x = (c \land x) \lor (d \land x) \longrightarrow (1)$. Now $x \in I$ and $d \in J \Rightarrow x \land d \in I \cap J = (b] \Rightarrow d \land x \in (b]$. Hence $d \land x = b \land d \land x \longrightarrow (2)$.

From (1) and (2), we can obtain $x = (c \land x) \lor (b \land d \land x) = [c \lor (b \land d)] \land x$. Hence $x \in (c \lor (b \land d)]$. Therefore $I \subseteq (c \lor (b \land d)]$.

By symmetry, we get that J is also a principal ideal.

Theorem 3.15. Let R be a generalized stone ADL. Then $\mathscr{A}_0(R)$ is a relatively complemented sublattice of the lattice $\mathscr{I}(R)$ of all ideals of R.

Proof: Let *R* be a generalized stone ADL. By theorem 3.7, $\mathscr{A}_0(R)$ is a sublattice of $\mathscr{I}(R)$. So we can treate \vee as \vee . Since $\mathscr{A}_0(R)$ is a distributive lattice with the greatest element $(0]^* = R$, it is enough to prove that each interval of the form [I,R], where $I \in \mathcal{A}_0(R)$, is complemented. Let $J = [(x]^*, R]$ be an interval in $\mathcal{A}_0(R)$ and $(y]^* \in J$. We have clearly $(y]^* \cap (y]^{**} = \{0\}$. Since *R* is generalized stone ADL, we have $(y]^* \lor (y]^{**} = R$ for all $y \in R$. Now $\{(x] \cap (y]^*\} \lor \{(x] \cap (y]^{**}\} = (x] \cap \{(y]^* \lor (y]^{**}\} = (x] \cap R = (x].$ Also $\{(x] \cap (y]^*\} \cap \{(x] \cap (y]^{**}\} = (x] \cap \{(y]^* \cap (y]^{**}\} = (x] \cap (0] = (0].$ Thus we have that the infimum and the supremum of the ideals $(x] \cap (y]^*$ and $(x] \cap (y]^{**}$ are the principal ideals (0] and (x]. Therefore, by the above lemma, $(x] \cap (y]^*$ and $(x] \cap (y]^{**}$ must be the principal ideals. Suppose $(x] \cap (y]^* = (a]$ and $(x] \cap (y]^{**} = (b]$ for some $a, b \in R$. Now $a \in (x] \cap (y]^* \Rightarrow (a] \subseteq (x] \Rightarrow (x]^* \subseteq (a]^*$. Therefore $(a]^* \in J$. Also $(a] = (x] \cap (y]^* \subseteq (y]^* \Rightarrow (y]^{**} \subseteq (a]^*$. Hence $(y]^* \lor (y]^{**} \subseteq (y]^* \lor (a]^* \Rightarrow R \subseteq$ $(a]^* \lor (y]^*$. Thus $R = (a]^* \lor (y]^* \longrightarrow (1)$ Again $(a^* \cap (y^* \cap (x)) = (a^* \cap (a^*) = (0)$. Hence $(a^* \cap (y^*) \subseteq (x^*)$. But $(x]^* \subseteq (y]^*$ and $(x]^* \subseteq (a]^*$ imply that $(x]^* \subseteq (a]^* \cap (y]^*$. Hence $(a]^* \cap (y]^* = (x]^* \longrightarrow (2)$ From (1) and (2), $(a]^*$ is the required complement of $(y]^*$ in *J*.

Hence $\mathscr{A}_0(R)$ is a relatively complemented sublattice of $\mathscr{I}(R)$.

Definition 3.16. Let I = [0, x], 0 < x, be an interval in an ADL R with 0. For $a \in I$, define the annihilator $(a]^+$ of a with respect to I as follows:

69

$$(a]^{+} = \{ y \in I \mid y \land a = 0 \}.$$

Observe that $(a]^* \cap I = (a]^+$.

Lemma 3.17. For $a \in I$, the annihilator $(a]^+$ is an ideal in I.

Proof: Since $0 \in I$ and $0 \land a = 0$, we get that $0 \in (a]^+$. Let $r, s \in (a]^+$. Then $r, s \in I$ and $r \land a = s \land a = 0$.

Since $r, s \in I$, we get $r \lor s \in I$, and $(r \lor s) \land a = (r \land a) \lor (s \land a) = 0 \lor 0 = 0$.

Hence $r \lor s \in (a]^+$. Let $y \in (a]^+$ and $t \in I$. Then $y \in I$ and $y \land a = 0$. Hence $y \land t \in I$. Now $(y \land t) \land a = t \land y \land a = t \land 0 = 0$, which implies that $y \land t \in (a]^+$. Thus $(a]^+$ is an ideal of I.

Lemma 3.18. Let I = [0, x], 0 < x, be an interval in an ADL R with 0. Then we have the following:

(*i*). For *a*, *b* ∈ *I*, (*a*]⁺ ⊆ (*b*]⁺ implies (*a*]^{*} ⊆ (*b*]^{*}. (*ii*). If *z* ∈ *R*, then $(z]^* \cap I = (z \land x]^+$.

Proof: (*i*). Let $a, b \in I$ and suppose $(a]^+ \subseteq (b]^+$. Let $t \in (a]^*$. Then $t \wedge a = 0$ and $t \in R \Rightarrow t \wedge x \wedge a = 0$ and $t \wedge x \in I$, since $x \in I$. Which implies $t \wedge x \in (a]^+ \subseteq (b]^+ \Rightarrow t \wedge x \wedge b = 0 \Rightarrow t \wedge b = 0$, since $t \in I = [0, x]$. Hence $t \in (b]^*$.

(*ii*). Let $t \in (z]^* \cap I$. Then $t \in (z]^*$ and $t \in I$. Hence $t \wedge z = 0$ and $t \in I$. Thus $t \wedge z \wedge x = 0$ and $t \in I \Rightarrow t \wedge (z \wedge x) = 0$ and $t \in I \Rightarrow t \in (z \wedge x]^+$.

Therefore $(z]^* \cap I \subseteq (z \land x]^+$. Again, let $t \in (z \land x]^+$, then $t \land z \land x = 0$ and $t \in I \Rightarrow z \land t \land x = 0$ and $t \in I \Rightarrow z \land t = 0$ and $t \in I \Rightarrow t \in (z]^*$ and $t \in I$. Hence $t \in (z]^* \cap I$. Thus $(z \land x]^+ \subseteq (z]^* \cap I$. Therefore $(z]^* \cap I = (z \land x]^+$. \Box

We now prove the characterization theorem of a sectionally *-ADL in terms of it's annulets. Before proving it, we can observe that if *R* is an ADL with 0 and I = [0, x], 0 < x for some $x \in R$, then $\mathscr{A}_0(I)$ is a bounded distributive lattice (with respect to the operations given in the theorem 3.3) with the greatest element $I = (0]^+$ and the least element $(x]^+$. **Theorem 3.19.** Let R be an ADL with 0. Then $\mathcal{A}_0(R)$ is relatively complemented if and only if R is sectionally \star -ADL.

Proof: Assume that $\mathcal{A}_0(R)$ is relatively complemented.

We have to prove that each interval I = [0, x] in *R* is a $\star -ADL$. By theorem 3.12, it is enough to prove that $\mathscr{A}_0(I)$ is relatively complemented.

Since $\mathscr{A}_0(I)$ is a distributive lattice with the greatest element $I = (0]^+$, it is enough to prove that each interval $[J, I], J \in \mathscr{A}_0(I)$ is complemented.

Choose $a, b \in I$ such that $(b]^+ \in [(a]^+, I] \subseteq \mathscr{A}_0(I)$. Then $(a]^+ \subseteq (b]^+ \subseteq I$.

By lemma 3.18(*i*), $(a]^* \subseteq (b]^* \subseteq R$.

Since $\mathscr{A}_0(R)$ is relatively complemented and $(b]^* \in [(a]^*, R]$, there exists an element $c \in R$ such that $(c]^* \in [(a]^*, R]$ and $(b]^* \cap (c]^* = (a]^*$ and $(b]^* \underline{\lor}(c]^* = R$.

Now $(b]^* \cap (c]^* = (a]^* \Rightarrow (b]^* \cap (c]^* \cap I = (a]^* \cap I \Rightarrow [(b]^* \cap I] \cap [(c]^* \cap I] = (a]^* \cap I \Rightarrow (b]^+ \cap (c]^+ = (a]^+ \longrightarrow (1)$

Secondly, $(b]^* \underline{\vee}(c]^* = R \Rightarrow [(b]^* \underline{\vee}(c]^*] \cap I = R \cap I \Rightarrow [(b]^* \cap I] \underline{\vee} [(c]^* \cap I] = I \Rightarrow (b]^+ \underline{\vee}(c]^+ = I \longrightarrow (2)$

From (1) and (2), we get that $(c]^+$ is the complement of $(b]^+$ in $[(a]^+, I]$.

Hence $[(a]^+, I]$ is relatively complemented.

Conversely assume that *R* is sectionally \star -ADL.

Since $\mathscr{A}_0(R)$ is a distributive lattice with the greatest element *R*, it is enough to prove that each interval $[(a]^*, R], (a]^* \in \mathscr{A}_0(R)$ is complemented.

Let $(b]^* \in [(a]^*, R]$. Therefore $(a]^* \subseteq (b]^* \subseteq R$.

Consider the interval $I = [0, b \lor a]$. Then by the hypothesis, I is a $\star - ADL$.

So by theorem 3.12, $\mathscr{A}_0(I)$ is complemented.

Hence each interval $[(a]^+, I], (a]^+ \in \mathcal{A}_0(I)$, where $a \in I$ is complemented.

We have by the lemma 3.18(*ii*), $(a]^* \cap I = (a \land (b \lor a)]^+$ and

 $(b]^* \cap I = (b \land (b \lor a)]^+ = (b]^+ \subseteq I$, that is $(b]^+ \in [(a \land (b \lor a)]^+, I]$.

Since $\mathcal{A}_0(I)$ is complemented, there exists an element $c \in I$ such that

 $(b]^+ \cap (c]^+ = (a \land (b \lor a)]^+ \text{ and } (b]^+ \underline{\lor} (c]^+ = I \longrightarrow (3)$

Now our claim is $(b]^* \cap (c]^* = (a]^*$ and $(b]^* \underline{\lor}(c]^* = R$.

Let $x \in (b]^* \cap (c]^*$. Then $x \in (b]^*$ and $x \in (c]^*$, implies $b \land x = 0$ and $c \land x = 0$ $\Rightarrow x \land (b \lor a) \land b = 0 \text{ and } x \land (b \lor a) \land c = 0.$ $\Rightarrow x \land (b \lor a) \in (b]^+$ and $x \land (b \lor a) \in (c]^+$, since $x \land (b \lor a) \in I$. $\Rightarrow x \land (b \lor a) \in (b]^+ \cap (c]^+$ $\Rightarrow x \land (b \lor a) \in (a \land (b \lor a)]^+, by (3)$ $\Rightarrow x \land (b \lor a) \land a \land (b \lor a) = 0$ $\Rightarrow x \land a \land (b \lor a) \land (b \lor a) = 0$ \Rightarrow $(x \land a) \land (b \lor a) = 0$ $\Rightarrow (b \lor a) \land (x \land a) = 0$ $\Rightarrow x \land (b \lor a) \land a = 0$ $\Rightarrow x \wedge a = 0$ $\Rightarrow x \in (a]^*$ Hence $(b]^* \cap (c]^* \subseteq (a]^* \longrightarrow (4)$ Conversely, let $x \in (a]^*$. Then $x \wedge a = 0$ $\Rightarrow x \land a \land (b \lor a) \land (b \lor a) = 0$ $\Rightarrow x \land (b \lor a) \land a \land (b \lor a) = 0$ $\Rightarrow x \land (b \lor a) \in (a \land (b \lor a)]^+, \text{ since } x \land (b \lor a) \in I.$ $\Rightarrow x \land (b \lor a) \in (b]^+ \cap (c]^+, by (3)$ $\Rightarrow x \land (b \lor a) \in (b]^+ \text{ and } x \land (b \lor a) \in (c]^+$ $\Rightarrow x \land (b \lor a) \land b = 0 \text{ and } x \land (b \lor a) \land c = 0.$ \Rightarrow $x \land b = 0$ and $x \land c = 0$, since $c \in I = [0, b \lor a]$. $\Rightarrow x \in (b]^*$ and $x \in (c]^*$ $\Rightarrow x \in (b]^* \cap (c]^*$ Hence $(a]^* \subseteq (b]^* \cap (c]^*$. \longrightarrow (5) From (4) and (5), we can obtain $(b]^* \cap (c]^* = (a]^*$. Again from (3), we have $(b]^+ \lor (c]^+ = I$ $\Rightarrow (b \land c]^+ = (b]^+ \lor (c]^+ = I$ $\Rightarrow (b \land c]^+ = I$ $\Rightarrow b \wedge c = 0$

REFERENCES

$$\Rightarrow (b \land c]^* = (0]^* = R$$
$$\Rightarrow (b]^* \lor (c]^* = R$$

Hence $(c]^*$ is the complement of $(b]^*$ in $[(a]^*, R]$. Thus $\mathscr{A}_0(R)$ is relatively complemented.

ACKNOWLEDGEMENTS. The authors would like to thank the referee for his comments and

valuable suggestions.

References

- [1] Birkhoff. G. : Lattice Theory, Amer.Math.Soc.Colloq. XXV, Providence, (1967), U.S.A.
- [2] Burris. S., Sankappanavar, H.P.: A Cource in Universal Algebra, Springer Verlag, (1981).
- [3] Cornish.W.H.: Normal Lattices, J.Austral.Math.Soc., 14 (1972), 200-215.
- [4] Cornish.W.H.: Annulets and α- ideals in Distributive Lattices, J.Austral.Math.Soc., 15 (1973), 70-77.
- [5] Mandelker. M : Relative annihilators in lattices, Duke Math. J, 37 (1970), 377-386.
- [6] Rao.G.C. : Almost Distributive Lattices, Doctoral Thesis, Andhra University, Waltair, (1980).
- [7] Rao.G.C.and Ravikumar.S : *Normal Almost Distributive Lattices*, Southeast Asian Bulletin of mathematics,(to appear).
- [8] Swamy.U.M., Rao.G.C. : Almost Distributive Lattices, J.Austral.Math.Soc. (Series A), 31 (1981), 77-91.
- Swamy.U.M., Rao.G.C., Nanaji Rao.G. : *Pseudo-Complementation on Almost Distributive Lattices*, Southeast Asian Bulletin of mathematics, 24 (2000), 95-104.
- [10] Swamy.U.M., Rao.G.C., Nanaji Rao.G. : Stone Almost Distributive Lattices, Southeast Asian Bulletin of mathematics, 27 (2003), 513-526.
- [11] Swamy.U.M., Rao.G.C., Nanaji Rao.G. : Dense Elements in Almost Distributive Lattices, Southeast Asian Bulletin of mathematics, 27 (2004), 1081-1088.