EUROPEAN JOURNAL OF PURE AND APPLIED MATHEMATICS

On $(1+u)$-Cyclic and Cyclic Codes over $F_{2}+u F_{2}+v F_{2}$

Abdullah Dertli ${ }^{1, *}$, Yasemin Cengellenmis ${ }^{2}$
${ }^{1}$ Department of Mathematics, Faculty of Science and Arts, Ondokuz Mayls University, Samsun, Turkey
${ }^{2}$ Department of Mathematics, Faculty of Science and Arts, Trakya University, Edirne, Turkey

Abstract

It is studied codes over the ring $R=F_{2}+u F_{2}+v F_{2}, u^{2}=0, v^{2}=v, u v=v u=0$ which contains the two ring $F_{2}+u F_{2}, u^{2}=0$ and $F_{2}+v F_{2}, v^{2}=v$. It is introduced ($1+u$)-cyclic codes and cyclic codes over $F_{2}+u F_{2}+v F_{2}$. It is characterized codes over $F_{2}+v F_{2}$ which are the images of $(1+u)$-cyclic codes and cyclic codes over $F_{2}+u F_{2}+v F_{2}$. It is obtained a representation of a linear code of length n over R by means of C_{1} and C_{2} which are linear codes of length n over $F_{2}+u F_{2}$. It is also characterized codes over F_{2} which are the Gray images of $(1+u)$-cyclic codes or cyclic codes over $F_{2}+u F_{2}+v F_{2}$.

2010 Mathematics Subject Classifications: 94B05, 94B15, 94B60.
Key Words and Phrases: Gray map, Cyclic codes, Quasi-cyclic code.

1. Introduction

It was introduced linear $(1+u)$ constacyclic codes and cyclic codes over $F_{2}+u F_{2}$ and characterized codes over F_{2} which are the Gray images of $(1+u)$ constacyclic codes or cyclic codes over $F_{2}+u F_{2}$, in [6]. In [1], they extended the result of [6] to codes over the commutative ring $F_{p^{k}}+u F_{p^{k}}$ where p is a prime, $k \in N$ and $u^{2}=0$.

In [5], it was introduced ($1-u^{2}$)-cyclic codes over $F_{2}+u F_{2}+u^{2} F_{2}$ and characterized codes over F_{2} which are the Gray images of $\left(1-u^{2}\right)$-cyclic codes or cyclic codes over $F_{2}+u F_{2}+u^{2} F_{2}$.

In [2], it was defined a distance preserving map from $F_{2}+u F_{2}+u^{2} F_{2}+u^{3} F_{2}+\ldots+u^{m} F_{2}$ to F_{2} and characterized codes over F_{2} which are the Gray images of $\left(1-u^{m}\right)$-cyclic codes or cyclic codes over $F_{2}+u F_{2}+u^{2} F_{2}+u^{3} F_{2}+\ldots+u^{m} F_{2}$. In [8], Udomkavanich and Jitman generalized these results to the ring $F_{p^{k}}+u F_{p^{k}}+\ldots+u^{m} F_{p^{k}}$. The Gray images of $\left(1-u^{m}\right)$-constacyclic and cyclic codes over $F_{p^{k}}+u F_{p^{k}}+\ldots+u^{m} F_{p}^{k}$ were studied in the mentioned paper.

In [4], $(1+v)$-constacyclic codes over $R_{2}=F_{2}+u F_{2}+v F_{2}+u v F_{2}, u^{2}=v^{2}=0, u v-v u=0$ were studied. $(1+v)$-constacyclic codes over R_{2} of odd length were characterized with help of cyclic codes over R_{2}.

[^0]Email addresses: abdullah.dertli@gmail.com (A. Dertli), ycengellenmis@yahoo.com (Y. Cengellenmis)

In [3], it is studied $(1+u)$-cyclic codes over a finite commutative ring $F_{2}+u F_{2}+v F_{2}+u v F_{2}, u^{2}=0, v^{2}=0, u v-v u=0$. A set of generator of such constacyclic codes for an arbitrary length was determined.

In [7], they studied linear codes over a new ring $S=F_{2}+u F_{2}+v F_{2}+u v F_{2}, u^{2}=0, v^{2}=v, u v=v u$. It is obtained MacWilliams identities for Lee weight enumerator of linear codes over this ring using a Gray map from S^{n} to $\left(F_{2}+u F_{2}\right)^{n}$. Moreover, they studied self dual and cyclic codes over S.

Liu Xiusheng and Liu Hualu gave rise to a new ring
$R=F_{2}+u F_{2}+v F_{2}, u^{2}=0, v^{2}=v, u v=v u=0$ in [9]. It is Frobenius ring. They defined a Gray map. The MacWilliams identity over F_{2} and the MacWilliams identities for the Lee weight enumerators of linear codes over the ring $F_{2}+u F_{2}+v F_{2}$ were given. Moreover, they gave some examples.

In this paper, it is given some definitions in section 2. It is seen that the image of a $(1+u)$ cyclic code of length n over R under the map $\phi_{1,1}$ is a distance invariant cyclic code of length $2 n$ over $F_{2}+v F_{2}$. It is shown that if n is odd, then the image of a cyclic code of length n over R under the map $\phi_{1,1}$ is a permutation equivalent to cyclic code of length $2 n$ over $F_{2}+v F_{2}$. In section 3, it is given a representation of a linear code of length n over R by means of C_{1} and C_{2} which are linear codes of length n over $F_{2}+u F_{2}$. In section 4 , it is characterized codes over F_{2} which are the Gray images of $(1+u)$-cyclic codes or cyclic codes over $F_{2}+u F_{2}+v F_{2}$. It is proved that the Gray image of a linear $(1+u)$-cyclic code over $F_{2}+u F_{2}+v F_{2}$ of length n is a binary permutation equivalent to quasi-cyclic codes of index 3 and length $3 n$ over F_{2}. It is also proved that if n is odd, then every code over F_{2} which is the Gray image of a linear cyclic code of length n over $F_{2}+u F_{2}+v F_{2}$ is permutation equivalent to a quasi-cyclic code of index 3.

2. Preliminaries

In [9], the commutative ring $R=F_{2}+u F_{2}+v F_{2}, u^{2}=0, v^{2}=v, u v=v u=0$ is given. Then R is a finite, principal ideal and semilocal ring with two maximal ideals I_{u+v} and I_{1+v}. The quotient rings R / I_{u+v} and R / I_{1+v} are isomorphic to F_{2}. A direct decomposition of R is $R=I_{v} \oplus I_{1+v}$. The set of units of R is $R^{*}=\{1,1+u\}$.

Let the C be a code of length n over R and $P(C)$ be its polynomial representation, i.e, $P(C)=\left\{\sum_{i=0}^{n-1} r_{i} x^{i} \mid\left(r_{0}, \ldots, r_{n-1}\right) \in C\right\}$ Let σ and v be maps from R^{n} to R^{n} given by

$$
\sigma\left(r_{0}, \ldots, r_{n-1}\right)=\left(r_{n-1}, r_{0}, \ldots, r_{n-2}\right)
$$

and

$$
v\left(r_{0}, \ldots, r_{n-1}\right)=\left((1+u) r_{n-1}, r_{0}, \ldots, r_{n-2}\right)
$$

Then C is said to be cyclic if $\sigma(C)=C$ and $(1+u)$ - cyclic if $v(C)=C$.
A code C of length n over R is cyclic if and only if $P(C)$ is an ideal of $R[x] /\left\langle x^{n}-1\right\rangle$. A code C of length n over R is $(1+u)$ - cyclic if and only if $P(C)$ is an ideal of $R[x] /\left\langle x^{n}-(1+u)\right\rangle$.

Let $a \in F_{2}^{3 n}$ with $a=\left(a_{0}, a_{1}, \ldots, a_{3 n-1}\right)=\left(a^{(0)}\left|a^{(1)}\right| a^{(2)}\right), a^{(i)} \in F_{2}^{n}$ for all $i=0,1,2$. Let $\sigma^{\otimes 3}$ be the map from $F_{2}^{3 n}$ to $F_{2}^{3 n}$ given by $\sigma^{\otimes 3}(a)=\left(\tilde{\sigma}\left(a^{(0)}\right)\left|\tilde{\sigma}\left(a^{(1)}\right)\right| \tilde{\sigma}\left(a^{(2)}\right)\right)$ where $\tilde{\sigma}$ is the
usual cyclic shift

$$
\left(c_{0}, \ldots, c_{n-1}\right) \longmapsto\left(c_{n-1}, c_{0}, \ldots, c_{n-2}\right)
$$

on F_{2}^{n}. A code \tilde{C} of length $3 n$ over F_{2} is said to be quasi-cyclic of index 3 if $\sigma^{\otimes 3}(\tilde{C})=\tilde{C}$.
The Hamming weight $w_{H}(x)$ of a codeword x is the number of nonzero components in x. The Hamming distance $d(x, y)$ between two codewords x and y is the Hamming weight of the codewords $x-y$. The minimum Hamming distance d_{H} of C is defined as

$$
\min \left\{d_{H}(x, y) \mid x, y \in C, x \neq y\right\} .
$$

Let $x=\left(x_{1}, \ldots, x_{n}\right)$ and $y=\left(y_{1}, \ldots, y_{n}\right)$ be two vectors of R^{n}. The Euclidean inner product of x and y is defined

$$
x y=\sum_{i=1}^{n} x_{i} y_{i}
$$

The dual code C^{\perp} of C is defined as $C^{\perp}=\left\{x \in R^{n} \mid x c=0\right.$ for all $\left.c \in C\right\}$. C is said to be self orthogonal if $C \subseteq C^{\perp}$ and C is said to be self dual if $C=C^{\perp}$.

Recall that the Gray map ϕ_{1} on $F_{2}+u F_{2}, u^{2}=0$ is defined as $\phi_{1}(z)=(r, r+q)$ where $z=q+u r$ with $r, q \in F_{2}$ and the Gray map ϕ_{2} on $F_{2}+v F_{2}, v^{2}=v$ is defined as $\phi_{2}(s)=(m, m+t)$ where $s=m+v t$ with $m, t \in F_{2}$. The maps ϕ_{1} and ϕ_{2} can be extended to $\left(F_{2}+u F_{2}\right)^{n}$ and $\left(F_{2}+v F_{2}\right)^{n}$, respectively as follows,

$$
\begin{aligned}
& \phi_{1}:\left(F_{2}+u F_{2}\right)^{n} \rightarrow F_{2}^{2 n} \\
&\left(z_{0}, \ldots, z_{n-1}\right) \\
& \mapsto\left(r_{0}, \ldots, r_{n-1}, r_{0} \oplus q_{0}, \ldots, r_{n-1} \oplus q_{n-1}\right) \\
& \phi_{2}:\left(F_{2}+v F_{2}\right)^{n} \rightarrow F_{2}^{2 n} \\
& \quad\left(s_{0}, \ldots, s_{n-1}\right) \mapsto\left(m_{0}, \ldots, m_{n-1}, m_{0} \oplus t_{0}, \ldots, m_{n-1} \oplus t_{n-1}\right)
\end{aligned}
$$

where $z_{i}=r_{i}+u q_{i}, s_{i}=m_{i}+v t_{i}$ and $q_{i}, r_{i}, m_{i}, t_{i} \in F_{2}$ for $0 \leq i \leq n-1$ and \oplus is componentwise addition in F_{2}.

Each element $c \in R=F_{2}+u F_{2}+\nu F_{2}$ can be expressed $c=a+u b$ where $a, b \in F_{2}+\nu F_{2}$. The map $\phi_{1,1}$ is defined as

$$
\begin{aligned}
& \phi_{1,1}: R^{n} \rightarrow\left(F_{2}+v F_{2}\right)^{2 n} \\
& \quad\left(c_{0}, \ldots, c_{n-1}\right) \mapsto\left(b_{0}, \ldots, b_{n-1}, b_{0}+a_{0}, \ldots, b_{n-1}+a_{n-1}\right)
\end{aligned}
$$

where $c_{i}=a_{i}+u b_{i}$ with $a_{i}, b_{i} \in F_{2}+v F_{2}$ for $0 \leq i \leq n-1$.
Each element $c \in R=F_{2}+u F_{2}+v F_{2}$ can be also expressed $c=a^{\prime}+v b^{\prime}$ where $a^{\prime}, b^{\prime} \in F_{2}+u F_{2}$. The map $\phi_{2,1}$ is defined as

$$
\begin{aligned}
& \phi_{2,1}: R^{n} \rightarrow\left(F_{2}+u F_{2}\right)^{2 n} \\
& \quad\left(c_{0}, \ldots, c_{n-1}\right) \mapsto\left(a_{0}^{\prime}, \ldots, a_{n-1}^{\prime}, b_{0}^{\prime}+a_{0}^{\prime}, \ldots, b_{n-1}^{\prime}+a_{n-1}^{\prime}\right)
\end{aligned}
$$

where $c_{i}=a_{i}^{\prime}+v b_{i}^{\prime}$ with $a_{i}^{\prime}, b_{i}^{\prime} \in F_{2}+u F_{2}$ for $0 \leq i \leq n-1$.
A Gray map ϕ from R to F_{2}^{m} which is the composition of $\phi_{1,1}$ and ϕ_{2} or $\phi_{2,1}$ and ϕ_{1} can be obtained.

The Lee weights of $0,1, u, 1+u \in F_{2}+u F_{2}$ are $0,1,2,1$ respectively. The Lee weights of $0,1, v, 1+v \in F_{2}+v F_{2}$ are $0,2,1,1$ respectively. These Lee weights can be extended to $\left(F_{2}+u F_{2}\right)^{n}$ and $\left(F_{2}+v F_{2}\right)^{n}$. It is known that ϕ_{1} and ϕ_{2} are distance-preserving map from $\left(F_{2}+u F_{2}\right)^{n}$ (Lee distance) to $F_{2}^{2 n}$ (Hamming distance) and $\left(F_{2}+v F_{2}\right)^{n}$ (Lee distance) to $F_{2}^{2 n}$ (Hamming distance), respectively. For any element $a+v b \in R$ with $a, b \in F_{2}+u F_{2}$, it is defined Lee weight, denoted by w_{L} as $w_{L}(a+v b)=w_{L}(b, b+a)$. The Lee distance of a linear code over R, denoted by $d_{L}(C)$ is defined as minimum Lee weight of nonzero codewords of C.

$$
\begin{aligned}
& \phi_{1}:\left(F_{2}+u F_{2}\right)^{n} \text { (Lee distance) } \rightarrow F_{2}^{2 n} \text { (Hamming distance) } \\
& \phi_{2}:\left(F_{2}+v F_{2}\right)^{n} \text { (Lee distance) } \rightarrow F_{2}^{2 n} \text { (Hamming distance) } \\
& \phi_{1,1}: R^{n} \text { (Lee distance) } \rightarrow\left(F_{2}+v F_{2}\right)^{2 n} \text { (Lee distance) } \\
& \phi_{2,1}: R^{n} \text { (Lee distance) } \rightarrow\left(F_{2}+u F_{2}\right)^{2 n} \text { (Lee distance) }
\end{aligned}
$$

Now, it will be characterized codes over $F_{2}+v F_{2}$ which are the images of $(1+u)$-cyclic and cyclic codes over R.

Proposition 1. Let $\phi_{1,1}$ be defined as above. Let v be $(1+u)$-cyclic shift on R^{n} and σ the cyclic shift on $\left(F_{2}+v F_{2}\right)^{2 n}$. Then $\phi_{1,1} v=\sigma \phi_{1,1}$.

Proof. Let $z=\left(z_{0}, \ldots, z_{n-1}\right) \in R^{n}$ where $c_{i}=q_{i}+u r_{i}$ and $q_{i}, r_{i} \in F_{2}+v F_{2}$ for $0 \leq i \leq n-1$. From definition, we get,

$$
\phi_{1,1}(z)=\left(r_{0}, \ldots, r_{n-1}, r_{0}+q_{0}, \ldots, r_{n-1}+q_{n-1}\right)
$$

and

$$
\sigma\left(\phi_{1,1}(z)\right)=\left(r_{n-1}+q_{n-1}, r_{0}, \ldots, r_{n-1}, r_{0}+q_{0}, \ldots, r_{n-2}+q_{n-2}\right)
$$

On the other hand,

$$
v(z)=\left((1+u) z_{n-1}, z_{0}, \ldots, z_{n-2}\right)=\left(q_{n-1}+u\left(q_{n-1}+r_{n-1}\right), q_{0}+u r_{0}, \ldots, q_{n-2}+u r_{n-2}\right)
$$

and

$$
\phi_{1,1}(v(z))=\left(q_{n-1}+r_{n-1}, r_{0}, \ldots, q_{n-2}+r_{n-2}\right)
$$

Theorem 1. A linear code C of length n over R is a $(1+u)$-cyclic code iff $\phi_{1,1}(C)$ is a cyclic code of length $2 n$ over $F_{2}+v F_{2}$.

Proof. If C is $(1+u)$-cyclic code, from Proposition 1 we get $\phi_{1,1}(v(C))=\sigma\left(\phi_{1,1}(C)\right)$. So $\phi_{1,1}(C)$ is a cyclic code of length $2 n$ over $F_{2}+v F_{2}$. Conversely, if $\phi_{1,1}(C)$ is a cyclic code of length $2 n$ over $F_{2}+v F_{2}$, from Proposition 1, we get $\phi_{1,1}(v(C))=\sigma\left(\phi_{1,1}(C)\right)=\phi_{1,1}(C)$. By using $\phi_{1,1}$ is injection, hence $v(C)=C$.

Corollary 1. The image of a $(1+u)$-cyclic code of length n over R under the map $\phi_{1,1}$ is a distance invariant cyclic code of length $2 n$ over $F_{2}+v F_{2}$.

Note that $(1+u)^{n}=1+u$ if n is odd, $(1+u)^{n}=1$ if n is even. In here, it is studied the properties of $(1+u)$ cyclic codes of odd length in this section.

Let μ be the map of $R[x] /\left\langle x^{n}-1\right\rangle$ into $R[x] /\left\langle x^{n}-(1+u)\right\rangle$ defined by $\mu(c(x))=c((1+u) x)$. If n is odd, then μ is a ring isomorphism. Hence I is an ideal of $R[x] /\left\langle x^{n}-1\right\rangle$ if and only if $\mu(I)$ is an ideal of $R[x] /\left\langle x^{n}-(1+u)\right\rangle$. If $\bar{\mu}^{\prime}$ is the map

$$
\begin{aligned}
& \bar{\mu}^{\prime}: R^{n} \rightarrow R^{n} \\
& z \mapsto\left(z_{0},(1+u) z_{1},(1+u)^{2} z_{2}, \ldots,(1+u)^{n-1} z_{n-1}\right)
\end{aligned}
$$

where $z_{i}=q_{i}+u r_{i}$ and $r_{i}, q_{i} \in F_{2}+v F_{2}$ for $0 \leq i \leq n-1$, then it also follows that:
Proposition 2. The set $C \subseteq R^{n}$ is a linear cyclic code if and only if $\bar{\mu}^{\prime}(C)$ is a linear $(1+u)$-cyclic code.

Let τ^{\prime} be the following permutation of $\{0,1,2, \ldots, 2 n-1\}$ with n odd: $\tau^{\prime}=(1, n+1)(3, n+$ 3) $\ldots(n-2,2 n-2)$. The Nechaev permutation π^{\prime} of $\left(F_{2}+v F_{2}\right)^{2 n}$ is defined by

$$
\pi^{\prime}\left(r_{0}, r_{1}, \ldots, r_{2 n-1}\right)=\left(r_{\tau^{\prime}(0)}, r_{\tau^{\prime}(1)}, \ldots, r_{\tau^{\prime}(2 n-1)}\right)
$$

Proposition 3. Assume n odd, let $\bar{\mu}^{\prime}$ be the permutation of R^{n} such that

$$
\bar{\mu}^{\prime}\left(z_{0}, \ldots, z_{n-1}\right)=\left(z_{0},(1+u) z_{1}, \ldots,(1+u)^{n-1} z_{n-1}\right) .
$$

Then $\phi_{1,1} \bar{\mu}^{\prime}=\pi^{\prime} \phi_{1,1}$.
Corollary 2. If \tilde{C} is the Gray image of a linear cyclic code of length n over R, then \tilde{C} is permutation equivalent to a cyclic code and length $2 n$ over $F_{2}+v F_{2}$.

Proof. From Proposition 2, a code C of length n over R is linear cyclic code if and only if $\bar{\mu}^{\prime}(C)$ is linear $(1+u)$-cyclic. From Theorem 1, this is also so if and only if $\phi_{1,1}\left(\bar{\mu}^{\prime}(C)\right)$ is permutation equivalent to a linear cyclic code over $F_{2}+v F_{2}$. From Proposition 3, $\phi_{1,1}(C)$ is permutation equivalent to linear cyclic over $F_{2}+\nu F_{2}$.

3. A Representation of a Code over R

In this section, it will be obtained a representation of a linear code of length n over R by means of C_{1} and C_{2} which are linear codes of length n over $F_{2}+u F_{2}$.

Theorem 2. The map $\phi_{2,1}: R^{n} \rightarrow\left(F_{2}+u F_{2}\right)^{2 n}$ is a linear isometry.
Proof. For any $m, k \in R^{n}$ and $s, t \in F_{2}+u F_{2}$, it is verified that

$$
\phi_{2,1}(s m+t k)=s \phi_{2,1}(m)+t \phi_{2,1}(k),
$$

so $\phi_{2,1}$ is linear. For isometry, we get

$$
d_{L}\left(\phi_{2,1}(m), \phi_{2,1}(k)\right)=w_{L}\left(\phi_{2,1}(m-k)\right)=w_{L}(m-k)=d_{L}(m, k) .
$$

Theorem 3. If C is a linear code of length n over R, then $\phi_{2,1}(C)$ is a linear code of length $2 n$ over $F_{2}+u F_{2}$.

Proof. It is seen from linearity of $\phi_{2,1}$.
Let A and B be two codes. The direct product and sum of A and B are defined by, respectively

$$
\begin{aligned}
& A \otimes B=\{(a, b) \mid a \in A, b \in B\} \\
& A \oplus B=\{a+b \mid a \in A, b \in B\} .
\end{aligned}
$$

Theorem 4. If C be a linear code of length n over R, then $C=(1+v) C_{1} \oplus v C_{2}, \phi_{2,1}(C)=C_{1} \otimes C_{2}$ and $|C|=\left|C_{1}\right|\left|C_{2}\right|$ where $C_{1}=\left\{m \in\left(F_{2}+u F_{2}\right)^{n} \mid m+v t \in C\right.$ for some $\left.t \in\left(F_{2}+u F_{2}\right)^{n}\right\}$ and $C_{2}=\left\{m+t \in\left(F_{2}+u F_{2}\right)^{n} \mid m+v t \in C\right.$ for some $\left.m \in\left(F_{2}+u F_{2}\right)^{n}\right\}$.

Proof. Let $c=m+v t \in C$ for some $m, t \in\left(F_{2}+u F_{2}\right)^{n}$. So $m \in C_{1}, m+t \in C_{2}$. Hence $c=(1+v) m+v(m+t) \in(1+v) C_{1} \oplus v C_{2}$. We have $C \subseteq(1+v) C_{1} \oplus v C_{2}$. On the other hand, $(1+v) m+v(m+t) \in(1+v) C_{1} \oplus v C_{2}$ where $m \in C_{1}$ and $t \in C_{2}$, there exist $a, b \in C$ and $r, q \in\left(F_{2}+u F_{2}\right)^{n}$ such that $a=m+v r$ and $b=m+t+(1+v) q$. As C is linear over R, from $c=(1+v) a+v b \in C$ we have $(1+v) C_{1} \oplus v C_{2} \subseteq C$.

Theorem 5. A linear code $C=(1+v) C_{1} \oplus v C_{2}$ cyclic over R if and only if C_{1} and C_{2} are all cyclic codes over $F_{2}+u F_{2}$.

Proof. Let $\left(r_{0}, \ldots, r_{n-1}\right) \in C_{1}$ and $\left(s_{0}, \ldots, s_{n-1}\right) \in C_{2}$. Suppose that $c_{i}=(1+v) r_{i}+v s_{i}$ for $i=0, \ldots, n-1$. Let $c=\left(c_{0}, \ldots, c_{n-1}\right) \in C$. As C is cyclic, it follows that $\left(c_{n-1}, c_{0}, \ldots, c_{n-2}\right) \in C$. Note that $\left(c_{n-1}, c_{0}, \ldots, c_{n-2}\right)=(1+v)\left(r_{n-1}, r_{0}, \ldots, r_{n-2}\right)+v\left(s_{n-1}, s_{0}, \ldots, s_{n-2}\right)$. So $\left(r_{n-1}, r_{0}, \ldots, r_{n-2}\right) \in C_{1},\left(s_{n-1}, s_{0}, \ldots, s_{n-2}\right) \in C_{2}$, that is C_{1}, C_{2} are cyclic codes over $F_{2}+u F_{2}$.

Conversely, let C_{1}, C_{2} be cyclic codes over $F_{2}+u F_{2}$. Let $\left(c_{n-1}, c_{0}, \ldots, c_{n-2}\right) \in C$ where $c_{i}=(1+v) r_{i}+v s_{i}$ for $i=0, \ldots, n-1$. Then $\left(r_{0}, \ldots, r_{n-1}\right) \in C_{1}$ and $\left(s_{0}, \ldots, s_{n-1}\right) \in C_{2}$. Note that $\left(c_{n-1}, c_{0}, \ldots, c_{n-2}\right)=(1+v)\left(r_{n-1}, r_{0}, \ldots, r_{n-2}\right)+v\left(s_{n-1}, s_{0}, \ldots, s_{n-2}\right) \in(1+v) C_{1} \oplus v C_{2}=C$. So C is a cyclic code.

Theorem 6. Let C be a linear code of length n over R. Then $\phi_{2,1}\left(C^{\perp}\right)=\left(\phi_{2,1}(C)\right)^{\perp}$.
Proof. By using $\phi_{2,1}\left(C^{\perp}\right) \subseteq\left(\phi_{2,1}(C)\right)^{\perp}$ and $\left|\phi_{2,1}\left(C^{\perp}\right)\right|=\left|\left(\phi_{2,1}(C)\right)^{\perp}\right|$, we have expected result.

Theorem 7. If C is a linear code of length n over R such that $C=(1+v) C_{1} \oplus v C_{2}$, then $C^{\perp}=(1+v) C_{1}^{\perp} \oplus v C_{2}^{\perp}$. Moreover C is self dual if and only if C_{1}, C_{2} are self dual over $F_{2}+u F_{2}$.
Theorem 8. Let $C=(1+v) C_{1} \oplus v C_{2}$ be a linear code of length n over R. Then
$d_{\text {min }}(C)=\min \left\{d_{1}, d_{2}\right\}$ where $d_{\text {min }}, d_{1}$ and d_{2} are minimum Lee distance of C, C_{1} and C_{2}, respectively.

4. The Gray Images of $(1+u)-$ Cyclic Codes and Cyclic over $F_{2}+u F_{2}+v F_{2}$

In this section, by using the Gray map which is defined by Liu Xiusheng, Liu Hualu, we will characterize codes over F_{2} which are the Gray images of $(1+u)$-cyclic and cyclic codes over R.

In [9], it was defined the Gray map ϕ on R^{n} as follows

$$
\begin{aligned}
& \phi: R \rightarrow F_{2}^{3} \\
& \quad a+u b+v c \mapsto(c, b+c, a+b+c) .
\end{aligned}
$$

This map can be extended to R^{n} in a natural way. For $z=\left(z_{0}, \ldots, z_{n-1}\right) \in R^{n}$,

$$
\begin{aligned}
& \phi: R^{n} \rightarrow F_{2}^{3 n} \\
& \quad z=\left(z_{0}, \ldots, z_{n-1}\right) \mapsto\left(s_{0}, \ldots, s_{n-1}, s_{0} \oplus q_{0}, \ldots, s_{n-1} \oplus q_{n-1}, r_{0} \oplus q_{0} \oplus s_{0}, \ldots, r_{n-1} \oplus q_{n-1} \oplus s_{n-1}\right)
\end{aligned}
$$

where $z_{i}=r_{i}+u q_{i}+v s_{i}$, for $0 \leq i \leq n-1$ and \oplus is componentwise addition in F_{2}.
In [9], they extended the definition of the Lee weight from $F_{2}+v F_{2}$ to the ring $F_{2}+u F_{2}+v F_{2}$. The Lee weight $w_{L}(x)$ of a codeword $x=\left(x_{1}, \ldots, x_{n}\right)$ was defined as $\sum_{i=1}^{n} w_{L}\left(x_{i}\right)$ where

$$
w_{L}(x)= \begin{cases}0 & \text { if } x_{i}=0 \\ 1 & \text { if } x_{i}=1,1+u, u+v \\ 2 & \text { if } x_{i}=u, 1+v, 1+u+v \\ 3 & \text { if } x_{i}=v\end{cases}
$$

The Lee distance $d_{L}(x, y)$ between two codewords x and y is the Lee weight of $x-y$. The Gray map ϕ is an isometry from ($R^{n}, d_{\text {Lee }}$) to $F_{2}^{3 n}$ under the Hamming distance.
Proposition 4. $\phi v=\rho \sigma^{\otimes 3} \phi$ where ρ is a permutation of $\{0, \ldots, 3 n-1\}$ which is defined $\rho=(n+1,2 n+1)$.

Proof. Let $z=\left(z_{0}, z_{1}, \ldots, z_{n-1}\right) \in R^{n}$. Let $r_{i}, q_{i}, s_{i} \in F_{2}$ such that $z_{i}=r_{i}+u q_{i}+v s_{i}$, for $0 \leq i \leq n-1$. We have

$$
\phi(z)=\left(s_{0}, \ldots, s_{n-1}, s_{0} \oplus q_{0}, \ldots, s_{n-1} \oplus q_{n-1}, r_{0} \oplus q_{0} \oplus s_{0}, \ldots, r_{n-1} \oplus q_{n-1} \oplus s_{n-1}\right) .
$$

Then

$$
\begin{aligned}
\sigma^{\otimes 3}(\phi(z))= & \left(s_{n-1}, s_{0}, \ldots, s_{n-2}, s_{n-1} \oplus q_{n-1}, s_{0} \oplus q_{0}, \ldots, s_{n-2} \oplus q_{n-2}\right. \\
& \left., r_{n-1} \oplus q_{n-1} \oplus s_{n-1}, r_{0} \oplus q_{0} \oplus s_{0}, \ldots, r_{n-2} \oplus q_{n-2} \oplus s_{n-2}\right) .
\end{aligned}
$$

On the other hand, $v(z)=\left((1+u) z_{n-1}, z_{0}, \ldots, z_{n-2}\right)$ where $(1+u) z_{n-1}=r_{n-1}+u\left(r_{n-1}+q_{n-1}\right)+v s_{n-1}$. We have

$$
\begin{aligned}
\phi(v(z))= & \left(s_{n-1}, s_{0}, \ldots, s_{n-2}, r_{n-1} \oplus q_{n-1} \oplus s_{n-1}, q_{0} \oplus s_{0}, \ldots, q_{n-2} \oplus s_{n-2}, r_{n-1} \oplus q_{n-1}\right. \\
& \left., r_{0} \oplus q_{0} \oplus s_{0}, \ldots, r_{n-2} \oplus q_{n-2} \oplus s_{n-2}\right) .
\end{aligned}
$$

Hence $\phi \nu=\rho \sigma^{\otimes 3} \phi$.
So we have the following theorem.

Theorem 9. A code C of length n over R is $(1+u)$-cyclic if and only if $\phi(C)$ is permutation equivalent to quasi-cyclic of index 3 and length $3 n$ over F_{2}.

Proof. Suppose C is $(1+u)$-cyclic. As $\rho\left(\sigma^{\otimes 3}(\phi(C))\right)=\phi(v(C)), \phi(C)$ is permutation equivalent to a quasi-cyclic of index 3. Conversely, if $\phi(C)$ is permutation equivalent to quasicyclic of index 3 , then $\phi(\nu(C))=\rho\left(\sigma^{\otimes 3}(\phi(C))\right)=\phi(C)$. Since ϕ is isometry, so $\nu(C)=C$, that is C is $(1+u)-$ cyclic code.

Note that $(1+u)^{n}=1+u$ if n is odd, $(1+u)^{n}=1$ if n is even. In here, it is studied the properties of $(1+u)$ cyclic codes of odd length in this section.

Let μ be the map of $R[x] /\left\langle x^{n}-1\right\rangle$ into $R[x] /\left\langle x^{n}-(1+u)\right\rangle$ defined by $\mu(c(x))=c((1+u) x)$. If n is odd, then μ is a ring isomorphism. Hence I is an ideal of $R[x] /\left\langle x^{n}-1\right\rangle$ if and only if $\mu(I)$ is an ideal of $R[x] /\left\langle x^{n}-(1+u)\right\rangle$. If $\bar{\mu}$ is the map

$$
\begin{aligned}
& \bar{\mu}: R^{n} \rightarrow R^{n} \\
& \quad z \mapsto\left(z_{0},(1+u) z_{1},(1+u)^{2} z_{2}, \ldots,(1+u)^{n-1} z_{n-1}\right)
\end{aligned}
$$

where $z_{i}=s_{i}+u t_{i}+v y_{i}$ and $s_{i}, t_{i}, y_{i} \in F_{2}$ for $0 \leq i \leq n-1$, then it also follows that:
Proposition 5. The set $C \subseteq R^{n}$ is a linear cyclic code if and only if $\bar{\mu}(C)$ is a linear $(1+u)$-cyclic code.

Let τ be the following permutation of $\{0,1,2, \ldots, 3 n-1\}$ with n odd:

$$
\tau=(n+1,2 n+1)(n+3,2 n+3)(n+5,2 n+5) \ldots(2 n-2,3 n-2)
$$

The permutation π of $F_{2}^{3 n}$ is defined by

$$
\pi\left(r_{0}, r_{1}, \ldots, r_{3 n-1}\right)=\left(r_{\tau(0)}, r_{\tau(1)}, \ldots, r_{\tau(3 n-1)}\right)
$$

Proposition 6. Assume n odd, let $\bar{\mu}$ be the permutation of R^{n} such that

$$
\bar{\mu}\left(z_{0}, \ldots, z_{n-1}\right)=\left(z_{0},(1+u) z_{1}, \ldots,(1+u)^{n-1} z_{n-1}\right) .
$$

Then $\phi \bar{\mu}=\pi \phi$.
Corollary 3. If \tilde{C} is the Gray image of a linear cyclic code of length n over R, then \tilde{C} is permutation equivalent to a quasi-cyclic code of index 3 and length $3 n$ over F_{2}.

Proof. From Proposition 5, a code C of length n over R is linear cyclic code if and only if $\bar{\mu}(C)$ is linear $(1+u)$-cyclic. From Theorem 9, this is also so if and only if $\phi(\bar{\mu}(C))$ is permutation equivalent to a linear quasi-cyclic code of index 3 over F_{2}. From Proposition 6, $\phi(C)$ is permutation equivalent to linear quasi cyclic of index 3 over F_{2}.

5. Conclusion

It is introduced $(1+u)$-cyclic codes and cyclic codes over R. Firstly, it is characterized codes over $F_{2}+v F_{2}$ which are the Gray images of $(1+u)$-cyclic codes and cyclic codes over R. It is obtained a representation of a linear code of length n over R by means of C_{1} and C_{2} which are linear codes of length n over $F_{2}+u F_{2}$. It is characterized codes over F_{2} which are the Gray images of $(1+u)$ cyclic codes or cyclic codes over R.

References

[1] M. C. V. Amarra and F. R. Nemenzo. On $(1-u)-$ cyclic codes over $F_{p^{k}}+u F_{p^{k}}$, Applied Mathematics Letters, 21, 1129-1133. 2008.
[2] Y. Cengellenmis, On $\left(1-u^{m}\right)$-cyclic codes over $F_{2}+u F_{2}+u^{2} F_{2}+u^{3} F_{2}+\ldots+u^{m} F_{2}$, International Journal of Contemporary Mathematical Sciences 4, 987-992. 2009.
[3] X. Kai, S. Zhu, and L. Wang. A family of constacyclic codes over $F_{2}+u F_{2}+v F_{2}+u v F_{2}$, Journal of Systems Science and Complexity, 25, 1023-1040. 2012.
[4] S. Karadeniz and B. Yildiz. $(1+v)$-constacyclic codes over $F_{2}+u F_{2}+v F_{2}+u v F_{2}$, Journal of the Franklin Institute, doi:10.1016/j.jfranklin.2011.08.005, 2011.
[5] J. F. Qian, L. N. Zhang, and S. X. Zhu. Constacyclic and cyclic codes over $F_{2}+u F_{2}+u^{2} F_{2}$, IEICE Transactions on Fundamentals of Electronics Communications and Computer Sciences, E89-A(6), 1863-1865. 2006.
[6] J. F. Qian, L. N. Zhang, and S. X. Zhu. $(1+u)$ constacyclic and cyclic codes over $F_{2}+u F_{2}$, Applied Mathematics Letters, 19, 820-823. 2006.
[7] B. Srinivasulu and M. Bhaintwal. On linear codes over a non chain extension of $F_{2}+u F_{2}$, Computer, Communication, Control and Information Technology (C3IT), 2015 Third International Conference on IEEE, 2015. doi:10.1109/C3IT.2015.7060155
[8] P. Udomkavanich and S. Jitman. On the Gray image of $\left(1-u^{m}\right)$-cyclic codes over $F_{p^{k}}+u F_{p^{k}}+$ $\ldots+u^{m} F_{p^{k}}$, International Journal of Contemporary Mathematical Sciences 4, 1265-1272. 2009.
[9] L. Xiusheng and L. Hualu. MacWilliams identities of linear codes over the ring $F_{2}+u F_{2}+v F_{2}$, doi:10.1007 s11424-015-2246-x, Journal of Systems Science and Complexity, 28, 691701. 2015.

[^0]: *Corresponding author.

