
EUROPEAN JOURNAL OF PURE AND APPLIED MATHEMATICS
Vol. 10, No. 3, 2017, 440-454
ISSN 1307-5543 – www.ejpam.com
Published by New York Business Global

Narrowing Cohomology for Complex S6

Andrew McHugh

Department of Mathematics and Statistics, Zayed University, Abu Dhabi, UAE

Abstract. We compute Bott Chern, and Aeppli cohomology for a complex structure on the six
sphere, S6. We also give a table for the hodge numbers for the Bott-Chern (and thus also Aeppli)
cohomology where hodge numbers are given in terms of whole number parameters a = h2,0

∂̄
− h1,0

∂̄
,

c = h0,2

∂̄
,d = h1,2

∂̄
, h2,0

∂̄
, h1,1

BC , and h2,2
BC . As an example, we work out the Bott-Chern hodge numbers

completely in the hypothetical case that the Dolbeault cohomology has h2,0 = a = c = d = 0.
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1. Introduction

The existence of a complex structure on S6 has been a persistent question for many
years. In 1954, Hirzebruch[6] showed that if a complex structure on S6 does exist, then
by blowing up a point, one obtains an exotic complex structure on CP3. In fact, these
complex structures on S6 and CP3 are non-Kahler. In 1987 Lebrun[8] showed that a
complex structure on S6 cannot be compatible with the standard metric on S6. In 1998,
Campana, Demailly, and Pertenell[3] showed that a complex S6 has no global non-constant
meromorphic functions. In 2000, Huckleberry, Kebekus, and Peternell showed it is not
almost homogeneous. Recently in 2015, Etesi[4] has published an article which constructs
a complex structure on S6.

In this paper, we search for the Dolbeault, Bott-Chern and Aeppli cohomology hodge
numbers for a complex S6. In 1997, Gray[5] showed that for the Dolbeault hodge numbers,
we have h3,0 = h0,3 = 0 and h0,1 ≥ 1. In 2000, Ugarte essentially gave the following
for the Dolbeault cohomology on S6 which we shall summarise shortly in a table. Let
a = h2,0

2 where h2,0
2 = dimCE

2,0
2 from the Frohlicher spectral sequence. Ugarte shows

that h2,0
2 = h2,0 − h1,0. Now, let c = h0,2, and d = h2,1. We have Ugarte’s results in the

following:
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Table 1: Ugarte: hp,q for a Complex Structure on S6

0 h1,0 + a h1,0 1

c d d− a+ 1 c+ 1

c+ 1 d− a+ 1 d c

1 h1,0 h1,0 + a 0

where 0 ≤ a ≤ c+ 1, and c ≤ d.

2. Some results on the Dolbeault cohomology of compact complex
manifolds and of complex S6.

We begin with the result of Gray[5], (see also Ugarte[11] and Brown[2]):

Theorem 1. (Gray) Let X be a compact complex manifold of complex dimension n such
that bn(X) = 0. Any complex structure on X has the property hn,0 = h0,n = 0.

We will be supposing that X is a complex manifold with H1(X,Z) = H2(X,Z) =
Hn(X,C) = 0. (For example S6 with a complex structure). By above we have of course,
hn,0 = h0,n = 0. Note that this implies that the associated canonical bundle to the complex
structure, K, is not holomorphically trivial. We also note that because H2(X,Z) = 0, we
have that the first Chern class of K ( and for that matter any complex line bundle on X)
is 0.

It is straight forward to show for such complex n-fold X, a result of Gray on complex
S6 (See also Brown[2].)

Theorem 2. h0,1 ≥ 1 (Gray)

Proof. This can be seen by considering the short exact sequence of sheaves:

0→ Z→ O → O∗ → 0

and (the portion of ) the resulting long exact sequence

. . .→ H1(X,Z)→ H1(X,O)→ H1(X,O∗)→ H1(X,Z)→ . . .

where O denotes the sheaf of holomorphic functions on X and O∗ denotes the sheaf of
nowhere zero holomorphic functions on X . Also, the map Z→ O is the map, k 7→ ik and
the map O → O∗ is the exponential map, f 7→ exp(f). Since H1(X,Z) = H2(X,Z) = 0
we have H1(X,O) = H1(X,O∗). Note that 1 6= K ∈ H1(X,O∗) and thus h0,1 6= 0.

We now specialize to X being a three dimensional complex manifold with H1(X,Z) =
H2(X,Z) = H3(X,C) = 0, i.e. topologically equivalent to S6.

Lemma 1. h1,0 ≤ h2,0
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Proof. We consider the portion of the Frohlicher spectral sequence:

∂ : H1,0(X)→ H2,0(X)

We shall show that this is an injective map of vector spaces. Indeed, let φ be a ∂̄ closed
1, 0 form, such that ∂[φ] = 0. Thus, [∂φ] = 0 and by type we have ∂φ = 0. Therefore,
dφ = (∂+ ∂̄)φ = 0. Since, b1 = 0 , we have φ = df for some complex valued, C∞ function,
f . Considering type, we have ∂̄f = 0 and thus f as a global holomorphic function is a
constant. Thus φ = 0. This shows ∂ induces an injective map from H1,0(X)→ H2,0(X).

This can also be directly deduced from the result of Ugarte[11] that E1,0
2 = 0 and

E0,0
2 = 1. More specifically, Brown[2] gives the following table derived by Ugarte for Ep,q

2

of the Frohlicher spectral sequence for a complex structure on S6:

Table 2: Ep,q
2 for a Complex Structure on S6

0 a 0 1

b b 0 a

a 0 b b

1 0 a 0

The bottom row of the table corresponds to the portion of the Frohlicher sequence

H0,0 → H1,0 → H2,0 → H3,0 .

Since H0,0 = C, E0,0 = 1, and E1,0
2 = 0 the sequence reduces to

0→ H1,0 → H2,0 → 0 .

It is exact at H1,0 and thus

∂ : H1,0(X)→ H2,0(X)

is injective. Note that H1,0 = H2,0 if and only if a = 0 and if H1,0 = 0 then H2,0 = a .

Huckleberry, Kebekus and Peternell [7] gave a proof pointed out to them by M. Toma
that h1,0 ≤ 1. We give a somewhat different but related proof here. The present au-
thor is indebted to Daniel Angella for pointing out the correct statement of Huckleberry,
Kebekus, Peternell and Toma’s result.

Lemma 2. (Huckleberry, Kebekus, Peternell, Toma) h1,0 ≤ 1, i.e. h1,0 = 0 or 1

Proof. Indeed, if h1,0 = 2, then h2,0 ≥ 2. Let φ1 and φ2 be two linearly independent
∂̄-closed global 1, 0-forms. Let Φ1 = φ1 ∧ φ2 This is a global ∂̄-closed 2, 0-form on X that
is not identically zero. Since h2,0 ≥ 2 we can select Φ2 another ∂̄-closed global 2, 0-form
that is linearly independent of Φ1.
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We may choose a point, p ∈ X such that Φ1 and Φ2 are non-zero and linearly indepen-
dent at p. Note that φ1 and φ2 are also non-zero and linearly independent of each other
at p since Φ1(p) = φ1(p) ∧ φ2(p) is not zero.

Let ηp ∈ T 1,0
p be linearly independent of φ1(p) and φ2(2), completing a basis for T 1,0

p .
Thus for Φ(p) and some complex numbers, a, b1, b2, we have,

Φ2(p) = aφ1 ∧ φ2 + b1η ∧ φ1 + b2η ∧ φ2 .

Now b1 and b2 are not both zero. Without loss of generality, assume b1 6= 0. Hence
Φ2(p) ∧ φ2 6= 0 and Φ2 ∧ φ2 is a non-zero holomorphic 3, 0-form on X. This contradicts
h3,0 = 0. We must then have h1,0 ≤ 1.

We summarize with two tables of the plausible hodge numbers (with h0,0 in the bottom
lefthand corner) for Dolbeault cohomology for a complex structure on S6:

Table 3: (h1,0 = 1): hp,q for a Complex Structure on S6

0 a+ 1 1 1

c d d− a+ 1 c+ 1

c+ 1 d− a+ 1 d c

1 1 a+ 1 0

where 0 ≤ a ≤ c+ 1, and c ≤ d.

Table 4: (h1,0 = 0): hp,q for a Complex Structure on S6

0 a 0 1

c d d− a+ 1 c+ 1

c+ 1 d− a+ 1 d c

1 0 a 0

where 0 ≤ a ≤ c+ 1, and c ≤ d.

Note that we have in both cases, a = h2,0 − h1,0.

3. Aeppli and Bott-Chern Cohomology on complex S6.

The Aeppli cohomology of a complex manifold is defined by the vector spaces (see
Popovici [9]) :

Hp,q
A =

ker(∂∂̄ : C∞ p,q → C∞ p+1,q+1)

im(∂ : C∞ p−1,q → C∞ p,q) + im(∂̄ : C∞ p,q−1 → C∞ p,q)
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The Bott-Chern cohomology of a complex manifold is defined by the vector spaces
(again see Popovici [9]) :

Hp,q
BC =

ker(∂ : C∞ p,q → C∞ p+1,q) ∩ ker(∂̄ : C∞ p,q → C∞ p,q+1)

im(∂∂̄ : C∞ p−1,q−1 → C∞ p,q)

On compact complex manifolds, there is a harmonic theory for each of these cohomologies
which ensures that they are finite dimensional complex vector spaces. Let hp,qA = dim(Hp,q

A )
and hp,qBC = dim(Hp,q

BC) .We note (see Popovici[9]) that hp,qA = hq,pA , hp,qBC = hq,pBC and

hp,qA = hn−p,n−qBC .
The Serre duality of Bott-Chern and Aeppli cohomology is due to Schweitzer[10]
We try to narrow down as much as possible the Aeppli and Bott-Chern Cohomology

on complex S6.

3.1. Some long exact sequences of cohomology

Consider the following sequence of maps of cohomology on a complex manifold X:

0→ Hp,0
BC

/im(∂̄)−→ Hp,0

∂̄

/(im(∂̄)+im(∂))−→ Hp,0
A

∂̄→ Hp,1
BC

/im(∂̄)−→ · · ·

· · · /(im(∂̄)+im(∂))−→ Hp,n−1
A

∂̄→ Hp,n
BC

/im(∂̄)−→ Hp,n

∂̄

/(im(∂̄)+im(∂))−→ Hp,n
A → 0 .

We prove some claims and lemmas below about this sequence of maps. The sophisticated
readers may just read the claims and lemmas skipping over their proofs if they appear to
be straight forward or obvious.

Lemma 3. The sequence of maps above is exact at Hp,q
A . Namely,

im(/(im(∂̄) + im(∂)) : Hp,q

∂̄
→ Hp,q

A ) = ker(∂̄ : Hp,q
A → Hp,q+1

BC ) .

Proof. Let
[φ]A ∈ ker(∂̄ : Hp,q

A → Hp,q+1
BC )

where φ is some smooth p, q-form representative of [φ]A. We have then that

∂̄([φ]A) = [∂̄(φ)]BC = 0

in Hp,q+1
BC , i.e.

∂̄(φ) = ∂̄∂θ

for some p− 1, q-form θ. Thus
∂̄(φ− ∂θ) = 0

and φ− ∂θ is a ∂̄-closed p, q-form. We conclude then that

[φ]A = [φ− ∂θ]A ∈ im(/(im(∂̄) + im(∂)) : Hp,q

∂̄
→ Hp,q

A )
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and
ker(∂̄ : Hp,q

A → Hp,q+1
BC ) ⊆ im(/(im(∂̄) + im(∂)) : Hp,q

∂̄
→ Hp,q

A ) .

Now let
[φ]A ∈ im(/(im(∂̄) + im(∂)) : Hp,q

∂̄
→ Hp,q

A )

where φ is some smooth p, q-form representative of [φ]A. We may assume that φ is ∂̄-closed
since

[φ]A ∈ im(/(im(∂̄) + im(∂)) : Hp,q

∂̄
→ Hp,q

A ) .

Clearly, ∂̄([φ]A) = [∂̄φ]BC = 0 in Hp,q+1
BC . Thus

[φ]A ∈ ker(∂̄ : Hp,q
A → Hp,q+1

BC )

and
im(/(im(∂̄) + im(∂)) : Hp,q

∂̄
→ Hp,q

A ) ⊆ ker(∂̄ : Hp,q
A → Hp,q+1

BC ) .

The two inclusions give

im(/(im(∂̄) + im(∂)) : Hp,q

∂̄
→ Hp,q

A ) = ker(∂̄ : Hp,q
A → Hp,q+1

BC ) .

Lemma 4. The sequence of maps above is exact at Hp,q
BC . Namely,

ker(/im(∂̄) : Hp,q
BC → Hp,q

∂̄
) = im(∂̄ : Hp,q−1

A → Hp,q+1
BC ) .

Proof. Let
[γ]BC ∈ im(∂̄ : Hp,q−1

A → Hp,q
BC)

where γ is some smooth p, q-form representative of [γ]BC . Since

[γ]BC ∈ im(∂̄ : Hp,q−1
A → Hp,q

BC)

we may assume γ = ∂̄µ for some p, q − 1-form µ such that ∂∂̄µ = 0. Clearly,

γ/im(∂̄) = ∂̄µ/im(∂̄) = 0/im(∂̄)

and
[γ] ∈ ker(/im(∂̄) : Hp,q

BC → Hp,q

∂̄
) .

Thus
im(∂̄ : Hp,q−1

A → Hp,q
BC) ⊆ ker(/im(∂̄) : Hp,q

BC → Hp,q

∂̄
) .

Now let
[γ]BC ∈ ker(/im(∂̄) : Hp,q

BC → Hp,q

∂̄
)

where γ is some smooth p, q-form representative of [γ]BC . Since

[γ]BC ∈ ker(/im(∂̄) : Hp,q
BC → Hp,q

∂̄
)
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we have γ/im(∂̄) = 0/im(∂̄). Thus γ = ∂̄µ for some p, q − 1-form µ. Now, γ is ∂̄-closed
and also ∂-closed. Thus,

∂γ = ∂∂̄µ = 0 .

This shows [γ]BC = ∂̄([µ]A) and

[γ]BC ∈ im(∂̄ : Hp,q−1
A → Hp,q

BC) .

Hence,
ker(/im(∂̄) : Hp,q

BC → Hp,q

∂̄
) ⊆ im(∂̄ : Hp,q−1

A → Hp,q
BC)

and the two inclusions give the equality,

ker(/im(∂̄) : Hp,q
BC → Hp,q

∂̄
) ⊆ im(∂̄ : Hp,q−1

A → Hp,q
BC) .

Lemma 5. If the Betti number, bp+q = 0 on our complex manifold, X, then the sequence
above is exact at Hp,q

∂̄
. More specifically,

im(/im(∂̄) : Hp,q
BC → Hp,q

∂̄
) = ker(/(im(∂̄) + im(∂)) : Hp,q

∂̄
→ Hp,q

A ) .

Proof. Let
[φ]∂̄ ∈ im(/im(∂̄) : Hp,q

BC → Hp,q

∂̄
) .

We have dφ = ∂φ+ ∂̄φ = 0. Since bp+q = 0, we have that φ = dλ for some p+q−1-form,λ
on X. Thus φ = ∂λp−1,q + ∂̄λp,q−1 where ∂λp−1,q and ∂̄λp,q−1 are the projections of λ to
its p− 1, q and p, q − 1 parts respectively. Thus [φ]A = 0 in Hp,q

A , and

[φ]∂̄ ∈ ker(/(im(∂̄) + im(∂)) : Hp,q

∂̄
→ Hp,q

A )

and we have

im(/im(∂̄) : Hp,q
BC → Hp,q

∂̄
) ⊆ ker(/(im(∂̄) + im(∂)) : Hp,q

∂̄
→ Hp,q

A ) .

Now let
[φ]∂̄ ∈ ker(/(im(∂̄) + im(∂)) : Hp,q

∂̄
→ Hp,q

A ) .

Note that φ is ∂̄-closed. Since [φ]A = 0, we have

φ = ∂µ+ ∂̄ν

for some p− 1, q-form µ and some p, q − 1-form, ν. Since ∂̄φ = 0 we have ∂̄(∂µ) = 0 and
[φ]∂̄ = [∂µ] in Hp,q

∂̄
. We also have obviously that ∂(∂µ) = 0 and thus

[φ]∂̄ = (/im(∂̄))([∂µ]BC) ∈ im(/im(∂̄) : Hp,q
BC → Hp,q

∂̄
) .

and hence

ker(/(im(∂̄) + im(∂)) : Hp,q

∂̄
→ Hp,q

A ) ⊆ im(/im(∂̄) : Hp,q
BC → Hp,q

∂̄
) .
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The two inclusions allow us to conclude that

ker(/(im(∂̄) + im(∂)) : Hp,q

∂̄
→ Hp,q

A ) = im(/im(∂̄) : Hp,q
BC → Hp,q

∂̄
) .

Notice above that we nowhere used that bp+q = 0 in proving the inclusion,

[φ]∂̄ ∈ ker(/(im(∂̄) + im(∂)) : Hp,q

∂̄
→ Hp,q

A ) ⊆ im(/im(∂̄) : Hp,q
BC → Hp,q

∂̄
) .

This suggests that we define what we shall call BCA-cohomology:

Ep,q
BCA =

ker(∂) ∩ ker(∂̄)

ker(∂̄) ∩ im(∂) + ker(∂) ∩ im(∂̄)
.

This definition is along the lines of Varouchas[12] who defines similar in spirit vector spaces
to create long exact sequences involving Bott-Chern, Dolbeault, and Aeppli cohomology.
We refer the reader also to Angella[1] for more details.

It is easy to show that if bp+q = 0 then Ep,q
BCA = {0}. We have the following claim:

Lemma 6. For a compact complex manifold, X, the sequence above is exact at Hp,q

∂̄
if

and only if Ep,q
BCA = {0}.

Proof. Let us first assume that Ep,q
BCA = {0}. We need to only to show

im(/im(∂̄) : Hp,q
BC → Hp,q

∂̄
) ⊆ ker(/(im(∂̄) + im(∂)) : Hp,q

∂̄
→ Hp,q

A )

since the reverse inclusion has already been shown true in general. Let

[φ]∂̄ ∈ im(/im(∂̄) : Hp,q
BC → Hp,q

∂̄
) .

We may assume φ ∈ ker(∂) ∩ ker(∂̄). Since Ep,q
BCA = {0}, we have

φ ∈ (ker(∂̄) ∩ im(∂) + ker(∂) ∩ im(∂̄)) ⊆ (im(∂) + im(∂̄)) .

Hence
[φ]∂̄ ∈ ker(/(im(∂̄) + im(∂)) : Hp,q

∂̄
→ Hp,q

A )

and
im(/im(∂̄) : Hp,q

BC → Hp,q

∂̄
) ⊆ ker(/(im(∂̄) + im(∂)) : Hp,q

∂̄
→ Hp,q

A ) .

Thus
im(/im(∂̄) : Hp,q

BC → Hp,q

∂̄
) = ker(/(im(∂̄) + im(∂)) : Hp,q

∂̄
→ Hp,q

A ) .

and the sequence above is exact at Hp,q

∂̄
.

In the other direction we assume the sequence above is exact at Hp,q

∂̄
and

im(/im(∂̄) : Hp,q
BC → Hp,q

∂̄
) = ker(/(im(∂̄) + im(∂)) : Hp,q

∂̄
→ Hp,q

A ) .

Let φ ∈ ker(∂) ∩ ker(∂̄). Then

[φ]∂̄ ∈ im(/im(∂̄) : Hp,q
BC → Hp,q

∂̄
)
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and thus
[φ]∂̄ ∈ ker(/(im(∂̄) + im(∂)) : Hp,q

∂̄
→ Hp,q

A ) .

Specifically, [φ]A = 0. Hence
φ = ∂µ+ ∂̄ν

for some p − 1, q-form, µ and p, q − 1-form ν. Since ∂̄φ = 0 we have ∂̄(∂µ) = 0 and
∂µ ∈ ker(∂̄)∩im(∂). Similiarly, Since ∂φ = 0 we have ∂(∂̄ν) = 0 and ∂̄ν ∈ ker(∂)∩im(∂̄).
Thus

φ ∈ (ker(∂̄) ∩ im(∂) + ker(∂) ∩ im(∂̄))

and Ep,q
BCA = {0}.

Lemma 7. Let X be a compact complex manifold of complex dimension n. If we have the
first Betti number is zero (b1 = 0), then

h1,0
BC = h0,1

BC = hn,n−1
A = hn−1,n

A = 0 .

Proof. Consider a 1, 0-form, µ such that µ ∈ ker(∂) ∩ ker(∂̄) . We have then dµ = 0.
Since b1 = 0, we have µ = df form some function f . Thus µ = ∂f + ∂̄f . We must have
∂̄f = 0 since µ is a 1, 0-form. Hence f is a holomorphic function on a compact complex
manifold and thus must be a constant function. Finally, we have µ = ∂f = 0 since f is
constant. Thus ker(∂) ∩ ker(∂̄) = {0} for 1, 0-forms and h1,0

BC = 0. The other equalities
follow from ”complex conjugation” and Serre duality mentioned above.

Lemma 8. The map of vector spaces,

Hp,0
BC

/im(∂̄)−→ Hp,0

∂̄
,

is injective.

Proof. A p, 0-form cannot be in the image of ∂̄∂ or ∂̄. Thus, ( /im(∂̄) )([µ]BC) = [0]∂̄
if and only if µ = 0.

We also note on the end of the sequence we have

Hp,n
A

∂̄→ Hp,n+1
BC = {0} .

Now we focus again on our compact complex manifold, X, being topologically equiv-
alent to S6. Noting, that b0 = b6 = 1,and bj = 0 for 1 ≤ j ≤ 5, we have, using the above
lemmas, the following:

Theorem 3. For a complex structure on a manifold X topologically equivalent to S6, we
have the following long exact sequences of vector spaces:
0. (p = 0)

0 → H0,1

∂̄

/(im(∂̄)+im(∂))−→ H0,1
A

∂̄→

H0,2
BC

/im(∂̄)−→ H0,2

∂̄

/(im(∂̄)+im(∂))−→ H0,2
A

∂̄→

H0,3
BC

/im(∂̄)−→ H0,3

∂̄

/(im(∂̄)+im(∂))−→ H0,3
A

∂̄→ 0
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1. (p = 1)

0 → H1,0

∂̄

/(im(∂̄)+im(∂))−→ H1,0
A

∂̄→

H1,1
BC

/im(∂̄)−→ H1,1

∂̄

/(im(∂̄)+im(∂))−→ H1,1
A

∂̄→

H1,2
BC

/im(∂̄)−→ H1,2

∂̄

/(im(∂̄)+im(∂))−→ H1,2
A

∂̄→

H1,3
BC

/im(∂̄)−→ H1,3

∂̄

/(im(∂̄)+im(∂))−→ H1,3
A

∂̄→ 0

2. (p = 2)

0 → H2,0
BC

/im(∂̄)−→ H2,0

∂̄

/(im(∂̄)+im(∂))−→ H2,0
A

∂̄→

H2,1
BC

/im(∂̄)−→ H2,1

∂̄

/(im(∂̄)+im(∂))−→ H2,1
A

∂̄→

H2,2
BC

/im(∂̄)−→ H2,2

∂̄

/(im(∂̄)+im(∂))−→ H2,2
A

∂̄→

H2,3
BC

/im(∂̄)−→ H2,3

∂̄

/(im(∂̄)+im(∂))−→ H2,3
A

∂̄→ 0

3. (p = 3)

0 → H3,0
BC

/im(∂̄)−→ H3,0

∂̄

/(im(∂̄)+im(∂))−→ H3,0
A

∂̄→

H3,1
BC

/im(∂̄)−→ H3,1

∂̄

/(im(∂̄)+im(∂))−→ H3,1
A

∂̄→

H3,2
BC

/im(∂̄)−→ H3,2

∂̄

/(im(∂̄)+im(∂))−→ 0

One of our goals is to complete as much as possible a table of hodge numbers for Bott-
Chern cohomology on a complex S6. The table of hodge numbers for Aeppli cohomology
is, of course, given by the Serre duality with Bott-Chern cohomology. Since hp,qBC = hq,pBC ,
we may concern ourselves with just the bottom triangle of the table.

Using h3,0

∂̄
= 0, we can see straight away from the long exact sequence for p = 3 that

h3,0
BC = 0. We also see that

h2,3
BC = h3,2

BC ≥ h
3,2

∂̄
= h0,1

∂̄
≥ 1 .

We also show the following:

Lemma 9. h2,0
BC = h2,0

∂̄
and h3,1

BC = h3,1

∂̄
= c .

Proof. We know that if φ is a ∂̄-closed 2,0-form, then ∂φ = 0. Thus

dφ = ∂φ+ ∂̄φ = 0 .

Since b1 = 0, we have
φ = dη = ∂η + ∂̄η

for some 1-form, η. Thus the image of the map,

H2,0

∂̄

/(im(∂̄)+im(∂))−→ H2,0
A
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is {0}. Hence, since the p = 2 sequence is exact, the map,

H2,0
BC

/im(∂̄)−→ H2,0

∂̄

is an isomorphism and we have h2,0
BC = h2,0

∂̄
.

Notice in the above argument we could also have concluded more specifically for our
∂̄-closed 2,0-form, φ, that

φ = ∂η

for some 1,0-form, η. In a similar manner, we take µ to be a 0,2-form representative of an
element in H0,2

BC . Since dµ = 0, we may conclude that µ = ∂̄χ for some 0,1-form, χ. Thus
the image of the map,

H0,2
BC

/im(∂̄)−→ H0,2

∂̄

is {0} and hence, using the fact h0,3
BC = h3,0

BC = 0, the map,

H0,2

∂̄

/(im(∂̄)+im(∂))−→ H0,2
A

is an isomorphism. We have then

h3,1
BC = h0,2

A = c .

The fact that the image of the map,

H0,2
BC

/im(∂̄)−→ H0,2

∂̄

is {0} also shows from the p=2 sequence that we have the short exact sequence

0→ H0,1

∂̄

/(im(∂̄)+im(∂))−→ H0,1
A

∂̄→ H0,2
BC

/im(∂̄)−→ 0

and thus that
h3,2
BC = h0,1

A = h0,1

∂̄
+ h2,0

∂̄
= c+ 1 + h2,0

∂̄
.

Please recall that
a = h2,0

∂̄
− h1,0

∂̄
.

In trying to be as complete as possible, we also show:

Theorem 4. If X is a compact complex manifold then h0,0
BC = 1. Furthermore, if b1 = 0

then h3,3
BC = 1.
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Proof. A 0,0-form or function, f , on a compact complex manifold, X, such that df = 0
is a constant. Thus, H0,0

BC = C and h0,0
BC = 1.

We consider now H0,0
A . We know that H0,0

∂̄
consists of the constant functions. The

sequence,

0→ H0,0
BC

/im(∂̄)−→ H0,0

∂̄

/(im(∂̄)+im(∂))−→ H0,0
A

∂̄→ H0,1
BC

is not exact at H0,0

∂̄
but it is exact at H0,0

A . Thus, since h0,1
BC = 0, we know that

H0,0
A = im(/(im(∂̄) + im(∂)) : H0,0

∂̄
→ H0,0

A ) .

Now if f is a constant function, then f /∈ (im(∂̄) + im(∂)) so

im(/(im(∂̄) + im(∂)) : H0,0

∂̄
→ H0,0

A ) = C

and H0,0
A = C. By the Serre duality, we have h3,3

BC = 1.

Recall that hp,qBC = hq,pBC . We thus have so far, for our essential lower triangle for
Bott-Chern cohomology

1

h2,2
BC c+ 1 + h2,0

∂̄

h1,1
BC h2,1

BC c

1 0 h2,0

∂̄
0

We still have not computed h1,1
BC , h

2,2
BC and h2,1

BC . We can determine h2,1
BC in terms of

the others by plugging our results so far into the following well known result for long exact
sequences of vector spaces:

Theorem 5. If
0→ A1 → A2 → . . .→ An → 0

is a long exact sequence of vector spaces with aj = dim(Aj) then

n∑
j=1

(−1)j+1aj = 0 .

We apply this to the long exact sequence for p = 1:

h1,0 − (c+ 1 + h2,0) + h1,1
BC − (d− a+ 1) + h2,2

BC − h
2,1
BC + d− h2,1

BC + c− h2,0 + h2,0 = 0 .
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This reduces to
h1,1
BC + h2,2

BC = 2h2,1
BC + 2 .

Thus our essential lower triangle for Bott-Chern cohomology is

1

h2,2
BC c+ 1 + h2,0

∂̄

h1,1
BC

h1,1
BC+h2,2

BC
2 − 1 c

1 0 h2,0

∂̄
0

3.2. The Bott-Chern and Aeppli cohomology for a hypothetical possibil-
ity of the Dolbeault cohomology on complex S6

We consider a specific possible scenario of the Dolbeault cohomology on complex S6.
Namely, h2,0 = a = c = d = 0. In terms of hodge numbers, this is

h1,0 = h2,0 = h0,2 = h1,2 = 0

and
h0,1 = h1,1 = 1 .

This is one of the Dolbeault cohomology scenarios suggested at the end of Etesi[4]. In
fact, the other cohomology scenario, with

h1,1 = h2,1 = 1

and
h1,0 = h2,0 = a = 0

is not possible on complex S6 according to our table for Dolbeault cohomology above since

h1,1 = h1,2 + 1− a .

Etesi does actually in fact also show the incompatibility of this other cohomology
scenario.

We look at the following portion of the p = 2-long exact sequence:

H2,0
A → H2,1

BC → H2,1

∂̄
→ H2,1

A → H2,2
BC → H2,2

∂̄
→ H2,2

A → H2,3
BC → H2,3

∂̄
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Using a total abuse of notation where we write just the dimensions of the vector spaces,
this is:

0→ h2,1
BC → 0→ h2,1

A → h2,2
BC → 1→ h2,2

A → 1→ 0

Since the sequence is exact, we have right away, h2,1
BC = 0 and thus h2,1

A = 0 by the Serre

duality. By the Frohlicher sequence, we know that ∂ : H2,2

∂̄
→ H3,2

∂̄
is an isomorphism.

In particular, we cannot have a non zero ∂̄-harmonic 2,2-form being d-closed. Thus we
cannot have H2,2

BC being isomorphic to H2,2

∂̄
. Thus h2,2

BC = 0 and h2,2
A = h1,1

BC = 2. This
completes the Bott-Chern and Aeppli cohomology for this possible Dolbeault cohomology.
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