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Abstract. We introduce the concept of annulets in an Almost Distributive lattice(ADL) R with 0. We
characterize both generalized stone ADL and normal ADL in terms of their annulets. We characterize
*-ADLs by means of their annulets. It is proved that the lattice .e/,(R) of all annulets of a generalized
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1. Introduction

The concept of an Almost Distributive Lattice(ADL) was introduced by Swamy. U.M. and
Rao.G.C [8] as a common abstraction to most of the existing ring theoretic and lattice the-
oretic generalizations of a Boolean algebra. Later a more general class called x-ADLs was
introduced in the paper [10]. The characterization of x-ADL by means of it’s dense elements
was studied in [11]. In [5], Mandelker studied the properties of relative annihilators and
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characterized the distributive lattice in terms of relative annihilators. In this paper the con-
cept of Annulet as an ideal of the form (x]* ={a €R | xAa =01} in an ADL R with O is
introduced, analogous to that in a distributive lattice[4]. It is proved that the set ./;(R) of
all annulets of an ADL R with 0 can be made into a distributive lattice and sublattice of the

Boolean algebra ./ (R) of all annihilator ideals of R.

We characterize the generalized stone ADL and normal ADL in terms of their annulets. We
introduce a more general class of ADLs called disjunctive ADLs with suitable examples and
prove that a disjunctive normal AD L is dually isomorphic to the lattice .«/,(R). We characterize
»x-ADLs by means of their annulets. If R is a generalized stone ADL, then it is proved that the
lattice .#/,(R) is a relatively complemented sublattice of the lattice .#(R) of all ideals of R.

Finally, it is proved that .«/,(R) is relatively complemented iff R is sectionally x-ADL.

2. Preliminaries

An Almost Distributive Lattice (ADL) is an algebra (R, V, A) of type (2,2) satisfying

1. (xVy)Az = (xAz)V(yAz)

2. xA(yVvz) = (xAy)V(xAz)

3. (xVy)Ay =y

4, (xVy)Ax = x

5. xV(xAy) = x. for any x, y,z €R.

If R has an element O and satisfies 0 Ax = 0 and x V0 = x along with the above properties,

then R is called an ADL with 0.

Every non-empty set X can be regarded as an ADL as follows. Let x, € X. Define two
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binary operations V, A on X by
x if x # xq y ifx#xg

xXVy= XAy =
y ifx=xg xo if x=xq

Then (X, V, A, x) is an ADL with x, as zero element and is called a discrete ADL.

60

If (R,V,A,0) is an ADL, for any a,b € R, define a < b if and only if a = a A b ( or equiv-

alently, a vV b = b ), then < is a partial ordering on R.

Theorem 2.1. For any a, b,c € R, we have the following:

aVb=a<aAnb=D
avb=b&SaAb=a
aAb=DbAawhenevera<b
A is associative in R
aAbAc=bAaAc
(avb)Ac=(bVva)Ac
aANb=0&bAa=0

aVb=>bVawheneveraAb=0

v ©® N o o W DN =

aVvV(bAac)=(avb)A(aVvc)

—_
o

. aA(avb)=a,(aAb)Vb=b,andaVv(bAa)=a

—_
—_

.a<aVbandaAb<b

—_
N

aANa=aandaVa=a

—_
w

OVa=aandaAn0=0

—_
»

Ifa<candb<cthenaAb=bAaandaVb=bVa

15. avb=avbvVva.

An element m € R is called maximal if it is maximal in the partial ordered set (R, <). That

is, forany x eR,m < x = m = Xx.

Theorem 2.2. Let R be an ADL and m € R. Then the following are equivalent:
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1. m is a maximal element with respect to <
2. mVx=nm,forall x eR
3. mAx=ux,forall x eR

4. x V m is maximal for all x €R.

A non-empty subset I of R is called an ideal(filter)of Rif avbel(aAnbel)andaAx €
I(x Va €I)whenever a,b €I and x € R. If [ is an ideal of R and a,b € R ;thena A b €
I & bAael. The set #(R) of all ideals of R is a complete distributive lattice with least
element {0} and the greatest element R under set inclusion in which, for any I,J € .#(R),INJ
is the infimum of I,J and the supremum is given by IVJ ={ivj|ie€l,jeJ}. For
any a €R, (a] = {aAx | x R} is the principal ideal generated by a. Similarly, for any
a €R,[a) ={xVa|xe€R}is the filter generated by a. An ideal I of R is called a direct

summand of R if there exists an ideal J in R such that INJ = (0] and I VJ =R.

Theorem 2.3. For any a, b € R, we have the following:

1. (@]Vv(b]=(aVvb]=(bVa]
2. (a]n(b]=(arb]l=(bAd]
3. [@V[b)=[aAb)=[bAa)
4. [N[b)=[aVvb)=[bVa)

Thus the set #.#(R) of all principal ideals of R is a sublattice of the distributive lattice
#(R) of ideals of R. A proper ideal P of R is said to be prime if for any x,y €R, x Ay €P =
either x € P or y € P. It is clear that a subset P of R is a prime ideal iff R — P is a prime filter.

ForanyACR,A"={x€R|aAx=0foralla €A}l isan ideal of R. We write (a]* for
{a}*. Then clearly (0]* =R and R* = (0]. An element a € R is called dense if (a]* = (0]. The
set of all dense elements of R is denoted by D. An ideal I of R is called dense if I* = (0]. An
ADL R with 0 is called a x-ADL [10], if for each x € R, there exists an element x’ € R such
that (x]* = (x’]*. R is a x-ADL iff to each x € R, there exists x’ € R such that x A x’ =0 and

x V x’ is dense. Every x-ADL possesses a dense element. An ADL R with 0 is called relatively
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complemented if each interval [a, b],a < b, in R is a complemented lattice.

An ideal I of R is called an annihilator ideal if I = I"* | or equivalently, = S* = { y €
R|yAs =0 foralls € S} for some non-empty subset S of R. We denote the set of
all annihilator ideals of R by ./(R). The set .&/(R) forms a complete Boolean algebra with
bounds {0},R and the complement of any I € ./(R) is I* with respect to the operations A and

VvgivenbyIANJ=INJandI VJ={I"NJ")".

3. Annulets

In this section, we introduce the concept of annulets in R and study some basic properties
of these annulets. We prove charactarization theorems of a few algebraic structures with the

help of their annulets. We begin with the following definition.

Definition 3.1. Let R be an ADL with 0 and x € R. Then define the annulet (x]* as follows:
(x]*={yeR|xAy=0}

Clearly (x]* is an ideal in R and hence an annihilator ideal.

Let us denote ./;(R) ={ (x]* | x €R }.

Annulets have many important properties. We give some of them in the following lemma

which can be proved directly.

Lemma 3.2. Let R be an ADL with 0 and x,y € R. Then we have:
Lx<y=0ulckl
2. (x Ay =y Ax]?
. (xvyl*=(Vvx]*
4 (evyl" =G ny]”
5. (xI"vyIcxayl”

Note: Since each annulet is an annihilator ideal, we can have the following:

IV T = [N 1] = [ AT ] = (x Ay T
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I AT =GNy ] =G v y]"

Now we prove in the following theorem that the set .e/;(R) of all annulets of an ADL R

forms a distributive lattice.

Theorem 3.3. Let R be an ADL with 0. Then (. (R),N,V) is a distributive lattice and a
sublattice of the Boolean algebra (.«/(R),N,V,*,(0],R) of annihilator ideals of R. ./,(R) has the
same greatest element R = (0]* as ./ (R) while .«f;(R) has the smallest element iff R possesses a

dense element.

Proof: Let (x]*,(y]* € .(R), where x,y €R. Then

LA =0 ny]" =V y]" € #(R) and

2. (x]I'v(y I = (x A y]* € (R).
Hence .«/;(R) is a sublattice of .«/(R). Since .«/(R) is distributive, we have that .«/,(R) is also
distributive. Clearly (0]* is the greatest element of ./(R). Now for any (x]* € .¢/;(R), we get
(x1*N(0]" = (xVvO0]* = (x]* and (x]*Vv(0]* = (x AO]* = (0]*. It shows that (0]* is the greatest
element in .¢/(R). Now, it remains to prove the final condition of the theorem. Assume .</;(R)
has the smallest element, say (d]* where d € R. Suppose x € (d]*. Then x Ad = 0. Since
(d]* is the least element, we get (x]* = (x]*Vv(d]* = (x Ad]* = (0]* =R. Hence x = 0. Thus
(d]* = (0]. Therefore d is a dense element in R.
Conversely, suppose that R possesses a dense element, say d. So (d]* = (0]. Clearly (d]* €
Ap(R). Now for any x € R, consider (x]* N (d]* = (x]* N (0] = (0]. Also (x]*v(d]* =
[(x]* N (d]*]" = [(x]*Nn(0]*]" = [(x]* NR]" = (x]** = (x]*. Hence (d]* is the smallest

element in .«/;(R). O

The following definition of a normal ADL is taken from [7].

Definition 3.4. An ADL R with O is called normal ADL iff for all x,y €R

Vv =0GAyl

Swamy.U.M., Rao.G.C., Nanaji Rao.G.[9] and [10], have studied the properties of a psuedo-

complemented ADL and later introduced the concept of stone ADL [10] as a psuedo-complemented
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ADL R with 0, in which x*Vv x*™ = 0%, for all x € R. Now we give the definition of a generalized

stone ADL in the following.

Definition 3.5. An ADL R with 0 is called a generalized Stone ADL iff

(x]*V (x]*™ =R for each x €R.

Example 3.6. Let A= {0,a} and B = {0, b,, b,} be two discrete ADLs. Write R=A X B =
{(0,0),(0, b7),(0, by),(a,0),(a, by),(a,by)}. Then (R,V,A,0") is an ADL where 0’ = (0,0),
under point-wise operations.

Now ((a,0)]* v ((a,0)]* = {(0,0),(0, by), (0, b2)} v {(0,0),(a,0)} =R.
((0,b)]* v ((0,b1)]™ = {(0,0),(a,0)} v {(0,0), (0, b,), (0, b)} =R.
Also ((a,b1)]* v ((a,by)]*™ ={(0,0)} VR=R.

Hence (R,V, A,0") is a generalized stone ADL.
We now characterize normal ADL and the generalized stone ADL in terms of annulets.

Theorem 3.7. Let R be an ADL with 0. Consider the following conditions:
(1). Each annulet is a direct summand of R
(2). R is a generalized stone ADL
(3). Risnormal
(4). y(R) is a sublattice of the lattice #(R) of all ideals of R.
Then (1) is equivalent to (2), (3) is equivalent to (4), and (2) implies (3). If R is a x-ADL, then
(4) implies (1).

Proof: (1) = (2): Let x € R. Then by (1), there exists an ideal J of R such that (x]*NJ = (0]
and (x]*VJ =R. Now (x]*NnJ = (0] implies that J  (x]*™*. Hence R = (x]*VJ C (x]*Vv(x]*™.
ThusR=(x]*Vv (x]™ V x €R.

(2) = (1): Assume that R is a generalized stone ADL. Let x €R.

We have always (x]* N (x]™ = (0]. By (2), we get (x]* vV (x]*™ =R.

(2) = (3): Assume that R is a generalized stone ADL. Let x,y € R. Always we have (x]*V
(yI*<S(xAy]*.Letae(x Ay]*. ThenaAx Ay =0.

= (aAxAy]=(0]
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= (x]n(any]=(0]

= (any] S (x]”

= (x]" S (anyl”

= (x]"'n(any]=(0]

= (x]"n{(a]n(y]} = (0]

= {(x]"n(al}n(y] =(0]

= (x]"n(a] <]
It is clear that (x]*N (a] € (x]*
Thus we get that {(x]* N (a]} vV {(x]** Nn(al} S (x]" VvV (¥]*

= {]*v(x]"in(a] € (x]"v (¥ ]

= RN(a] € (x]*Vv(y]" (sinceR is a generalized stone ADL )

= (a] e (x]"Vv(yT*

= ac(x]"v(yl"
Hence (x A y]* € (x]*V (¥]*. Thus (x A y]* = (x]* vV (¥]*. Therefore R is normal.
Now we prove the equivalency of (3) and (4).
(8) = (4): Assume that R is normal. Let x,y € R. We have always (x]* N (y]* =(x Vv y]* e
p(R). Since R is normal, we get (x]*V (¥]* = (x A y]* € &, (R). Therefore .«/,(R) is a
sublattice of #(R).
(4) = (3): Assume the condition (4). Let x, y € R. Then by (4), (x]*V (y]* = (2]*, for some
z €R. Now (z]™ = {(x]" v (yI"} = (x]" n(y]" = (x A y]™. Hence (x]* v (y]" = (x A y]".
Therefore R is normal.
(4) = (1): Suppose R is a x —ADL. Assume that .«/,(R) is a sublattice of .#(R). Let x € R.
Then there exists x’ € R such that (x]** = (x’]*. We have always (x]* N (x]** = (0]. Now
(1" Vv (x]™ = (x]* v (x'T* = (2]*, for some z € R(by condition (4)). Hence (z]™ = {(x]* Vv
(I = (17N (] = (7 N (] = (0]
Thus (x]* vV (x]* = (z]* = (0] =R. Thus (x]* is a direct summand of R. O

Definition 3.8. An ADL R with 0, is called disjunctive iff for all a, b €R,

(a]* = (b]* implies a = b.
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Example 3.9. Let R = {0,a, b,c} be a set. Define V and A on R as follows:

V|0 a b c A0 a b ¢
0/0 a b ¢ 0/{0 0 0O
ala a a a a|l0 a b ¢
b|b a b a b{0O b b O
clc a a c c|0 c¢c 0 ¢

Then clearly (R, V, A,0) is an ADL with 0.
Now, (a]* = (0], (b]* = {0,c} and (c]* = {0, b}.
Thus x # y implies that (x]* # (y]* for all x,y € R. Hence R is disjunctive.

Theorem 3.10. A disjunctive ADL R is dually isomorphic to .«/y(R).
Proof: Let R be a disjunctive ADL. Define a mapping ® : R — .&/;(R) by ®(x) = (x]*, for all
x €R. Clearly & is well-defined.

(). Let x,y € R be such that ®(x) = ®(y). Then (x]* = (y]*. Since R is disjunctive, we get
that x = y. Therefore ® is One-one.

(ii). Let y € .&(R). Then y = (x]*, for some x € R. Now for this x, ®(x) = (x]* = y.
Therefore & is onto.

(ii)). Let(x]*,(y]* € . (R), where x,y €R.

Then @(x A y) = (x A y]* = (x]"V(y]" = 2(x)ve(¥).

Again ®(x Vy)=(xVy]"=(]"n(y]" = 2(x) A &(y).

Hence @ is a dual isomorphism. O

In an ADL R with 0, we know that a maximal element is always a dense element. Now we

prove the converse in disjunctive ADL.
Theorem 3.11. If R is a disjunctive ADL, then every dense element of R is a maximal element.

Proof: Assume that R is disjunctive. Let m be a dense element of R. That is (m]* = (0]. For any

x €R,(mvx]*=(m]*n(x]* = (0]N(x]* = (0] = (m]*. Since R is disjunctive, we get that mV
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x = m. Therefore m is a maximal element of R. O

We now characterize a x-ADI in terms of it’s lattice of annulets in the following theorem.

Theorem 3.12. Let R be an ADL with 0. Then R is a »-ADL iff .«/,(R) is a Boolean subalgebra
of .« (R).

Proof: Assume that R is a x-ADL.

Then R has a dense element, say d. Then (d]* = (0] is the least element and(0]* is the great-
est element of the sublattice .e/,(R) of .o/ (R). Let x €R. Since R is a x-ADL, there exists x’ € R
such that (x]™ = (x’]*.

We now show that (x’]* is the complement of (x]* in .« (R), for each x €R.

Now (x]*N(xT* = (x]*n(x]* = (0] and (x]*V(x']* = [(x]* N (x'T*]" = [(x]* N (x]*]" =
[(x]™ N (x]*]* = (0]*. Thus .2/ (R) is a Boolean subalgebra of ./ (R). Conversely assume that
y(R) is a Boolean subalgebra of .« (R).

Let x € R. Then (x]* € .#,(R). Since .2/,(R) is a subalgebra of ./(R), there exists (y]* €
y(R), with y € R such that (x]* N (y]* = (0] and (x]* v (y]* = (0]*.

Now (x]* V (yI* = (0]* = (x Ay]* =(0]* =R = x Ay = 0. Again, (x]*n(y]* = (0] =
(x vy]* = (0] = x Vy is a dense element. Thus we proved that for each x € R, there
exists y € R such that x Ay = 0 and x V y is a dense element. Therefore R is a x-ADL.

O

Definition 3.13. An ADL R with 0 is called sectionally x-ADL iff for any x(# 0) € R, the

interval [0, x] is a x-ADL.
Before proving the next theorem, we need the following lemma.

Lemma 3.14. Let I,J be two ideals in an ADL R. If INJ and I VJ (i.e. The infimum and
the supremum of 1,J in the distributive lattice #(R)) are both principal ideals, then I,J are also

principal ideals.

Proof: Suppose I VJ = (a] and I nJ = (b], for some a, b €R.

Nowae€elIVvJ =>a=cVvdforsomec €l andd €J. ThencVv(bAd) € I. So that
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(cv(bAd)] S I. Wenow prove that I =(cV(bAd)].

Letx€l. ThenxelIVvJ=(a].

Sox=aAx=(cVdAx=(cAx)V(dAx) —(1).
NowxelanddeJ=>xAdelInJ=(b]=dAxe<(b].

Henced Ax=bAdAx — (2).

From (1) and (2), we can obtain x = (c Ax)V(bAdAXx)=[cV(bAd)] Ax. Hence x €
(cv(bAd)]. Therefore I C(cVv(bAd)].

By symmetry, we get that J is also a principal ideal. O

Theorem 3.15. Let R be a generalized stone ADL. Then .«/y(R) is a relatively complemented
sublattice of the lattice #(R) of all ideals of R.

Proof: Let R be a generalized stone ADL. By theorem 3.7, .&/,(R) is a sublattice of .#(R). So
we can treate V as V. Since .o/, (R) is a distributive lattice with the greatest element (0]* =R,
it is enough to prove that each interval of the form [I,R], where I € ./,(R), is complemented.
Let J = [(x]*,R] be an interval in .o/;(R) and (y]* € J. We have clearly (y]* N (y]* = (0].
Since R is generalized stone ADL, we have (y]* vV (y]™ =R for all y €R.

Now {(x]N (Y]} v {(x]N (y]*} = (x] N {]* v (17} = (x] nR = (x].

Also {(x] N (]} N {(x] N (¥1*} = (] N {(rT* N (1"} = (x] N (0] = (0.

Thus we have that the infimum and the supremum of the ideals (x]N(y]* and (x]N(y]** are
the principal ideals (0] and (x].

Therefore, by the above lemma, (x] N (y]* and (x] N (y]™ must be the principal ideals.
Suppose (x] N (y]* =(a] and (x] N (y]*™ = (b] for some a,b €R.

Now a € (x]N(y]* = (a] € (x] = (x]* € (a]*.Therefore (a]* € J.

Also (a] = (xINn(y]* € (y]" = (y]™ S (a]”. Hence (yI"V(y]™ € (y]"V(a]* =R C
(a]*v(y]". ThusR=(a]* v (y]" — (1)

Again (a]*N(y1* N (x] = (a]*n(a] = (0]. Hence (a]*N(y]* < (x]*.

But (x]* € (y]* and (x]* € (a]* imply that (x]* C (a]* N (y]*.

Hence (a]"N(y]"=(x]" —(2)

From (1) and (2), (a]* is the required complement of (y]* in J.
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Hence .«/;(R) is a relatively complemented sublattice of .#(R). O

Definition 3.16. Let I = [0,x],0 < x, be an interval in an ADL R with 0. For a € I, define
the annihilator (a]™ of a with respect to I as follows:
(al*={yellynra=0}
Observe that (a]* NI = (a]*.
1+

Lemma 3.17. For a € I, the annihilator (a]™ is an ideal in I.

Proof: Since 0 € I and 0 Aa = 0, we get that 0 € (a]™. Let ;s € (a]™. Then r,s € I and
rAha=sAa=0.

Sincer,sel,wegetrvVsel,and (rvs)Aa=(rAa)V(sAha)=0v0=0.
Hence r Vs €(a]t. Let y € (a]t andt €I. Then y €I and y Aa =0. Hence y At €I. Now
(yAt)Aa=tAyAa=tA0=0,which implies that y At € (a]™. Thus (a]™ is an ideal of I.

O

Lemma 3.18. Let I = [0,x],0 < x, be an interval in an ADL R with 0. Then we have the
following:
(i). For a,b €1,(a]* € (b]* implies (a]* C (b]*.

(ii). Ifz €R, then (z]* NI =(z A x]T.

Proof: (i). Let a,b € I and suppose (a]™ € (b]". Let t € (a]*. Then t Aa = 0 and
teR=>tAxAa=0and tAx €I, since x € I. Which implies t A x € (a]™ C (b]" =
tAXAb=0=>tAb=0,sincet €I =[0,x]. Hence t € (b]*.
(ii). Let t € (z]*NI. Thent € (z]*and t €I. Hence t Az =0and t €I. Thust AzAx =0
andt€l=>tA(zAx)=0andtel=>te(zAx]t.
Therefore (z]*NI € (zAx]*. Again, let t € (zAx]",then tAzAx =0andt €] = zAtAx =0
andt €I =>zAt=0andt €l =t e (z]*andt €I. Hence t € (2]*NI. Thus (zAx]" C (z]*NI.
Therefore (z]*NI=(zAx]T. O

We now prove the characterization theorem of a sectionally x-ADL in terms of it’s annulets.
Before proving it, we can observe that if R is an ADL with 0 and I = [0,x],0 < x for some
X € R, then .¢/,(I) is a bounded distributive lattice ( with respect to the operations given in

the theorem 3.3 ) with the greatest element I = (0]" and the least element (x]*.
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Theorem 3.19. Let R be an ADL with 0. Then .</,(R) is relatively complemented if and only if
R is sectionally x-ADL.

Proof: Assume that .«/,(R) is relatively complemented.

We have to prove that each interval I = [0, x] in R is a x—ADL. By theorem 3.12, it is enough
to prove that .of;(I) is relatively complemented.

Since .of,(I) is a distributive lattice with the greatest element I = (0]7, it is enough to prove
that each interval [J,I],J € .«/(I) is complemented.

Choose a, b €I such that (b]* € [(a]*,I] € . (I). Then (a]* S (b]* C1.

By lemma 3.18(i), (a]* € (b]* CR.

Since .«/,(R) is relatively complemented and (b]* € [(a]*,R], there exists an element ¢ € R
such that (c]* € [(a]*,R] and (b]* N (c]* = (a]* and (b]*V(c]* =R.

Now (b]*N(c]* = (a]* = (bI'n(c]* NI =(a]*NnI = [(b]*nI]Nn[(c]'NI] =(a]*"NI =
(b1" N (] =(a]" — (1)

Secondly, (b]*V(c]* =R= [(b]*V(c]*]nI =RNI = [(b]*NI]V[(c]'NnI]=1= (b]"V(c]* =
I —(2)

From (1) and (2), we get that (c]* is the complement of (b]" in [(a]*,I].

Hence [(a]™,I] is relatively complemented.

Conversely assume that R is sectionally x-ADL.

Since .¢/,(R) is a distributive lattice with the greatest element R, it is enough to prove that
each interval [(a]*,R], (a]* € .9/, (R) is complemented.

Let (b]* € [(a]*,R]. Therefore (a]* € (b]* CR.

Consider the interval I = [0, b V a]. Then by the hypothesis, I is a x —ADL.

So by theorem 3.12, ./,(I) is complemented.

Hence each interval [(a]™,I],(a]* € .9 (I), where a € I is complemented.

We have by the lemma 3.18(ii), (a]*NI =(aA(bVa)]" and

(b]*NI=(bA(bVva)]t= (bl S, thatis (b]T € [(aA(bVa)]t,I].

Since .#/,(I) is complemented, there exists an element ¢ € I such that

(01" N(c]"=(aAn(bva)l” and (b]"V(c]"=1 —(3)

Now our claim is (b]* N (c]* = (a]* and (b]*V(c]* =R.
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Let x € (b]* N (c]*. Then x € (b]* and x € (c]*, impliess bAx =0and cAx =0
= xA(bva)Ab=0and xA(bVa)Ac=0.
= xA(bva)e(b]Tand x A(bVva)e(c], sincexA(bva)el.

= xA(bva)e(b] n(c]t

= xA(bva)e(an(bva)l’, by(3)

= xA(bVva)AaA(bva)=0

xAaA(bva)A(bva)=0

(xAa)A(bVva)=0

=
=
= (bva)A(xAa)=0
= xA(bva)Aa=0
= xAa=0
= x €(a]”
Hence (b]*N(c]* S (a]* —(4)
Conversely, let x € (a]*. Then x Aa =10
= xANaA(bVva)A(bva)=0
= xA(bva)AhaA(bva)=0
= xA(bva)e(an(bva)]t, sincexA(bVva)el.
= xA(bva)e(b]tn(c]?, by (3)
= xA(bva)e(b]tand x A(bVva)e(c]
= xA(bva)Ab=0and xA(bVva)Ac=0.
= xAb=0and xAc=0, sincecelI=[0,bVal.

x € (b]* and x € (c]*

J

= xe (bl n(c]*
Hence (a]* € (b]* N (c]*. — (5)
From (4) and (5), we can obtain (b]* N (c]* = (a]®.
Again from (3), we have (b]TVv(c]T =1

= (bAc]t =(b]V(c]" =1

= (bAc]t =1

= bAc=0
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= (bAc]*=(0]*=R
= (bI'v(c]"=R

Hence (c]* is the complement of (b]* in [(a]*,R].

Thus ./, (R) is relatively complemented. O
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