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1. Introduction

In 1982, the notions of ω-closed sets and ω-open sets were introduced and studied by

Hdeib [7]. In 2009, Noiri et al. [10] introduced some generalizations of ω-open sets and

investigated some properties of the sets. Moreover, they used them to obtain decompositions

of continuity.

In this paper, we introduce and investigate the new notion called semi-ω-open sets which

is weaker than α −ω-open sets and stronger than β −ω-open sets. Also we introduce and

investigate some new generalized classes of τω.
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2. Preliminaries

Throughout this paper, R (resp. Q, Q⋆) denotes the set of all real numbers (resp. the set

of all rational numbers, the set of all irrational numbers).

By a space (X ,τ), we always mean a topological space (X ,τ)with no separation properties

assumed. If H ⊂ X , cl(H) and int(H) will, respectively, denote the closure and interior of H

in (X ,τ). τH denotes the relative topology on H and τu denotes the usual topology on R.

Definition 1. A subset H of a space (X ,τ) is said to be semi-open [9] if H ⊂ cl(int(H)).

Definition 2 ([11]). Let H be a subset of a space (X ,τ), a point p in X is called a condensation

point of H if for each open set U containing p, U ∩ H is uncountable.

Definition 3 ([7]). A subset H of a space (X ,τ) is calledω-closed if it contains all its condensation

points.

The complement of an ω-closed set is called ω-open.

It is well known that a subset W of a space (X ,τ) is ω-open if and only if for each x ∈W ,

there exists U ∈ τ such that x ∈ U and U −W is countable. The family of all ω-open sets,

denoted by τω, is a topology on X , which is finer than τ. The interior and closure operator in

(X ,τω) are denoted by intω and clω respectively.

Lemma 1 ([7]). Let H be a subset of a space (X ,τ). Then

(i) H is ω-closed in X if and only if H = clω(H).

(ii) clω(X\H) = X\intω(H).

(iii) clω(H) is ω-closed in X .

(iv) x ∈ clω(H) if and only if H ∩ G 6= φ for each ω-open set G containing x.

(v) clω(H) ⊂ cl(H).

(vi) int(H) ⊂ intω(H).

Remark 1. For a subset of a space (X ,τ), the following property holds:

Every closed set is ω-closed but not conversely [2, 7].

Definition 4. [1] A space (X ,τ) is called anti-locally countable if each non-empty open set is

uncountable.

Lemma 2 ([8]). Let (H,τH) be an anti-locally countable subspace of a space (X ,τ). Then

cl(H) = clω(H).

Lemma 3 ([6]). If U is an open set, then cl(U ∩ H) = cl(U ∩ cl(H)) and hence U ∩ cl(H) ⊂
cl(U ∩ H) for any subset H.

Lemma 4 ([1, 4]). If (X ,τ) is an anti-locally countable space, then intω(H) = int(H) for every

ω-closed set H of X and clω(H) = cl(H) for every ω-open set H of X.
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Definition 5 ([10]). A subset H of a space (X ,τ) is called

(i) α−ω-open if H ⊂ intω(cl(intω(H)));

(ii) pre-ω-open if H ⊂ intω(cl(H));

(iii) β −ω-open if H ⊂ cl(intω(cl(H)));

(iv) b−ω-open if H ⊂ intω(cl(H))∪ cl(intω(H)).

Definition 6 ([10]). A subset H of a space (X ,τ) is called an ω− t-set if int(H) = intω(cl(H)).

Definition 7. A space (X ,τ) is called submaximal [5] if every dense subset is open.

Definition 8. A subset H of a space (X ,τ) is called ω-dense [3] if clω(H) = X .

3. Properties of Semi-ω-Open Sets

Definition 9. A subset H of a space (X ,τ) is said to be

(i) semi-ω-open if H ⊂ cl(intω(H)).

(ii) semi-ω-closed if int(clω(H)) ⊂ H.

The complement of semi-ω-open set is called semi-ω-closed.

Example 1. Let X = {a, b, c} with the topology τ= {φ, X , {a}, {a, b}}. Then {a} is semi-ω-open.

Example 2. Let X = Rwith the usual topology τu. Let H = (0,1)∩Q. Then H is not semi-ω-open,

since cl(intω(H)) = cl(φ) = φ.

Proposition 1. In a space (X ,τ), every semi-open subset is semi-ω-open.

Proof. Let H be semi-open in (X ,τ). Then H ⊂ cl(int(H)) ⊂ cl(intω(H)). This proves that

H is semi-ω-open.

Remark 2. The converse of Proposition 1 is not true.

Example 3. Let X = R with the usual topology τu. Then H = Q⋆ is semi-ω-open for

cl(intω(H)) = cl(H) = R and H ⊂ cl(intω(H)). But H is not semi-open for

cl(int(H)) = cl(φ) = φ and H 6⊆ cl(int(H)).

From the above Example, we observe that the converse fails in an anti-locally countable

space also.

Theorem 1. In an anti-locally countable space, an ω-closed and a semi-ω-open subset is semi-

open.
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Proof. Let (X ,τ) be an anti-locally countable space and H be an ω-closed and a semi-ω-

open subset.

Since H is semi-ω-open, H ⊂ cl(intω(H)). Since (X ,τ) is anti-locally countable and H is

ω-closed, intω(H) = int(H) by Lemma 4. Hence H ⊂ cl(intω(H)) = cl(int(H)) and thus H

is semi-open.

Theorem 2. For a subset of space (X ,τ), the following properties hold:

(i) Every ω-open set is semi-ω-open.

(ii) Every α−ω-open set is semi-ω-open.

(iii) Every semi-ω-open set is β −ω-open.

(iv) Every semi-ω-open set is b−ω-open.

Proof. (i). If H is an ω-open set, then H = intω(H) ⊂ cl(intω(H)). Therefore H is semi-

ω-open.

(ii). If H is an α−ω-open set, then H ⊂ intω(cl(intω(H))) ⊂ cl(intω(H)). Therefore H is

semi-ω-open.

(iii). If H is an semi-ω-open set, then H ⊂ cl(intω(H)) ⊂ cl(intω(cl(H))). Therefore H is

β −ω-open.

(iv). If H is an semi-ω-open set, then H ⊂ cl(intω(H)) ⊂ intω(cl(H)) ∪ cl(intω(H)).

Therefore H is b−ω-open.

The following Examples support that the separate converses of Theorem 2 are not true in

general.

Example 4. Let X = R with the usual topology τu.

(i) Let H = (0,1]. Then H is semi-ω-open set but not ω-open, since

H = (0,1] 6= (0,1) = intω(H).

(ii) Let H = (0,1]. Then H is semi-ω-open set but not α−ω-open, since

intω(cl(intω(H))) = intω(cl(0,1)) = intω([0,1]) = (0,1).

(iii) Let H = [0,1]∩Q. Then H is β −ω-open set but not semi-ω-open, since

cl(intω(H)) = cl(φ) = φ.

(iv) Let H = Q. Then H is b−ω-open set but not semi-ω-open, since cl(intω(H)) = cl(φ) = φ.

Theorem 3. Let H be a subset of a space (X ,τ). Then H is α−ω-open if and only if it is semi-ω-

open and pre-ω-open.

Proof. Let H be an α−ω-open. Then H ⊂ intω(cl(intω(H))). It implies that

H ⊂ intω(cl(intω(H))) ⊂ cl(intω(H)) and H ⊂ intω(cl(intω(H))) ⊂ intω(cl(H)). Thus H is

semi-ω-open and pre-ω-open.

Conversely, let H be semi-ω-open and pre-ω-open. Then we have H ⊂ cl(intω(H)) and

H ⊂ intω(cl(H)). Hence H ⊂ intω(cl(H)) ⊂ intω(cl(intω(H)))which implies that H is α−ω-

open.
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Remark 3. The concepts of semi-ω-openness and pre-ω-openness are independent.

Example 5. Let X = R with the usual topology τu. The interval H = (0,1] is semi-ω-open but

not pre-ω-open, since intω(cl(H)) = intω([0,1]) = (0,1).

Example 6. Let X = R with the usual topology τu. Let H = Q. Then H is pre-ω-open but not

semi-ω-open, since cl(intω(H)) = cl(φ) = φ.

Proposition 2. The intersection of a semi-ω-open set and an open set is semi-ω-open.

Proof. Let H be a semi-ω-open and U be an open set in X. Then H ⊂ cl(intω(H)) and

int(U) = U . By Lemma 3, we have

U ∩ H ⊂U ∩ cl(intω(H)) ⊂ cl(U ∩ intω(H))

=cl(int(U)∩ intω(H)) ⊂ cl(intω(U)∩ intω(H))

=cl(intω(U ∩ H)).

Therefore U ∩ H is semi-ω-open.

Remark 4. The intersection of two semi-ω-open sets need not be semi-ω-open. This can be seen

from the following Example.

Example 7. Let X = R with the usual topology τu. Let A= (0,1] and B = [1,2), then A and B

are semi-ω-open, but A∩ B = {1} which is not semi-ω-open, since cl(intω(A∩ B)) = cl(φ) = φ.

Theorem 4. Let H be a subset of a space (X ,τ). If H is both closed and β −ω-open, then H is

semi-ω-open.

Proof. Since H is a β −ω-open set, H ⊂ cl(intω(cl(H))) = cl(intω(H)), H being closed.

Therefore H is semi-ω-open.

Theorem 5. Let H be a subset of a space (X ,τ). If H is both β −ω-open and ω− t-set, then H

is semi-ω-open.

Proof. Since H is a ω− t-set, int(H) = intω(cl(H)). Since H is β −ω-open also,

H ⊂ cl(intω(cl(H))) ⊂ cl(int(H)) ⊂ cl(intω(H)).

Therefore H is semi-ω-open.

Theorem 6. Let H be a subset of a space (X ,τ). If H is both b−ω-open and ω− t-set, then H is

semi-ω-open.

Proof. Since H is ω − t-set, intω(cl(H)) = int(H) ⊂ intω(H). Since H is b − ω-open

also, H ⊂ intω(cl(H))∪ cl(intω(H)) ⊂ intω(H)∪ cl(intω(H)) = cl(intω(H)). Therefore H is

semi-ω-open.
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Proposition 3. Let H be a subset of a space (X ,τ). Then H is semi-ω-open if and only if

cl(H) = cl(intω(H)).

Proof. Let H be semi-ω-open. Then H ⊂ cl(intω(H)) and cl(H) ⊂ cl(intω(H)). But always

cl(intω(H)) ⊂ cl(H). Thus, we obtain that cl(H) = cl(intω(H)).

Conversely, let the condition hold. We have H ⊂ cl(H) = cl(intω(H)), by the given condi-

tion. Thus H ⊂ cl(intω(H)) and hence H is semi-ω-open.

Proposition 4. Let H ⊂ (X ,τ) be a b−ω-open set such that cl(H) = φ. Then H is semi-ω-open.

Theorem 7. For a subset H of a submaximal space (X ,τ), the following properties are equivalent.

(i) H is semi-ω-open,

(ii) H is β −ω-open.

Proof. (i)⇒ (ii): It follows from the fact that every semi-ω-open set is β −ω-open.

(ii)⇒ (i): Let H be a β −ω-open set in X. Then H ⊂ cl(intω(cl(H))) and

cl(H) ⊂ cl(intω(cl(H))). Thus, cl(H) is semi-ω-open. Put A= cl(H) and K = H ∪ (X\cl(H)).

We have H = cl(H) ∩ K and cl(K) = X . This implies that H = A∩ K , where A is semi-ω-

open and K is dense. Since X is submaximal, then K is open. By Proposition 2, H = A∩ K is

semi-ω-open.

Theorem 8. A subset H of a space (X ,τ) is semi-ω-open if and only if there exists U ∈ τω such

that U ⊂ H ⊂ cl(U).

Proof. Let H be semi-ω-open. Then H ⊂ cl(intω(H)). Take intω(H) = U . Then, we have

U ⊂ H ⊂ cl(U).

Conversely, let U ⊂ H ⊂ cl(U) for some U ∈ τω. Since U ⊂ H, we have U ⊂ intω(H) and

hence cl(U) ⊂ cl(intω(H)). Thus we obtain H ⊂ cl(intω(H)) and H is semi-ω-open.

Corollary 1. If A is a semi-ω-open set in a space (X ,τ) and A⊂ B ⊂ cl(A), then B is semi-ω-open

in X.

Proof. Since A is semi-ω-open, A⊂ cl(intω(A)) ⊂ cl(intω(B)) for A⊂ B. So

cl(A) ⊂ cl(intω(B)). Since B ⊂ cl(A), B ⊂ cl(intω(B)). Thus B is semi-ω-open.

4. Properties of δ−ω-Open Sets

Definition 10. A subset H of a space (X ,τ) is said to be

(i) δ−ω-open if intω(cl(H)) ⊂ cl(intω(H)).

(ii) δ−ω-closed if int(clω(H)) ⊂ clω(int(H)).

The complement of δ−ω-open set is called δ−ω-closed.
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Example 8. Let X = R with the usual topology τu. Let H = Q. Then H is not δ−ω-open, since

intω(cl(Q)) = intω(R) = R and cl(intω(Q)) = cl(φ) = φ.

Example 9. Let X = R with the usual topology τu. Let H = (0,1]. Then H is δ−ω-open, since

intω(cl((0,1])) = intω([0,1]) = (0,1) and cl(intω(H)) = cl(0,1) = [0,1].

Proposition 5. For a subset of a space (X ,τ), the following properties hold:

(i) Every α−ω-open set is δ−ω-open.

(ii) Every ω− t-set is δ−ω-open.

Proof. (i) Since H is an α−ω-open set, H ⊂ intω(cl(intω(H))) ⊂ cl(intω(H)). Then we

obtain cl(H) ⊂ cl(intω(H)) and intω(cl(H)) ⊂ cl(H) ⊂ cl(intω(H)). Therefore H is δ −ω-

open.

(ii) Since H is an ω− t-set, intω(cl(H)) = int(H) ⊂ H. Then we obtain

intω(cl(H)) ⊂ intω(H) ⊂ cl(intω(H)).

Therefore H is δ−ω-open.

Example 10. Let X = R with the usual topology τu.

(i) Let H = (0,1]. Then H is δ−ω-open but not α−ω-open, since intω(cl(H)) = (0,1) and

cl(intω(H)) = [0,1].

(ii) Let H = Q⋆. Then H is δ−ω-open but notω− t-set, since int(Q⋆) = φ, intω(cl(Q⋆)) = R

and cl(intω(Q
⋆)) = cl(Q⋆) = R.

Definition 11. A subset H of a space (X ,τ) is said to be β −ω-closed if int(clω(int(H))) ⊂ H.

The complement of β −ω-open set is called β −ω-closed.

Proposition 6. Let H be a subset of a space (X ,τ). Then H is β −ω-closed if and only if

int(clω(int(H))) = int(H).

Proof. Since H is β −ω-closed set, int(clω(int(H))) ⊂ H and then we obtain

int(clω(int(H))) ⊂ int(H). But int(H) ⊂ int(clω(int(H))). Thus we have

int(H) = int(clω(int(H))).

Conversely, let the condition hold. We have int(clω(int(H))) = int(H) ⊂ H. Therefore H

is β −ω-closed.

Theorem 9. For a subset H of a space (X ,τ), the following properties are equivalent:

(i) H is semi-ω-closed.

(ii) H is β −ω-closed and δ−ω-closed.
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Proof. (i)⇒ (ii): Let H be semi-ω-closed. By Theorem 2(iii), H is β −ω-closed. Since H

is semi-ω-closed, int(clω(H)) ⊂ H and int(clω(H)) ⊂ int(H). It gives that

clω(int(clω(H))) ⊂ clω(int(H)). Thus int(clω(H)) ⊂ clω(int(clω(H))) ⊂ clω(int(H)) and so

H is δ−ω-closed.

(ii)⇒ (i): Since H is δ−ω-closed, int(clω(H)) ⊂ clω(int(H)) and

int(clω(H)) ⊂ int(clω(int(H))). Since H is β − ω-closed, int(clω(int(H))) ⊂ H. Then

int(clω(H)) ⊂ H and so H is semi-ω-closed.

Remark 5. The concepts of β −ω-closedness and δ−ω-closedness are independent.

Example 11.

(i) Let X = R with the topology τ = {φ, X ,Q⋆}. Let H = Q⋆. Then H is δ−ω-closed but not

β −ω-closed, since Q is not β −ω-open.

(ii) Let X = R with the usual topology τu. Let H = Q⋆. Then H is β − ω-closed but not

δ−ω-closed, since Q is not δ−ω-open.

Theorem 10. Let (X ,τ) be a space. Then a subset of X is α −ω-open if and only if it is both

δ−ω-open and pre-ω-open.

Proof. Necessity: Let H be an α −ω-open set. Then H ⊂ intω(cl(intω(H))). It implies

that cl(H) ⊂ cl(intω(H)) and intω(cl(H)) ⊂ intω(cl(intω(H))) ⊂ cl(intω(H)). Hence, H is a

δ−ω-open set. On the other hand, since H is an α−ω-open set, H is a pre-ω-open set.

Sufficiency: Let H be both δ−ω-open and pre-ω-open. Since H is δ−ω-open, we have

intω(cl(H)) ⊂ cl(intω(H)) and hence intω(cl(H)) ⊂ intω(cl(intω(H))). Since H is pre-ω-

open, we have H ⊂ intω(cl(H)). Therefore we obtain that H ⊂ intω(cl(intω(H))) which

proves that H is an α−ω-open set.

Remark 6. The concepts of δ−ω-openness and pre-ω-openness are independent.

Example 12. Let X = R with the usual topology τu.

(i) H = (0,1] is δ−ω-open but not pre-ω-open.

(ii) H = Q is pre-ω-open but not δ−ω-open.

Proposition 7. Let A and B be subsets of a space (X ,τ). If A⊂ B ⊂ cl(A) and A is δ−ω-open in

X, then B is δ−ω-open in X.

Proof. Suppose that A⊂ B ⊂ cl(A) and A is δ−ω-open in X. Then, we have

intω(cl(A)) ⊂ cl(intω(A)). Since A⊂ B, cl(intω(A)) ⊂ cl(intω(B)) and

intω(cl(A)) ⊂ cl(intω(B)). Since B ⊂ cl(A), we have cl(B) ⊂ cl(cl(A)) = cl(A) and

intω(cl(B)) ⊂ intω(cl(A)). Therefore we obtain that intω(cl(B)) ⊂ cl(intω(B)). This shows

that B is a δ−ω-open set.

Corollary 2. Let (X ,τ) be a space. If A⊂ X is δ−ω-open and dense in (X ,τ), then every subset

of X containing A is δ−ω-open.

Proof. It is obvious by Proposition 7.
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5. Properties of Semi ⋆ −ω-Open Sets

Definition 12. A subset H of a space (X ,τ) is said to be

(i) semi⋆ −ω-open if H ⊂ clω(int(H)).

(ii) semi⋆ −ω-closed if intω(cl(H)) ⊂ H.

The complement of a semi⋆ −ω-open set is called semi⋆ −ω-closed.

Example 13. Let X = {a, b, c} with the topology τ= {φ, X , {a}, {a, b}}.

(i) Let H = {a}. Then H is semi⋆ −ω-open, since int(H) = {a} and clω(int(H)) = {a}.

(ii) Let H = {c}. Then H is not semi⋆ −ω-open, since int(H) = φ and clω(int(H)) = φ.

Proposition 8. For a subset of a space (X ,τ), every semi⋆ −ω-open set is semi-ω-open.

Proof. If H is semi⋆ −ω-open set, then H ⊂ clω(int(H)) ⊂ cl(intω(H)). Therefore H is

semi-ω-open.

Example 14. Let X = R with the usual topology τu. Let H = Q⋆. Then H is semi-ω-open but

not semi⋆ −ω-open, since cl(intω(H)) = cl(Q⋆) = R and clω(int(H)) = clω(φ) = φ.

Proposition 9. A subset H of a space (X ,τ) is semi⋆−ω-open if and only if clω(H) = clω(int(H)).

Proof. If H is semi⋆ −ω-open set, then H ⊂ clω(int(H)) and clω(H) ⊂ clω(int(H)). But

clω(int(H)) ⊂ clω(H). Hence clω(H) = clω(int(H)).

Conversely, let the condition hold. We have H ⊂ clω(H) and clω(H) = clω(int(H)). There-

fore H is semi⋆ −ω-open.

Definition 13. A subset H of a space (X ,τ) is said to be ω⋆ − t-set if intω(cl(H)) = intω(H).

Example 15. Let X = R with the usual topology τu.

(i) Let H = (0,1]. Then H is a ω⋆ − t-set.

(ii) Let H = Q⋆. Then H is not a ω⋆ − t-set.

Proposition 10. In a space (X ,τ), every closed set is a ω⋆ − t-set.

Proof. Let H be a closed set. Then H = cl(H) and we have intω(cl(H)) = intω(H) which

proves that H is a ω⋆ − t-set.

The converse of Proposition 10 is not true as can be seen from the following Example.

Example 16. Let X = R with the usual topology τu. Let H = (0,1]. Then H isω⋆− t-set but not

closed.

Proposition 11. In a space (X ,τ), every ω− t-set is a ω⋆ − t-set.
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Proof. If H is a ω− t-set, then intω(cl(H)) = int(H) ⊂ intω(H) ⊂ intω(cl(H)). Thus we

have intω(cl(H)) = intω(H) and hence H is a ω⋆ − t-set.

Example 17. Let X = {a, b, c} with the topology τ = {φ, X , {a}, {a, b}}. Then H = {c} is a

ω⋆− t-set but not aω− t-set. Since intω(H) = H, int(H) = φ and intω(cl(H)) = intω(H) = H,

we have intω(cl(H)) = intω(H) and intω(cl(H)) 6= int(H). This proves that H is a ω⋆ − t-set

but not a ω− t-set.

Theorem 11. A subset H of a space (X ,τ) is semi⋆ −ω-closed if and only if H is a ω⋆ − t-set.

Proof. Let H be a semi⋆−ω-closed set in X. Then X\H is semi⋆−ω-open. By Proposition 9,

we have clω(X\H) = clω(int(X\H)). It follows that

X\intω(H) = clω(X\cl(H)) = X\intω(cl(H)).

Thus, intω(cl(H)) = intω(H) and hence H is a ω⋆ − t-set in X.

Conversely, let H be a ω⋆ − t-set. Then intω(cl(H)) = intω(H) ⊂ H. Therefore H is

semi⋆ −ω-closed.

Proposition 12. If A and B are ω⋆ − t-sets of a space (X ,τ), then A∩ B is a ω⋆ − t-set.

Proof. Let A and B be ω⋆ − t-sets. Then we have

intω(A∩ B) ⊂intω(cl(A∩ B)) ⊂ intω(cl(A)∩ cl(B))

=intω(cl(A))∩ intω(cl(B)) = intω(A)∩ intω(B) = intω(A∩ B).

Then intω(A∩ B) = intω(cl(A∩ B)) and hence A∩ B is an ω⋆ − t-set.

Definition 14. A subset H of a space (X ,τ) is said to be semi-ω-regular if H is semi-ω-open and

a ω⋆ − t-set.

Example 18. Let X = R with the usual topology τu.

(i) Let H = (0,1]. Then H is semi-ω-regular.

(ii) Let H = R\Q. Then H is not semi-ω-regular, since H is not ω⋆ − t-set.

Theorem 12. Let H be a subset of a space (X ,τ). Then H is semi-ω-regular if and only if H is

both β −ω-open and semi⋆ −ω-closed.

Proof. If H is semi-ω-regular, then H is both semi-ω-open and a ω⋆ − t-set. Since every

semi-ω-open set is β −ω-open, H is both β −ω-open and a ω⋆ − t-set. By Theorem 11, we

obtain the result.

Conversely, let H be semi⋆ −ω-closed and β −ω-open. Since H is a semi⋆ −ω-closed, by

Theorem 11 H is a ω⋆ − t-set. Since H is β −ω-open, H ⊂ cl(intω(cl(H))) = cl(intω(H)).

Therefore H is semi-ω-open. Since H is both semi-ω-open and a ω⋆ − t-set, H is semi-ω-

regular.
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Remark 7. The concepts of β −ω-openness and semi⋆ −ω-closedness are independent.

Example 19. (i) Let X = Rwith the topology τ= {φ, X ,Q⋆}. Then H = Q is semi⋆−ω-closed

but not β −ω-open. Since intω(cl(H)) = intω(H) = φ ⊂ H, H is semi⋆−ω-closed. Again

since H 6⊆ cl(intω(cl(H))) = φ, H is not β −ω-open.

(ii) Let X = R with the usual topology τu. Let H = Q. Then H is β−ω-open but not semi⋆−ω-

closed, since intω(cl(H)) = intω(R) = R.

6. Properties of ω−R-Closed Sets

Definition 15. A subset H of a space (X ,τ) is called ω−R-closed if H = cl(intω(H)).

Theorem 13. Let (X ,τ) be a space and H a subset of X. Then the following properties are equiv-

alent.

(i) H 6= φ is ω−R-closed.

(ii) There exists a non-empty ω-open set G such that G ⊂ H = cl(G).

(iii) There exists a non-empty ω-open set G such that H = G ∪ (cl(G)− G).

Proof. (i)⇒ (ii): Suppose H 6= φ is an ω−R-closed set. Then H = cl(intω(H)). Let

G = intω(H). G is the required ω-open set such that G ⊂ H = cl(G).

(ii)⇒ (iii): Since H = cl(G) = G ∪ (cl(G)− G) where G is a nonempty ω-open set, (iii)

follows.

(iii)⇒ (i): H = G∪(cl(G)−G) implies that H = cl(G) = cl(intω(G)) ⊂ cl(intω(H)), since

G is ω-open and G ⊂ H. Again intω(H) ⊂ H implies that cl(intω(H)) ⊂ cl(H) = cl(G) = H.

Therefore H = cl(intω(H)) which implies that H is ω−R-closed.

Theorem 14. Let H be a subset of a space (X ,τ). If H is β −ω-open, then cl(H) is ω−R-closed.

Proof. Suppose H is β −ω-open. Then H ⊂ cl(intω(cl(H))) and so

cl(H) ⊂ cl(intω(cl(H))) ⊂ cl(H)which implies that cl(H) = cl(intω(cl(H))). Therefore cl(H)

is ω−R-closed.

Theorem 15. Let H be a subset of a space (X ,τ). Then the following properties are equivalent.

(i) H is ω−R-closed.

(ii) H is semi-ω-open and closed.

(iii) H is β −ω-open and closed.
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Proof. (i)⇒ (ii): If H is ω−R-closed, then H = cl(intω(H)) and cl(H) = cl(intω(H)).

Since H ⊂ cl(intω(H)), H is semi-ω-open. Also, H = cl(H) and so H is closed.

(ii)⇒ (iii): It follows from the fact that every semi-ω-open set is a β −ω-open.

(iii) ⇒ (i): Suppose H is β −ω-open and closed. Then H ⊂ cl(intω(cl(H))) and H =

cl(H). Now cl(intω(H)) ⊂ cl(H) = H. Also, H ⊂ cl(intω(H)). Therefore H = cl(intω(H))

which implies that H is ω−R-closed.

Remark 8. (i) The concepts of semi-ω-openness and closedness are independent.

(ii) The concepts of β −ω-openness and closedness are independent.

Example 20. (i) Let X = R with the usual topology τ. Let H = (0,1]. Then H is semi-ω-open

but not closed.

(ii) Let X = R with the topology τ = {φ,R,Q⋆}. Let H = Q. Then H is closed but not semi-ω-

open.

Example 21. (i) Let X = R with the usual topology τu. Let H = (0,1]. Then H is β−ω-open

but not closed.

(ii) Let X = R with the topology τu = {φ,R,Q⋆}. Let H = Q. Then H is closed but not

β −ω-open.

7. Further Properties

Definition 16. A space (X ,τ) is called ω-submaximal if every ω-dense subset of X is ω-open.

Proposition 13. Every submaximal space is ω-submaximal.

Proof. Let H ⊂ X beω-dense. Then X = clω(H) ⊂ cl(H) and X = cl(H). Thus H is dense in

X. Since X is submaximal, H is open and henceω-open in X. Therefore, X isω-submaximal.

Example 22. Let X = {a, b, c} with the topology τ = {φ, X , {c}, {b, c}}. Set H = {a, c}. Then

cl(H) = X and H /∈ τ. Hence X is not submaximal but it isω-submaximal, since the onlyω-dense

set is X.

Definition 17. A subset H of a space (X ,τ) is called ω-codense if X\H is ω-dense.

Theorem 16. For a space (X ,τ), the following are equivalent.

(i) X is ω-submaximal,

(ii) Every ω-codense subset H of X is ω-closed.

Proof. (i)⇒ (ii): Let H be a ω-codense subset of X. Then X\H is ω-dense and therefore

X\H is ω-open, X being ω-submaximal by assumption. Thus H is ω-closed.

(ii)⇒ (i): Let H be aω-dense subset of X. Then X\H isω-codense in X and by assumption

X\H is ω-closed. Hence H is ω-open and thus X is ω-submaximal.
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