EUROPEAN JOURNAL OF PURE AND APPLIED MATHEMATICS

Vol. 9, No. 3, 2016, 305-313 ISSN 1307-5543 – www.ejpam.com

On (1+u)-Cyclic and Cyclic Codes over $F_2 + uF_2 + vF_2$

Abdullah Dertli^{1,*}, Yasemin Cengellenmis²

¹ Department of Mathematics, Faculty of Science and Arts, Ondokuz Mayıs University, Samsun, Turkey

² Department of Mathematics, Faculty of Science and Arts, Trakya University, Edirne, Turkey

Abstract. It is studied codes over the ring $R = F_2 + uF_2 + vF_2$, $u^2 = 0$, $v^2 = v$, uv = vu = 0 which contains the two ring $F_2 + uF_2$, $u^2 = 0$ and $F_2 + vF_2$, $v^2 = v$. It is introduced (1 + u)-cyclic codes and cyclic codes over $F_2 + uF_2 + vF_2$. It is characterized codes over $F_2 + vF_2$ which are the images of (1 + u)-cyclic codes and cyclic codes over $F_2 + uF_2 + vF_2$. It is obtained a representation of a linear code of length *n* over *R* by means of C_1 and C_2 which are linear codes of length *n* over $F_2 + uF_2$. It is also characterized codes over F_2 which are the Gray images of (1 + u)-cyclic codes or cyclic codes over $F_2 + uF_2 + vF_2$.

2010 Mathematics Subject Classifications: 94B05, 94B15, 94B60.

Key Words and Phrases: Gray map, Cyclic codes, Quasi-cyclic code.

1. Introduction

It was introduced linear (1 + u) constacyclic codes and cyclic codes over $F_2 + uF_2$ and characterized codes over F_2 which are the Gray images of (1 + u) constacyclic codes or cyclic codes over F_2+uF_2 , in [6]. In [1], they extended the result of [6] to codes over the commutative ring $F_{p^k} + uF_{p^k}$ where p is a prime, $k \in N$ and $u^2 = 0$.

In [5], it was introduced $(1-u^2)$ -cyclic codes over $F_2 + uF_2 + u^2F_2$ and characterized codes over F_2 which are the Gray images of $(1-u^2)$ -cyclic codes or cyclic codes over $F_2 + uF_2 + u^2F_2$.

In [2], it was defined a distance preserving map from $F_2 + uF_2 + u^2F_2 + u^3F_2 + \ldots + u^mF_2$ to F_2 and characterized codes over F_2 which are the Gray images of $(1-u^m)$ -cyclic codes or cyclic codes over $F_2 + uF_2 + u^2F_2 + u^3F_2 + \ldots + u^mF_2$. In [8], Udomkavanich and Jitman generalized these results to the ring $F_{p^k} + uF_{p^k} + \ldots + u^mF_{p^k}$. The Gray images of $(1-u^m)$ -constacyclic and cyclic codes over $F_{p^k} + uF_{p^k} + \ldots + u^mF_p^k$ were studied in the mentioned paper.

In [4], (1 + v)-constacyclic codes over $R_2 = F_2 + uF_2 + vF_2 + uvF_2$, $u^2 = v^2 = 0$, uv - vu = 0 were studied. (1 + v)-constacyclic codes over R_2 of odd length were characterized with help of cyclic codes over R_2 .

Email addresses: abdullah.dertli@gmail.com (A. Dertli), ycengellenmis@yahoo.com (Y. Cengellenmis)

http://www.ejpam.com

305

© 2016 EJPAM All rights reserved.

^{*}Corresponding author.

In [3], it is studied (1 + u)-cyclic codes over a finite commutative ring $F_2 + uF_2 + vF_2 + uvF_2, u^2 = 0, v^2 = 0, uv - vu = 0$. A set of generator of such constacyclic codes for an arbitrary length was determined.

In [7], they studied linear codes over a new ring $S = F_2 + uF_2 + vF_2 + uvF_2, u^2 = 0, v^2 = v, uv = vu$. It is obtained MacWilliams identities for Lee weight enumerator of linear codes over this ring using a Gray map from S^n to $(F_2 + uF_2)^n$. Moreover, they studied self dual and cyclic codes over *S*.

Liu Xiusheng and Liu Hualu gave rise to a new ring $R = F_2 + uF_2 + vF_2$, $u^2 = 0$, $v^2 = v$, uv = vu = 0 in [9]. It is Frobenius ring. They defined a Gray map. The MacWilliams identity over F_2 and the MacWilliams identities for the Lee weight enumerators of linear codes over the ring $F_2 + uF_2 + vF_2$ were given. Moreover, they gave some examples.

In this paper, it is given some definitions in section 2. It is seen that the image of a (1+u)-cyclic code of length n over R under the map $\phi_{1,1}$ is a distance invariant cyclic code of length 2n over $F_2 + vF_2$. It is shown that if n is odd, then the image of a cyclic code of length n over R under the map $\phi_{1,1}$ is a permutation equivalent to cyclic code of length 2n over $F_2 + vF_2$. In section 3, it is given a representation of a linear code of length n over R by means of C_1 and C_2 which are linear codes of length n over $F_2 + uF_2$. In section 4, it is characterized codes over F_2 which are the Gray images of (1 + u)-cyclic codes or cyclic codes over $F_2 + uF_2 + vF_2$. It is proved that the Gray image of a linear (1 + u)-cyclic code of index 3 and length 3n over F_2 . It is also proved that if n is odd, then every code over F_2 which is the Gray image of a linear cyclic code over F_2 which is the Gray image of a linear cyclic code over F_2 which is the Gray image of a linear cyclic code over F_2 which is the Gray image of a linear cyclic code over F_2 and n over $F_2 + uF_2 + vF_2$. It is also proved that if n is odd, then every code over F_2 which is the Gray image of a linear cyclic code of length n over $F_2 + uF_2 + vF_2$. It is also proved that if n is odd, then every code over F_2 which is the Gray image of a linear cyclic code of length n over $F_2 + uF_2 + vF_2$ is permutation equivalent to a quasi-cyclic code of index 3.

2. Preliminaries

In [9], the commutative ring $R = F_2 + uF_2 + vF_2$, $u^2 = 0$, $v^2 = v$, uv = vu = 0 is given. Then *R* is a finite, principal ideal and semilocal ring with two maximal ideals I_{u+v} and I_{1+v} . The quotient rings R/I_{u+v} and R/I_{1+v} are isomorphic to F_2 . A direct decomposition of *R* is $R = I_v \oplus I_{1+v}$. The set of units of *R* is $R^* = \{1, 1+u\}$.

Let the *C* be a code of length *n* over *R* and *P*(*C*) be its polynomial representation, i.e, $P(C) = \{\sum_{i=0}^{n-1} r_i x^i | (r_0, \dots, r_{n-1}) \in C\} \text{ Let } \sigma \text{ and } \nu \text{ be maps from } R^n \text{ to } R^n \text{ given by}$

$$\sigma(r_0, \ldots, r_{n-1}) = (r_{n-1}, r_0, \ldots, r_{n-2})$$

and

$$v(r_0, \ldots, r_{n-1}) = ((1+u)r_{n-1}, r_0, \ldots, r_{n-2})$$

Then *C* is said to be cyclic if $\sigma(C) = C$ and (1 + u) – cyclic if $\nu(C) = C$.

A code *C* of length *n* over *R* is cyclic if and only if P(C) is an ideal of $R[x]/\langle x^n-1\rangle$. A code *C* of length *n* over *R* is (1+u)- cyclic if and only if P(C) is an ideal of $R[x]/\langle x^n-(1+u)\rangle$.

Let $a \in F_2^{3n}$ with $a = (a_0, a_1, ..., a_{3n-1}) = (a^{(0)}|a^{(1)}|a^{(2)}), a^{(i)} \in F_2^n$ for all i = 0, 1, 2. Let $\sigma^{\otimes 3}$ be the map from F_2^{3n} to F_2^{3n} given by $\sigma^{\otimes 3}(a) = (\tilde{\sigma}(a^{(0)})|\tilde{\sigma}(a^{(1)})|\tilde{\sigma}(a^{(2)}))$ where $\tilde{\sigma}$ is the

usual cyclic shift

$$(c_0,\ldots,c_{n-1}) \longmapsto (c_{n-1},c_0,\ldots,c_{n-2})$$

on F_2^n . A code \tilde{C} of length 3n over F_2 is said to be quasi-cyclic of index 3 if $\sigma^{\otimes 3}(\tilde{C}) = \tilde{C}$.

The Hamming weight $w_H(x)$ of a codeword x is the number of nonzero components in x. The Hamming distance d(x, y) between two codewords x and y is the Hamming weight of the codewords x - y. The minimum Hamming distance d_H of C is defined as

$$min\{d_H(x, y)|x, y \in C, x \neq y\}.$$

Let $x = (x_1, ..., x_n)$ and $y = (y_1, ..., y_n)$ be two vectors of \mathbb{R}^n . The Euclidean inner product of x and y is defined

$$xy = \sum_{i=1}^{n} x_i y_i.$$

The dual code C^{\perp} of *C* is defined as $C^{\perp} = \{x \in \mathbb{R}^n | xc = 0 \text{ for all } c \in C\}$. *C* is said to be self orthogonal if $C \subseteq C^{\perp}$ and *C* is said to be self dual if $C = C^{\perp}$.

Recall that the Gray map ϕ_1 on $F_2 + uF_2$, $u^2 = 0$ is defined as $\phi_1(z) = (r, r + q)$ where z = q + ur with $r, q \in F_2$ and the Gray map ϕ_2 on $F_2 + vF_2$, $v^2 = v$ is defined as $\phi_2(s) = (m, m+t)$ where s = m + vt with $m, t \in F_2$. The maps ϕ_1 and ϕ_2 can be extended to $(F_2 + uF_2)^n$ and $(F_2 + vF_2)^n$, respectively as follows,

$$\phi_{1} : (F_{2} + uF_{2})^{n} \to F_{2}^{2n}$$

$$(z_{0}, \dots, z_{n-1}) \mapsto (r_{0}, \dots, r_{n-1}, r_{0} \oplus q_{0}, \dots, r_{n-1} \oplus q_{n-1})$$

$$\phi_{2} : (F_{2} + vF_{2})^{n} \to F_{2}^{2n}$$

$$(s_{0}, \dots, s_{n-1}) \mapsto (m_{0}, \dots, m_{n-1}, m_{0} \oplus t_{0}, \dots, m_{n-1} \oplus t_{n-1})$$

where $z_i = r_i + uq_i$, $s_i = m_i + vt_i$ and q_i , r_i , m_i , $t_i \in F_2$ for $0 \le i \le n-1$ and \oplus is componentwise addition in F_2 .

Each element $c \in R = F_2 + uF_2 + vF_2$ can be expressed c = a + ub where $a, b \in F_2 + vF_2$. The map $\phi_{1,1}$ is defined as

$$\phi_{1,1} : \mathbb{R}^n \to (F_2 + \nu F_2)^{2n}$$

(c_0, ..., c_{n-1}) $\mapsto (b_0, ..., b_{n-1}, b_0 + a_0, ..., b_{n-1} + a_{n-1})$

where $c_i = a_i + ub_i$ with $a_i, b_i \in F_2 + vF_2$ for $0 \le i \le n - 1$.

Each element $c \in R = F_2 + uF_2 + vF_2$ can be also expressed c = a' + vb' where $a', b' \in F_2 + uF_2$. The map $\phi_{2,1}$ is defined as

$$\phi_{2,1} : \mathbb{R}^n \to (F_2 + uF_2)^{2n}$$

(c_0, ..., c_{n-1}) $\mapsto (a'_0, ..., a'_{n-1}, b'_0 + a'_0, ..., b'_{n-1} + a'_{n-1})$

where $c_i = a'_i + v b'_i$ with $a'_i, b'_i \in F_2 + uF_2$ for $0 \le i \le n-1$.

A Gray map ϕ from *R* to F_2^m which is the composition of $\phi_{1,1}$ and ϕ_2 or $\phi_{2,1}$ and ϕ_1 can be obtained.

The Lee weights of $0, 1, u, 1 + u \in F_2 + uF_2$ are 0, 1, 2, 1 respectively. The Lee weights of $0, 1, v, 1 + v \in F_2 + vF_2$ are 0, 2, 1, 1 respectively. These Lee weights can be extended to $(F_2 + uF_2)^n$ and $(F_2 + vF_2)^n$. It is known that ϕ_1 and ϕ_2 are distance-preserving map from $(F_2 + uF_2)^n$ (Lee distance) to F_2^{2n} (Hamming distance) and $(F_2 + vF_2)^n$ (Lee distance) to F_2^{2n} (Hamming distance), respectively. For any element $a + vb \in R$ with $a, b \in F_2 + uF_2$, it is defined Lee weight, denoted by w_L as $w_L(a + vb) = w_L(b, b + a)$. The Lee distance of a linear code over R, denoted by $d_L(C)$ is defined as minimum Lee weight of nonzero codewords of C.

> $\phi_1 : (F_2 + uF_2)^n$ (Lee distance) $\rightarrow F_2^{2n}$ (Hamming distance) $\phi_2 : (F_2 + vF_2)^n$ (Lee distance) $\rightarrow F_2^{2n}$ (Hamming distance) $\phi_{1,1} : R^n$ (Lee distance) $\rightarrow (F_2 + vF_2)^{2n}$ (Lee distance) $\phi_{2,1} : R^n$ (Lee distance) $\rightarrow (F_2 + uF_2)^{2n}$ (Lee distance)

Now, it will be characterized codes over $F_2 + vF_2$ which are the images of (1 + u)-cyclic and cyclic codes over *R*.

Proposition 1. Let $\phi_{1,1}$ be defined as above. Let v be (1 + u)-cyclic shift on \mathbb{R}^n and σ the cyclic shift on $(F_2 + vF_2)^{2n}$. Then $\phi_{1,1}v = \sigma\phi_{1,1}$.

Proof. Let $z = (z_0, ..., z_{n-1}) \in \mathbb{R}^n$ where $c_i = q_i + ur_i$ and $q_i, r_i \in F_2 + vF_2$ for $0 \le i \le n-1$. From definition, we get,

$$\phi_{1,1}(z) = (r_0, \dots, r_{n-1}, r_0 + q_0, \dots, r_{n-1} + q_{n-1})$$

and

$$\sigma(\phi_{1,1}(z)) = (r_{n-1} + q_{n-1}, r_0, \dots, r_{n-1}, r_0 + q_0, \dots, r_{n-2} + q_{n-2})$$

On the other hand,

$$v(z) = ((1+u)z_{n-1}, z_0, \dots, z_{n-2}) = (q_{n-1} + u(q_{n-1} + r_{n-1}), q_0 + ur_0, \dots, q_{n-2} + ur_{n-2})$$

and

$$\phi_{1,1}(v(z)) = (q_{n-1} + r_{n-1}, r_0, \dots, q_{n-2} + r_{n-2}).$$

Theorem 1. A linear code C of length n over R is a (1+u)-cyclic code iff $\phi_{1,1}(C)$ is a cyclic code of length 2n over $F_2 + vF_2$.

Proof. If *C* is (1 + u)-cyclic code, from Proposition 1 we get $\phi_{1,1}(v(C)) = \sigma(\phi_{1,1}(C))$. So $\phi_{1,1}(C)$ is a cyclic code of length 2*n* over $F_2 + vF_2$. Conversely, if $\phi_{1,1}(C)$ is a cyclic code of length 2*n* over $F_2 + vF_2$, from Proposition 1, we get $\phi_{1,1}(v(C)) = \sigma(\phi_{1,1}(C)) = \phi_{1,1}(C)$. By using $\phi_{1,1}$ is injection, hence v(C) = C.

Corollary 1. The image of a (1+u)-cyclic code of length n over R under the map $\phi_{1,1}$ is a distance invariant cyclic code of length 2n over $F_2 + vF_2$.

Note that $(1 + u)^n = 1 + u$ if *n* is odd, $(1 + u)^n = 1$ if *n* is even. In here, it is studied the properties of (1 + u) cyclic codes of odd length in this section.

Let μ be the map of $R[x]/\langle x^n-1 \rangle$ into $R[x]/\langle x^n-(1+u) \rangle$ defined by $\mu(c(x)) = c((1+u)x)$. If *n* is odd, then μ is a ring isomorphism. Hence *I* is an ideal of $R[x]/\langle x^n-1 \rangle$ if and only if $\mu(I)$ is an ideal of $R[x]/\langle x^n-(1+u) \rangle$. If $\bar{\mu}'$ is the map

$$\begin{split} \bar{\mu}' : R^n &\to R^n \\ z &\mapsto (z_0, (1+u)z_1, (1+u)^2 z_2, \dots, (1+u)^{n-1} z_{n-1}) \end{split}$$

where $z_i = q_i + ur_i$ and $r_i, q_i \in F_2 + vF_2$ for $0 \le i \le n - 1$, then it also follows that:

Proposition 2. The set $C \subseteq \mathbb{R}^n$ is a linear cyclic code if and only if $\overline{\mu}'(C)$ is a linear (1+u)-cyclic code.

Let τ' be the following permutation of $\{0, 1, 2, \dots, 2n-1\}$ with *n* odd: $\tau' = (1, n+1)(3, n+3)\dots(n-2, 2n-2)$. The Nechaev permutation π' of $(F_2 + \nu F_2)^{2n}$ is defined by

$$\pi'(r_0, r_1, \dots, r_{2n-1}) = (r_{\tau'(0)}, r_{\tau'(1)}, \dots, r_{\tau'(2n-1)}).$$

Proposition 3. Assume *n* odd, let $\bar{\mu}'$ be the permutation of \mathbb{R}^n such that

$$\bar{\mu}'(z_0,\ldots,z_{n-1}) = (z_0,(1+u)z_1,\ldots,(1+u)^{n-1}z_{n-1}).$$

Then $\phi_{1,1}\bar{\mu}' = \pi'\phi_{1,1}$.

Corollary 2. If \tilde{C} is the Gray image of a linear cyclic code of length n over R, then \tilde{C} is permutation equivalent to a cyclic code and length 2n over $F_2 + vF_2$.

Proof. From Proposition 2, a code *C* of length *n* over *R* is linear cyclic code if and only if $\bar{\mu}'(C)$ is linear (1 + u)-cyclic. From Theorem 1, this is also so if and only if $\phi_{1,1}(\bar{\mu}'(C))$ is permutation equivalent to a linear cyclic code over $F_2 + vF_2$. From Proposition 3, $\phi_{1,1}(C)$ is permutation equivalent to linear cyclic over $F_2 + vF_2$.

3. A Representation of a Code over R

In this section, it will be obtained a representation of a linear code of length *n* over *R* by means of C_1 and C_2 which are linear codes of length *n* over $F_2 + uF_2$.

Theorem 2. The map $\phi_{2,1}: \mathbb{R}^n \to (F_2 + uF_2)^{2n}$ is a linear isometry.

Proof. For any $m, k \in \mathbb{R}^n$ and $s, t \in F_2 + uF_2$, it is verified that

$$\phi_{2,1}(sm+tk) = s\phi_{2,1}(m) + t\phi_{2,1}(k),$$

so $\phi_{2,1}$ is linear. For isometry, we get

$$d_L(\phi_{2,1}(m),\phi_{2,1}(k)) = w_L(\phi_{2,1}(m-k)) = w_L(m-k) = d_L(m,k).$$

Theorem 3. If C is a linear code of length n over R, then $\phi_{2,1}(C)$ is a linear code of length 2n over $F_2 + uF_2$.

Proof. It is seen from linearity of $\phi_{2,1}$.

Let A and B be two codes. The direct product and sum of A and B are defined by, respectively

$$A \otimes B = \{(a, b) | a \in A, b \in B\}$$
$$A \oplus B = \{a + b | a \in A, b \in B\}.$$

Theorem 4. If *C* be a linear code of length *n* over *R*, then $C = (1+\nu)C_1 \oplus \nu C_2$, $\phi_{2,1}(C) = C_1 \otimes C_2$ and $|C| = |C_1||C_2|$ where $C_1 = \{m \in (F_2 + uF_2)^n | m + \nu t \in C \text{ for some } t \in (F_2 + uF_2)^n\}$ and $C_2 = \{m + t \in (F_2 + uF_2)^n | m + \nu t \in C \text{ for some } m \in (F_2 + uF_2)^n\}.$

Proof. Let $c = m + vt \in C$ for some $m, t \in (F_2 + uF_2)^n$. So $m \in C_1, m + t \in C_2$. Hence $c = (1 + v)m + v(m + t) \in (1 + v)C_1 \oplus vC_2$. We have $C \subseteq (1 + v)C_1 \oplus vC_2$. On the other hand, $(1 + v)m + v(m + t) \in (1 + v)C_1 \oplus vC_2$ where $m \in C_1$ and $t \in C_2$, there exist $a, b \in C$ and $r, q \in (F_2 + uF_2)^n$ such that a = m + vr and b = m + t + (1 + v)q. As *C* is linear over *R*, from $c = (1 + v)a + vb \in C$ we have $(1 + v)C_1 \oplus vC_2 \subseteq C$. □

Theorem 5. A linear code $C = (1+v)C_1 \oplus vC_2$ cyclic over R if and only if C_1 and C_2 are all cyclic codes over $F_2 + uF_2$.

Proof. Let $(r_0, ..., r_{n-1}) \in C_1$ and $(s_0, ..., s_{n-1}) \in C_2$. Suppose that $c_i = (1 + v)r_i + vs_i$ for i = 0, ..., n-1. Let $c = (c_0, ..., c_{n-1}) \in C$. As *C* is cyclic, it follows that $(c_{n-1}, c_0, ..., c_{n-2}) \in C$. Note that $(c_{n-1}, c_0, ..., c_{n-2}) = (1 + v)(r_{n-1}, r_0, ..., r_{n-2}) + v(s_{n-1}, s_0, ..., s_{n-2})$. So $(r_{n-1}, r_0, ..., r_{n-2}) \in C_1$, $(s_{n-1}, s_0, ..., s_{n-2}) \in C_2$, that is C_1, C_2 are cyclic codes over $F_2 + uF_2$.

Conversely, let C_1, C_2 be cyclic codes over $F_2 + uF_2$. Let $(c_{n-1}, c_0, \dots, c_{n-2}) \in C$ where $c_i = (1 + v)r_i + vs_i$ for $i = 0, \dots, n-1$. Then $(r_0, \dots, r_{n-1}) \in C_1$ and $(s_0, \dots, s_{n-1}) \in C_2$. Note that $(c_{n-1}, c_0, \dots, c_{n-2}) = (1+v)(r_{n-1}, r_0, \dots, r_{n-2}) + v(s_{n-1}, s_0, \dots, s_{n-2}) \in (1+v)C_1 \oplus vC_2 = C$. So *C* is a cyclic code.

Theorem 6. Let C be a linear code of length n over R. Then $\phi_{2,1}(C^{\perp}) = (\phi_{2,1}(C))^{\perp}$.

Proof. By using $\phi_{2,1}(C^{\perp}) \subseteq (\phi_{2,1}(C))^{\perp}$ and $|\phi_{2,1}(C^{\perp})| = |(\phi_{2,1}(C))^{\perp}|$, we have expected result.

Theorem 7. If *C* is a linear code of length *n* over *R* such that $C = (1 + \nu)C_1 \oplus \nu C_2$, then $C^{\perp} = (1 + \nu)C_1^{\perp} \oplus \nu C_2^{\perp}$. Moreover *C* is self dual if and only if C_1, C_2 are self dual over $F_2 + uF_2$.

Theorem 8. Let $C = (1 + v)C_1 \oplus vC_2$ be a linear code of length *n* over *R*. Then $d_{min}(C) = min\{d_1, d_2\}$ where d_{min}, d_1 and d_2 are minimum Lee distance of C, C_1 and C_2 , respectively.

4. The Gray Images of (1 + u) – Cyclic Codes and Cyclic over $F_2 + uF_2 + vF_2$

In this section, by using the Gray map which is defined by Liu Xiusheng, Liu Hualu, we will characterize codes over F_2 which are the Gray images of (1+u)-cyclic and cyclic codes over R. In [0] it was defined the Gray map ϕ on \mathbb{R}^n as follows

In [9], it was defined the Gray map ϕ on \mathbb{R}^n as follows

$$\phi : R \to F_2^3$$

 $a + ub + vc \mapsto (c, b + c, a + b + c).$

This map can be extended to \mathbb{R}^n in a natural way. For $z = (z_0, \dots, z_{n-1}) \in \mathbb{R}^n$,

$$\phi : \mathbb{R}^{n} \to \mathbb{F}_{2}^{3n}$$

$$z = (z_{0}, \dots, z_{n-1}) \mapsto (s_{0}, \dots, s_{n-1}, s_{0} \oplus q_{0}, \dots, s_{n-1} \oplus q_{n-1}, r_{0} \oplus q_{0} \oplus s_{0}, \dots, r_{n-1} \oplus q_{n-1} \oplus s_{n-1})$$

where $z_i = r_i + uq_i + vs_i$, for $0 \le i \le n - 1$ and \oplus is componentwise addition in F_2 .

In [9], they extended the definition of the Lee weight from $F_2 + vF_2$ to the ring $F_2 + uF_2 + vF_2$. The Lee weight $w_L(x)$ of a codeword $x = (x_1, \dots, x_n)$ was defined as $\sum_{i=1}^n w_L(x_i)$ where

$$w_{L}(x) = \begin{cases} 0 & \text{if } x_{i} = 0 \\ 1 & \text{if } x_{i} = 1, 1 + u, u + v \\ 2 & \text{if } x_{i} = u, 1 + v, 1 + u + v \\ 3 & \text{if } x_{i} = v \end{cases}$$

The Lee distance $d_L(x, y)$ between two codewords x and y is the Lee weight of x - y. The Gray map ϕ is an isometry from (\mathbb{R}^n, d_{Lee}) to F_2^{3n} under the Hamming distance.

Proposition 4. $\phi v = \rho \sigma^{\otimes 3} \phi$ where ρ is a permutation of $\{0, ..., 3n - 1\}$ which is defined $\rho = (n + 1, 2n + 1)$.

Proof. Let $z = (z_0, z_1, \dots, z_{n-1}) \in \mathbb{R}^n$. Let $r_i, q_i, s_i \in F_2$ such that $z_i = r_i + uq_i + vs_i$, for $0 \le i \le n-1$. We have

$$\phi(z) = (s_0, \dots, s_{n-1}, s_0 \oplus q_0, \dots, s_{n-1} \oplus q_{n-1}, r_0 \oplus q_0 \oplus s_0, \dots, r_{n-1} \oplus q_{n-1} \oplus s_{n-1}).$$

Then

$$\sigma^{\otimes 3}(\phi(z)) = (s_{n-1}, s_0, \dots, s_{n-2}, s_{n-1} \oplus q_{n-1}, s_0 \oplus q_0, \dots, s_{n-2} \oplus q_{n-2}),$$

$$r_{n-1} \oplus q_{n-1} \oplus s_{n-1}, r_0 \oplus q_0 \oplus s_0, \dots, r_{n-2} \oplus q_{n-2} \oplus s_{n-2}).$$

On the other hand, $v(z) = ((1+u)z_{n-1}, z_0, \dots, z_{n-2})$ where $(1+u)z_{n-1} = r_{n-1} + u(r_{n-1} + q_{n-1}) + vs_{n-1}$. We have

$$\phi(v(z)) = (s_{n-1}, s_0, \dots, s_{n-2}, r_{n-1} \oplus q_{n-1} \oplus s_{n-1}, q_0 \oplus s_0, \dots, q_{n-2} \oplus s_{n-2}, r_{n-1} \oplus q_{n-1}, r_0 \oplus q_0 \oplus s_0, \dots, r_{n-2} \oplus q_{n-2} \oplus s_{n-2}).$$

Hence $\phi v = \rho \sigma^{\otimes 3} \phi$.

So we have the following theorem.

Theorem 9. A code C of length n over R is (1 + u)-cyclic if and only if $\phi(C)$ is permutation equivalent to quasi-cyclic of index 3 and length 3n over F_2 .

Proof. Suppose *C* is (1 + u)-cyclic. As $\rho(\sigma^{\otimes 3}(\phi(C))) = \phi(\nu(C))$, $\phi(C)$ is permutation equivalent to a quasi-cyclic of index 3. Conversely, if $\phi(C)$ is permutation equivalent to quasi-cyclic of index 3, then $\phi(\nu(C)) = \rho(\sigma^{\otimes 3}(\phi(C))) = \phi(C)$. Since ϕ is isometry, so $\nu(C) = C$, that is *C* is (1 + u)-cyclic code.

Note that $(1 + u)^n = 1 + u$ if *n* is odd, $(1 + u)^n = 1$ if *n* is even. In here, it is studied the properties of (1 + u) cyclic codes of odd length in this section.

Let μ be the map of $R[x]/\langle x^n-1 \rangle$ into $R[x]/\langle x^n-(1+u) \rangle$ defined by $\mu(c(x)) = c((1+u)x)$. If *n* is odd, then μ is a ring isomorphism. Hence *I* is an ideal of $R[x]/\langle x^n-1 \rangle$ if and only if $\mu(I)$ is an ideal of $R[x]/\langle x^n-(1+u) \rangle$. If $\bar{\mu}$ is the map

$$\bar{\mu} : \mathbb{R}^n \to \mathbb{R}^n$$
 $z \mapsto (z_0, (1+u)z_1, (1+u)^2 z_2, \dots, (1+u)^{n-1} z_{n-1})$

where $z_i = s_i + ut_i + vy_i$ and $s_i, t_i, y_i \in F_2$ for $0 \le i \le n - 1$, then it also follows that:

Proposition 5. The set $C \subseteq \mathbb{R}^n$ is a linear cyclic code if and only if $\overline{\mu}(C)$ is a linear (1 + u)-cyclic code.

Let τ be the following permutation of $\{0, 1, 2, \dots, 3n-1\}$ with *n* odd:

$$\tau = (n+1, 2n+1)(n+3, 2n+3)(n+5, 2n+5)\dots(2n-2, 3n-2)$$

The permutation π of F_2^{3n} is defined by

$$\pi(r_0, r_1, \dots, r_{3n-1}) = (r_{\tau(0)}, r_{\tau(1)}, \dots, r_{\tau(3n-1)})$$

Proposition 6. Assume *n* odd, let $\bar{\mu}$ be the permutation of \mathbb{R}^n such that

$$\bar{\mu}(z_0,\ldots,z_{n-1}) = (z_0,(1+u)z_1,\ldots,(1+u)^{n-1}z_{n-1}).$$

Then $\phi \bar{\mu} = \pi \phi$.

Corollary 3. If \tilde{C} is the Gray image of a linear cyclic code of length n over R, then \tilde{C} is permutation equivalent to a quasi-cyclic code of index 3 and length 3n over F_2 .

Proof. From Proposition 5, a code *C* of length *n* over *R* is linear cyclic code if and only if $\bar{\mu}(C)$ is linear (1 + u)-cyclic. From Theorem 9, this is also so if and only if $\phi(\bar{\mu}(C))$ is permutation equivalent to a linear quasi-cyclic code of index 3 over F_2 . From Proposition 6, $\phi(C)$ is permutation equivalent to linear quasi cyclic of index 3 over F_2 .

5. Conclusion

It is introduced (1+u)-cyclic codes and cyclic codes over R. Firstly, it is characterized codes over $F_2 + vF_2$ which are the Gray images of (1+u)-cyclic codes and cyclic codes over R. It is obtained a representation of a linear code of length n over R by means of C_1 and C_2 which are linear codes of length n over $F_2 + uF_2$. It is characterized codes over F_2 which are the Gray images of (1+u)-cyclic codes or cyclic codes over R.

References

- [1] M. C. V. Amarra and F. R. Nemenzo. On (1 u)- cyclic codes over $F_{p^k} + uF_{p^k}$, Applied Mathematics Letters, 21, 1129–1133. 2008.
- [2] Y. Cengellenmis, On $(1-u^m)$ -cyclic codes over $F_2 + uF_2 + u^2F_2 + u^3F_2 + \ldots + u^mF_2$, International Journal of Contemporary Mathematical Sciences 4, 987-992. 2009.
- [3] X. Kai, S. Zhu, and L. Wang. A family of constacyclic codes over $F_2 + uF_2 + vF_2 + uvF_2$, Journal of Systems Science and Complexity, 25, 1023-1040. 2012.
- [4] S. Karadeniz and B. Yildiz. (1 + v)-constacyclic codes over $F_2 + uF_2 + vF_2 + uvF_2$, Journal of the Franklin Institute, doi:10.1016/j.jfranklin.2011.08.005, 2011.
- [5] J. F. Qian, L. N. Zhang, and S. X. Zhu. *Constacyclic and cyclic codes over* $F_2 + uF_2 + u^2F_2$, IEICE Transactions on Fundamentals of Electronics Communications and Computer Sciences, E89-A(6), 1863–1865. 2006.
- [6] J. F. Qian, L. N. Zhang, and S. X. Zhu. (1 + u) constacyclic and cyclic codes over $F_2 + uF_2$, Applied Mathematics Letters, 19, 820–823. 2006.
- [7] B. Srinivasulu and M. Bhaintwal. On linear codes over a non chain extension of $F_2 + uF_2$, Computer, Communication, Control and Information Technology (C3IT), 2015 Third International Conference on IEEE, 2015. doi:10.1109/C3IT.2015.7060155
- [8] P. Udomkavanich and S. Jitman. On the Gray image of $(1-u^m)$ -cyclic codes over $F_{p^k}+uF_{p^k}+\ldots+u^mF_{p^k}$, International Journal of Contemporary Mathematical Sciences 4, 1265-1272. 2009.
- [9] L. Xiusheng and L. Hualu. *MacWilliams identities of linear codes over the ring* $F_2+uF_2+vF_2$, doi:10.1007 s11424-015-2246-x, Journal of Systems Science and Complexity, 28, 691-701. 2015.