EUROPEAN JOURNAL OF PURE AND APPLIED MATHEMATICS
Vol. 10, No. 4, 2017, 749-762
ISSN 1307-5543 - www.ejpam.com
Published by New York Business Global

Hasse-Schmidt Derivations on Banach-Jordan Pairs

Hassan Marhnine ${ }^{1}$, Chafika Zarhouti ${ }^{1, *}$
${ }^{1}$ Av. My Abdelaziz, Souani, B.P. 3117
Tangier 90000, Morocco

Abstract

The aim of this paper consists in establishing the automatic continuity of HasseSchmidt derivations on Banach-Jordan Pairs and Banach-Jordan Algebras satisfying some algebraic conditions. Namely, higher derivations on semiprimitive Banach-Jordan Pairs and semiprimitive Banach-Jordan Algebras are continuous.

2010 Mathematics Subject Classifications: 17C65, 46H40, 46H70
Key Words and Phrases: Derivation, Higher derivation, automatic continuity, Banach-Jordan pairs, Banach-Jordan algebras

1. Introduction

Higher derivations were introduced first by Hasse and Schmidt [12], that's why algebraist sometimes call them Hasse-Schmidt derivations. For further algebraic properties about these operators, the reader is referred to $[5,7,11,17,27,28]$ where they are studied in other context. Higher derivations are used in [30] to study generic solving of higher differential equations. Loy proved in [22] that if A is an (F)-algebra which is a subalgebra of a Banach algebra B of power series, then every higher derivation $\left\{d_{n}\right\}: A \longrightarrow B$ ($n=0,1,2, \ldots$) is automatically continuous. Jewell showed in [15] that any higher derivation from a Banach algebra into a semisimple Banach algebra is continuous provided $\operatorname{ker}\left(d_{0}\right) \subseteq \operatorname{ker}\left(d_{n}\right)$, for all $n \geq 1$. S. Hejazian and T.L. Shatery show in [13] that every higher derivation $\left\{d_{n}\right\}$ from a $J B^{*}$-algebra A into a $J B^{*}$-algebra B is continuous provided that d_{0} is a ${ }^{*}$-homomorphism. They also prove that every higher derivation from a commutative C^{*}-algebra or from a C^{*}-algebra which has minimal idempotents and is the closure of its socle is continuous. M. Mirzavaziri gives in [24] a characterization of higher derivations on algebras.

In this paper, we deal with higher derivations on Banach-Jordan pairs. We intend to settle the automatic continuity of these operators provided that some algebraic conditions are satisfied. Our approach to this result consists in intensive use of local algebras theory frequently used by authors in Jordan structures. Let us note that Jordan pairs are a natural

[^0]Email addresses: radimarhn@hotmail.com (H. Marhnine), chafikazar@hotmail.com (C. Zarhouti)
extension of Jordan algebras and arise as well in a natural way in the geometry of bounded symmetric domains. Loos proved in [21] a strong dependence between homogeneous circled domains, in finite complex vector spaces, and Jordan pairs.

2. Preliminaries

In this paper we shall deal with Jordan pairs and Jordan algebras over a commutative ring of scalars \mathcal{R} of characteristic not two. The reader is referred to [18] for further details. However, we shall record in this section some notations and results.

A Jordan pair over a commutative ring \mathcal{R} of characteristic not two is a pair of \mathcal{R} modules $P=\left(P^{+}, P^{-}\right)$endowed with a couple (Q^{+}, Q^{-}) of quadratic operators Q^{σ} : $P^{\sigma} \longrightarrow \operatorname{Hom}_{\mathcal{R}}\left(P^{-\sigma}, P^{\sigma}\right)$ such that the following identities hold for all $(x, y) \in P^{\sigma} \times$ $P^{-\sigma}(\sigma= \pm)$

$$
V_{(x, y)}^{\sigma} Q_{x}^{\sigma}=Q_{x}^{\sigma} V_{(y, x)}^{-\sigma}, \quad V_{\left(Q_{x}^{\sigma} y, x\right)}^{\sigma}=V_{\left(x, Q_{y}^{-\sigma} x\right),}^{\sigma},
$$

where $V_{(x, y)}^{\sigma} z=Q_{(x, z)}^{\sigma} y=\{x, y, z\}_{\sigma}, Q_{(x, z)}^{\sigma}=Q_{x+z}^{\sigma}-Q_{x}^{\sigma}-Q_{z}^{\sigma}$ and $\{x, y, x\}_{\sigma}=2 Q_{x}^{\sigma} y$.
An example of Jordan pairs over a field \mathcal{K} is given by taking $P=A(M, R, \varphi)^{J}$, where $M=\left(M^{+}, M^{-}\right)$is a pair of R-vector spaces such that M^{+}is a left R-module and M^{-}is a right R-module over an associative \mathcal{K}-algebra R and $\varphi: M^{+} \times M^{-} \longrightarrow R$ is an R-bilinear form in the sense that $\varphi(a x, y b)=a \varphi(x, y) b$. The product of $P=A(M, R, \varphi)^{J}$ is defined by:

$$
Q_{x} y=\varphi(x, y) x \text { and } Q_{y} x=y \varphi(x, y) \quad \forall(x, y) \in M^{+} \times M^{-} .
$$

A Jordan pair $P=\left(P^{+}, P^{-}\right)$is said to be normed (Banach) provided the vector spaces P^{+}and P^{-}are endowed with norms (complete), both denoted by $\|$.$\| , making continuous$ the triple products $\{x, y, z\}_{\sigma}$ of P, merely denoted $\{x, y, z\}$.

A typical example of Banach-Jordan pairs is given by taking

$$
P^{+}=\mathcal{B L}(\mathcal{X}, \mathcal{Y}), P^{-}=\mathcal{B L}(\mathcal{Y}, \mathcal{X}),
$$

the pair of linear bounded operators between real or complex Banach spaces \mathcal{X} and \mathcal{Y} with the multiplication $Q_{u} v=u v u$. Such pair is frequently denoted by $\mathcal{B}(\mathcal{X}, \mathcal{Y})$.

A (linear) Jordan algebra is a vector space J endowed with a binary product $(a, b) \longmapsto$ $a b$ satisfying the identities: $a b=b a$, and $a^{2}(b a)=\left(a^{2} b\right) a$. If a complete norm is defined on J and makes continuous its product $a b, J$ is said to be a Banach-Jordan algebra. Jordan pairs are known by their intimate relationship with Jordan algebras. Indeed, Any associative, alternative or Jordan algebra A gives rise to a Jordan pair (A, A) with a quadratic multiplication $x y x$ or $U_{x} y$, with U denoting the usual U-operator of a Jordan algebra defined by $U_{x} y=2 x(x y)-x^{2} y$.

In the opposite direction, given a Jordan pair $V=\left(V^{+}, V^{-}\right)$and an element $u \in V^{-\sigma}$, the vector space V^{σ} gives rise to a Jordan algebra by defining the U-operator $U_{a}=U_{a}^{(u)}=$ $Q_{a} Q_{u}$, and the square $a^{(2, u)}=Q_{a} u$. This Jordan algebra, denoted by $V^{\sigma(u)}$, is called the u-homotope of V at u. If V is a linear Jordan pair, we just need to define the linear product in $V^{\sigma(u)}$ as follows: $a . b=\frac{1}{2}\{a, u, b\}$.

Local algebras of a Jordan pair. Let V be a Jordan pair and $0 \neq u \in V^{-\sigma}$. By [18, 4.19] the set $\operatorname{ker}(u)$ whose elements are those $x \in V^{\sigma}$ such that $Q_{u} x=Q_{u} Q_{x} u=0$, turns out to be an ideal of $V^{\sigma(u)}$ and the quotient $V^{\sigma(u)} / \operatorname{ker}(u)$ is a Jordan algebra called the local algebra of V at u which we denote by V_{u}. As pointed out in $[9,1.2 .4(i i)]$ the condition $Q_{u} Q_{x} u=0$ is superfluous if V is linear or nondegenerate: $Q_{x}=0$ implies $x=0$.

If V is a normed Jordan pair, Then $V^{\sigma(u)}$ is a normed Jordan algebra for the norm $|x|=\|x\|_{\sigma}\|u\|_{-\sigma}$. Moreover, by [23, §II. Lemma 3.1], the local algebra V_{u} is also normed for the quotient norm $\|x+\operatorname{ker}(u)\|=\inf _{z \in \operatorname{ker}(u)}|x+z|$ which is complete if so are the norms of V.

Socle and capacity. For a nondegenerate Jordan pair V, its socle, denoted by $\operatorname{Soc}(V)$, is the ideal $\operatorname{Soc}(V)=\left(\operatorname{Soc}\left(V^{+}\right), \operatorname{Soc}\left(V^{-}\right)\right)$, where $\operatorname{Soc}\left(V^{\sigma}\right)$ denotes the sum of all minimal inner ideals of $V^{ \pm}$.
(2.1) Let V be a nondegenerate Jordan pair and $u \in V^{\sigma}$. Then $u \in \operatorname{Soc}\left(V^{\sigma}\right)$ if and only if V_{u} has finite capacity [25, $\left.0.7(\mathrm{~b})\right]$.

A nondegenerate Jordan pair V has a finite capacity if it contains an orthogonal system $\left\{e_{1}, \ldots, e_{n}\right\}$ of division idempotents ($V_{2}\left(e_{i}\right)$ is a division Jordan pair) such that $\cap_{i=1}^{n} V_{0}\left(e_{i}\right)=$ 0 , equivalently the lengths of its chains of principal inner ideals are bounded

Primitive Jordan pairs and Jacobson radical. A Jordan pair $V=\left(V^{+}, V^{-}\right)$is said to be primitive at $b \in V^{-\sigma}$ if there exists a proper inner ideal K of V^{σ} such that:
i) K is a c-modular inner ideal of the homotope $V^{\sigma(b)}$ for some $c \in V^{\sigma}$,
ii) K complements the (σ)-parts of nonzero ideals: $I^{\sigma}+K=V^{\sigma}$ for any nonzero ideal $I=\left(I^{+}, I^{-}\right)$of V.
Anquela and Cortés proved in [1] and [2] the following results:
(2.2) V is primitive at $b \in V^{-\sigma}$ if and only if V_{b} is a primitive Jordan algebra and V is strongly prime.
(2.3) If V is primitive at some $0 \neq b_{0} \in V^{-\sigma}$ then so is V at every element $0 \neq b \in V^{ \pm}$. Further results on primitive Jordan pairs can be found in [1], [2] and [3].

Following [18], the Jacobson radical of a Jordan pair V is defined as the the ideal $\operatorname{Rad}(V)=\left(\operatorname{Rad}\left(V^{+}\right), \operatorname{Rad}\left(V^{-}\right)\right)$, where $\operatorname{Rad}\left(V^{\sigma}\right)$ is the set of properly quasi-invertible elements of V^{σ}, that is, those elements which are quasi-invertible in every homotope $V^{\sigma(u)}$. A Jordan pair is said to be semiprimitive is $\operatorname{Rad}(V)=0$.

As in the case of associative algebras, an ideal P of a Jordan system (algebra or pair) V is called primitive if the factor system (algebra or pair) V / P is primitive. Moreover, it follows from [14, A.4.8] , or either [31].
(2.4) The Jacobson radical of a Jordan pair is the intersection of all its primitive ideals.

3. Technical results

Recall that we can measure the continuity of a linear operator acting between two normed spaces by considering its so called separating subspace. Indeed, if T is a linear
operator defined between two real or complex normed vector spaces X and Y, then its separating subspace $S(T)$ is defined by:

$$
S(T)=\left\{y \in Y: \exists\left\{x_{n}\right\}_{n} \subset X \text { such that } \lim x_{n}=0 \text { and } \lim T\left(x_{n}\right)=y\right\} .
$$

It is easily seen that the separating subspace of T is a closed subspace of Y. Moreover, by the closed graph Theorem, if both X and Y are Banach spaces, then T is continuous if and only if $S(T)=0$.

Let V and W be two Jordan pairs. By a higher derivation of rank k (k may be infinite), we mean a family of linear mappings $\left\{\varphi_{n}=\left(\varphi_{n}^{+}, \varphi_{n}^{-}\right)\right\}_{n=1}^{k}$ from V into W such that

$$
\varphi_{n}^{\sigma}\{x, y, z\}=\sum_{i+j+h=n}\left\{\varphi_{i}^{\sigma} x, \varphi_{j}^{-\sigma} y, \varphi_{h}^{\sigma} z\right\},\left(x, z \in V^{\sigma}, y \in V^{-\sigma}, n=0,1,2, \ldots, k\right),
$$

where $\varphi_{0}^{\sigma}=I d_{V^{\sigma}}(\sigma= \pm)$.
Let $D=\left(D_{+}, D_{-}\right)$be a derivation from V into W, that is a pair of linear operators $D_{\sigma}: V^{\sigma} \longrightarrow V^{\sigma}$ satisfying

$$
D_{\sigma}\{x, y, z\}=\left\{D_{\sigma} x, y, z\right\}+\left\{x, D_{-\sigma} y, z\right\}+\left\{x, y, D_{\sigma} z\right\} \text {, for all }\left(x, z \in V^{\sigma}, y \in V^{-\sigma} .\right.
$$

Any derivation $D=\left(D_{+}, D_{-}\right)$from V into W gives rise to a standard example of higher derivations $\left\{\varphi_{n}=\left(\varphi_{n}^{+}, \varphi_{n}^{-}\right)\right\}_{n \geq 0}$ from V into W by setting

$$
\varphi_{n}^{+}=\frac{1}{n!} D_{+}^{n}, \text { and } \varphi_{n}^{-}=\frac{1}{n!} D_{-}^{n} .
$$

Remark 1. i) It follows from the last definitions that $\varphi_{1}=\left(\varphi_{1}^{+}, \varphi_{1}^{-}\right)$is a derivation. ii) In order to simplify notations, the index $\sigma= \pm$ in expressions like $D_{i}^{ \pm}(x), \varphi_{i}^{ \pm}(x), \ldots$ will be sometimes suppressed if there is no confusion.

Lemma 1. Let V be a normed Jordan pair and let $k \geq 2$ be a fixed positive integer. If $\left.\varphi_{n}=\left(\varphi_{n}^{+}, \varphi_{n}^{-}\right)\right\}$is a higher derivation on V such that φ_{i}^{σ} is continuous for every $i \in\{0,1, \ldots, k-1\}(\sigma=+,-)$, then the separating subspace $S\left(\varphi_{k}\right)=\left(S\left(\varphi_{k}^{+}\right), S\left(\varphi_{k}^{-}\right)\right)$of φ_{k} is a closed ideal of V.

Proof. Since the characteristic of the ground field is zero, it suffices to prove that $S\left(\varphi_{n}\right)$ is an outer ideal of V. That is

$$
Q_{V^{-\sigma}} S\left(\varphi_{k}^{\sigma}\right) \subset S\left(\varphi_{k}^{\sigma}\right) \text { and }\left\{S\left(\varphi_{k}^{\sigma}\right), V^{-\sigma}, V^{\sigma}\right\} \subset S\left(\varphi_{k}^{\sigma}\right) .
$$

Let s be an element of $S\left(\varphi_{k}^{\sigma}\right)$ and a be an arbitrary element of $V^{-\sigma}$. Then there exist a sequence $\left\{x_{n}\right\}_{n} \subset V^{\sigma}$ such that $\lim x_{n}=0$ and $\lim \varphi_{k}^{\sigma}\left(x_{n}\right)=s$. Consider the sequence $\left\{Q_{a} x_{n}\right\}$. By continuity of the operator Q_{a}, we get $\lim Q_{a} x_{n}=Q_{a} \lim x_{n}=0$. Moreover, using the continuity of the triple product of V and that of φ_{j}^{σ} such that $0 \leq j \leq k-1$, we see
that the terms $\left\{\varphi_{i}^{\sigma} a, \varphi_{j}^{-\sigma} x_{n}, \varphi_{h}^{\sigma} a\right\}$ converge to zero when n tends to ∞ and consequently we have

$$
\begin{aligned}
\lim \varphi_{k}^{\sigma} Q_{a} x_{n} & =\frac{1}{2} \lim \varphi_{k}^{\sigma}\left\{a, x_{n}, a\right\} \\
& =\frac{1}{2} \lim \sum_{i+j+h=k}\left\{\varphi_{i}^{\sigma} a, \varphi_{j}^{-\sigma} x_{n}, \varphi_{h}^{\sigma} a\right\} \\
& =\frac{1}{2}\left\{a, \lim \varphi_{k}^{-\sigma} x_{n}, a\right\} \\
& =\frac{1}{2}\{a, s, a\} \\
& =Q_{a} s
\end{aligned}
$$

which establishes $Q_{V^{-\sigma}} S\left(\varphi_{k}^{\sigma}\right) \subset S\left(\varphi_{k}^{\sigma}\right)$. On the other hand, for arbitrary pair (u, v) of elements in $V^{-\sigma} \times V^{\sigma}$, the sequence $\left\{x_{n}, u, v\right\}$ converges to 0 . Using again the continuity of the triple product of V as well as that of φ_{i}^{σ} such that $0 \leq i \leq k-1$ and $i+j+h=k$, we see that, for arbitrary pair (u, v) of elements in $V^{-\sigma} \times V^{\sigma}$, the terms $\left\{\varphi_{i}^{\sigma} x_{n}, \varphi_{j}^{\sigma} u, \varphi_{h}^{\sigma} v\right\}$ converge to zero when n tends to ∞. Consequently, we do have

$$
\begin{aligned}
\lim \varphi_{k}^{\sigma}\left(\left\{x_{n}, u, v\right\}\right) & =\lim \sum_{i+j+h=k}\left\{\varphi_{i}^{\sigma}\left(x_{n}\right), \varphi_{j}^{-\sigma}(u), \varphi_{h}^{\sigma}(v)\right\} \\
& =\sum_{i+j+h=k}\left\{\lim \varphi_{i}^{\sigma}\left(x_{n}\right), \varphi_{j}^{-\sigma}(u), \varphi_{h}^{\sigma}(v)\right\} \\
& =\left\{\lim \varphi_{k}^{\sigma}\left(x_{n}\right), u, v\right\} \\
& =\{s, u, v\},
\end{aligned}
$$

which establishes $\left\{S\left(\varphi_{k}^{\sigma}\right), V^{-\sigma}, V^{\sigma}\right\} \subset S\left(\varphi_{k}^{\sigma}\right)$ as required. Finally, $S\left(\varphi_{k}\right)$ is an ideal of V which is closed since the separating subspace of any linear operator is closed as it is pointed out.

Remark 2. Let $\left\{D_{n}=\left(D_{n}^{+}, D_{n}^{-}\right)\right\}$be a higher derivation on a normed Jordan pair $V=$ $\left(V^{+}, V^{-}\right)$and let b be a nonzero element in $V^{-\sigma}$. Let us note that $\left\{D_{n}^{\sigma}\right\}$ is not a higher derivation on the Jordan algebra $V^{\sigma(b)}$ even if D_{n}^{σ} vanishes at b for all positive integers n. However, the behavior of D_{n}^{σ} towards $V^{\sigma(b)}$ conserves nice properties as it is clarified in the following.

Lemma 2. Let $V=\left(V^{+}, V^{-}\right)$be a normed Jordan pair and let b be a nonzero element in $V^{-\sigma}$. If $\left\{D_{n}=\left(D_{n}^{+}, D_{n}^{-}\right)\right\}_{n \geq 0}$ is a higher derivation on V such that D_{i}^{σ} is continuous for every $i \in\{0,1, \ldots, k-1\}$ where k is a fixed positive integer greater than 2 . Then for every T in the multiplication algebra $\mathcal{M}\left(V^{\sigma(b)}\right)$ of the Jordan algebra $V^{\sigma(b)}$, the linear operator [$\left.D_{k}^{\sigma}, T\right]$ is continuous.

Proof. Consider the set

$$
B=\left\{T \in \mathcal{M}\left(V^{\sigma(b)}\right): \quad\left[D_{k}^{\sigma}, T\right] \text { is continuous }\right\} .
$$

It is clear that B is a subspace of $\mathcal{M}\left(V^{\sigma(b)}\right)$. Moreover, a simple computation shows that the formula

$$
T\left[D_{k}^{\sigma}, S\right]+\left[D_{k}^{\sigma}, T\right] S=\left[D_{k}^{\sigma}, T S\right]
$$

holds for all T, S in $\mathcal{M}\left(V^{\sigma(b)}\right)$. This proves that B is a subalgebra of $\mathcal{M}\left(V^{\sigma(b)}\right)$. On the other hand, for all $a \in V^{\sigma(b)}$, the left multiplication L_{a} lies in B. Indeed, since $L_{a}=\frac{1}{2} V_{(a, b)}$, for all $x \in V^{\sigma}$ we have

$$
\begin{aligned}
{\left[D_{k}^{\sigma}, L_{a}\right] x } & =D_{k}^{\sigma} L_{a} x-L_{a} D_{k}^{\sigma} x \\
& =\frac{1}{2}\left(D_{k}^{\sigma}\{a, b, x\}-\left\{a, b, D_{k}^{\sigma} x\right\}\right) \\
& =\frac{1}{2}\left(\sum_{i+j+h=k}\left\{D_{i}^{\sigma} a, D_{j}^{-\sigma} b, D_{h}^{\sigma} x\right\}-\left\{a, b, D_{k}^{\sigma} x\right\}\right) \\
& =\frac{1}{2}\left(\sum_{\substack{i+j+h=k \\
h \leq k-1}}\left\{D_{i}^{\sigma} a, D_{j}^{-\sigma} b, D_{h}^{\sigma} x\right\}\right) .
\end{aligned}
$$

This shows that

$$
\left[D_{k}^{\sigma}, L_{a}\right]=\frac{1}{2}\left(\sum_{\substack{i+j+h=k \\ 1 \leq h \leq k-1}} V_{\left(D_{i}^{\sigma} a, D_{j}^{-\sigma} b\right)} D_{h}^{\sigma}+\sum_{i+j=k} V_{\left(D_{i}^{\sigma} a, D_{j}^{-\sigma} b\right)}\right),
$$

which shows that the operator $\left[D_{k}^{\sigma}, L_{a}\right]$ is continuous since so are $V_{\left(D_{i}^{\sigma} a, D_{j}^{-\sigma} b\right)}$ and D_{h}^{σ} for all $h \in\{1, \ldots, k-1\}$. Finally, since $\mathcal{M}\left(V^{\sigma(b)}\right)$ is generated by all left multiplications L_{a}, we see that $\mathcal{M}\left(V^{\sigma(b)}\right)=B$.

The first automatic continuity result concerns higher derivations on nondegenerate Banach-Jordan pairs with nonzero socle.

Theorem 1. Let $V=\left(V^{+}, V^{-}\right)$be a nondegenerate Banach-Jordan pair with nonzero socle. If $\left.D_{n}=\left(D_{n}^{+}, D_{n}^{-}\right)\right\}_{n \geq 0}$ is a higher derivation on V, then D_{k}^{σ} is continuous for every positive integer k.

Proof. By the closed graph Theorem, it suffices to prove that $S\left(D_{k}^{\sigma}\right)=0$. We proceed by induction on k. For $k=0$, the identity operator $D_{0}^{\sigma}=I d_{V^{\sigma}}$ is obviously continuous. Assume that D_{i} is continuous for $i=1,2, \ldots, k-1$ and prove that so is D_{k}. In virtue of Lemma 1, it is known that $S\left(D_{k}\right)$ is an ideal of V. We claim that $S o c\left(V^{+}\right) \cap S\left(D_{k}^{+}\right)=$ 0 . Assume that this is not the case. We follow the pattern given in [10, Theorem 3.6] to look for a contradiction. By [10, Lemma 3.5], there exists a nonzero element r in $S\left(D_{k}^{+}\right) \cap \operatorname{Soc}\left(V^{+}\right)$such that r is reduced: $Q_{r} V^{-}=\mathbb{C} . r$. By von Neumann regularity of $\operatorname{Soc}(V)$, there exists a nonzero element v in V^{-}such that $r=Q_{r} v$. Replace v by $u=Q_{v} r$ to see that, using $J P_{3}$ in [18],
(1) $Q_{r} u=Q_{r} Q_{v} r=Q_{r} Q_{v} Q_{r} v=Q_{Q_{r} v} v=Q_{r} v=r$.

By idealness of $S\left(D_{k}\right)$, u lies in $S\left(D_{k}^{-}\right)$and u is nonzero because otherwise $r=0$, which is a contradiction. Hence, there exists a sequence $\left\{x_{n}\right\}$ in V^{-}such that $\lim x_{n}=0$ and $\lim D_{k}^{-} x_{n}=u$. Since r is reduced, we have $Q_{r} V^{-}=\mathbb{C} . r$ and consequently, for every non negative integer n, there exists a complex number λ_{n} such $Q_{r} x_{n}=\lambda_{n} r$. Now the boundedness of the operator Q_{r} shows that $\lim Q_{r} x_{n}=Q_{r} \lim x_{n}=0$. This makes the sequence $\left\{\lambda_{n}\right\}$ converging to zero in the complex field \mathbb{C}. It follows that

$$
\text { (2) } \lim D_{k}^{+}\left(Q_{r} x_{n}\right)=\lim D_{k}^{+}\left(\lambda_{n} r\right)=\lim \lambda_{n} D_{k}^{+}(r)=0
$$

On the other hand, by making use of the triple product of V and that of D_{j}^{-}, such that $1 \leq j \leq k-1$, we see that all terms like $\left\{D_{i}^{+} r, D_{j}^{-} x_{n}, D_{h}^{+} r\right\}$ converge to zero when n tends to ∞. That is

$$
\lim \left\{D_{i}^{+} r, D_{j}^{-} x_{n}, D_{h}^{+} r\right\}=\left\{D_{i}^{+} r, \lim D_{j}^{-} x_{n}, D_{h}^{+} r\right\}=\left\{D_{i}^{+} r, D_{j}^{-} \lim x_{n}, D_{h}^{+} r\right\}=0
$$

It follows that, taking into account (1),

$$
\begin{aligned}
\lim D_{k}^{+}\left(Q_{r} x_{n}\right) & =\frac{1}{2} \lim D_{k}^{-}\left(\left\{r, x_{n}, r\right\}\right) \\
& =\frac{1}{2} \lim \sum_{i+j+h=k}\left\{D_{i}^{+} r, D_{j}^{-} x_{n}, D_{h}^{+} r\right\} \\
& =\frac{1}{2}\left\{r, \lim D_{k}^{-} x_{n}, r\right\} \\
& =\frac{1}{2}\{r, u, r\} \\
& =Q_{r} u \\
& =r
\end{aligned}
$$

which contradicts (2) since r is nonzero. Now, by idealness of $S\left(D_{k}\right)$ and $\operatorname{Soc}(V)$, we see that for all $s \in \operatorname{Soc}\left(V^{-}\right)$

$$
Q_{s}\left(S\left(D_{k}^{+}\right)\right) \subset S o c\left(V^{-}\right) \cap S\left(D_{k}^{-}\right)=0
$$

This shows that $S\left(D_{k}^{+}\right) \subseteq \operatorname{ker}\left(Q_{s}\right)$ for every s in $\operatorname{Soc}\left(V^{-}\right)$, that is $S\left(D_{k}^{+}\right) \subseteq \underset{s \in \operatorname{Soc}\left(V^{-}\right)}{\cap} \operatorname{ker}\left(Q_{s}\right)$. But in virtue of [18, Theorem 4.13], we see

$$
\cap_{s \in \operatorname{Soc}\left(V^{-}\right)} \operatorname{ker}\left(Q_{s}\right) \subseteq \operatorname{rad}\left(\operatorname{Soc}\left(V^{+}\right)\right) \text {and } \operatorname{rad}\left(\operatorname{Soc}\left(V^{+}\right)\right)=\operatorname{Soc}\left(V^{+}\right) \cap \operatorname{rad}\left(V^{+}\right)
$$

But, the McCrimmon radical $\operatorname{rad}(V)$ is reduced to zero by nondegeneracy of V. This proves that $S\left(D_{k}^{+}\right)=0$ and, by the closed graph Theorem, D_{k}^{+}is continuous. By the symmetry of the argument we see that D_{k}^{-}is analogously continuous.

As a fundamental example of Jordan pairs having nonzero socle, $\mathcal{B}(\mathcal{X}, \mathcal{Y})$ the Jordan pair of bounded linear operators between two Banach spaces X and Y. So we have the following.

Corollary 1. Any higher derivation $D_{n}=\left(D_{n}^{+}, D_{n}^{-}\right)$on the Banach-Jordan pair $B(X, Y)$ consists of continuous operators.

Proof. It is known that the Banach-Jordan pair $\mathcal{B}(\mathcal{X}, \mathcal{Y})$ of bounded linear operators between two Banach spaces \mathcal{X} and \mathcal{Y} is nondegenerate and has

$$
\operatorname{Soc}(\mathcal{B}(\mathcal{X}, \mathcal{Y}))=(\mathcal{F} \mathcal{L}(\mathcal{X}, \mathcal{Y}), \mathcal{F} \mathcal{L}(\mathcal{Y}, \mathcal{X})
$$

the Banach-Jordan pair consisting in bounded linear operators of finite rank. Now the continuity of $\left\{D_{n}=\left(D_{n}^{+}, D_{n}^{-}\right)\right\}$follows immediately from Theorem 1 .

4. Main result

Before going on the proof the main Theorem in this paper, we recall the following technical results which seem to be useful in the sequel.

Lemma 3. [29]. Let X be a Banach space, $\left\{T_{i}\right\}_{i}$ a sequence of continuous linear operators defined on X and let $\left\{R_{i}\right\}_{i}$ be a sequence of linear continuous operators whose domain is X but which may map into other Banach spaces. Let T be a possibly discontinuous map from X to itself. If the operator $R_{n} T T_{1} \ldots T_{m}$ is continuous for m greater than n then $R_{n} T T_{1} \ldots T_{n}$ is continuous when n is sufficiently large.

Proposition 1. [10]. Let J be a Banach-Jordan algebra and I be a primitive ideal of J. If D is a linear operator defined on J such that $[D, T]$ is continuous for all T in $\mathcal{M}(J)$, then the primitive Jordan algebra $(S(D)+I) / I$ has finite capacity.

Lemma 4. Let V a nondegenerate Jordan pair and let P_{1}, \ldots, P_{n} be nonzero ideals of V. If H is an ideal of V such that $H \cap P_{1} \cap \ldots \cap P_{n}=0$ then. $H=0$.

Proof. We proceed by induction. For $n=1$, by idealness of H and P_{1}, we have, for all $u \in P_{1}^{\sigma}, Q_{u} H^{-\sigma} \subseteq H^{\sigma} \cap P_{1}^{\sigma}=0$. Then, by [18, Proposition 4.19] together with [18, Theorem 4.13]

$$
H-^{\sigma} \subseteq \cap_{u \in P_{1}^{\sigma}} \operatorname{Ker}(u) \subset \operatorname{rad}\left(P_{1}^{\sigma}\right)=\operatorname{rad}\left(V^{\sigma}\right) \cap P_{1}^{\sigma},
$$

and hence $H^{\sigma}=0$ by nondegeneracy of $V: \operatorname{rad}(V)=0$. Suppose the statement is true for some natural integer n and let $P_{1}, \ldots, P_{n}, P_{n+1}$ be nonzero ideals of V satisfying the condition stated in the lemma. Then the ideals P_{1} and $K=P_{2} \cap \ldots \cap P_{n+1} \cap H$ also satisfy the same condition. Therefore, by we have just proved in the case $n=1, K=0$ and hence $H=0$ by induction.

Given a Banach space X, we denote by $C l(E)$ the closure of a subset E of X.
We can now state our main result in this paper.
Theorem 2. Let $\left\{D_{n}=\left(D_{n}^{+}, D_{n}^{-}\right)\right\}$be a higher derivation on a Banach-Jordan pair $V=\left(V^{+}, V^{-}\right)$. If V is semiprimitive, then D_{k}^{σ} is continuous for every non negative integer k.

Proof. We proceed by induction. For if $n=0, D_{0}^{\sigma}=I d_{V^{\sigma}}$ is trivially continuous. Suppose that D_{1}, \ldots, D_{k} are continuous and show that this is also the case for D_{k+1}, that is $S\left(D_{k+1}\right)=0$. Suppose that D_{k+1} is discontinuous. Then, there exists a primitive ideal P such that $S\left(D_{k+1}\right)$ is not contained in P. As a first step we show that all primitive ideals contain $S\left(D_{k+1}\right)$ except finitely primitive ideals P_{1}, \ldots, P_{n} for which the quotient pairs V / P_{i} have finite capacity. In other words de set

$$
\Gamma=\left\{P=\left(P^{+}, P^{-}\right) \text {primitive ideal of } V: S\left(D_{k+1}\right) \nsubseteq P\right\}
$$

is finite and, for any $P \in \Gamma$, the quotient pair V / P has finite capacity.
Take $P=\left(P^{+}, P^{-}\right)$in Γ and $b \in V^{-}$such that $b \notin P^{-}$. Since P^{σ} is closed in V^{σ} (see [14, A.5.2]), V / P is a Banach-Jordan pair and hence by $(2.2)(V / P)_{\bar{b}}$ is a primitive BanachJordan algebra where $\bar{b}=b+P^{-}$is the image of b under the canonical projection $V^{-} \longmapsto$ V^{-} / P^{-}. The algebra $(V / P)_{\bar{b}}$ is known to be isomorphic to $V^{+(b)} / I$ where $I=Q_{b}^{-1}\left(P^{-}\right)$ is so a primitive ideal of the Banach-Jordan algebra $V^{+(b)}$. Moreover, by Lemma 2 the linear operator D_{k+1} and the ideal I satisfy the conditions required in Proposition 1 with respect to the Banach-Jordan algebra $V^{+(b)}$. Therefore, $\left(S\left(D_{k+1}\right)+I\right) / I$ has nonzero finite capacity. This implies that $(V / P)_{\bar{b}}$ has itself nonzero finite capacity [26, Theorem 18]. Thus by $(2.1), S o c(V / P)=V / P$ and hence, by completeness, V / P has nonzero finite capacity.

Suppose that the set Γ is infinite, then we can take an infinite sequence $\left\{P_{n}\right\}$ of distinct primitive ideals in Γ. By we have just proved, V / P_{n} is simple with finite capacity and hence has finite spectrum (see [19, Theorem 1] and [20, Theorem 3.8]). By a similar process used in [6, Lemma 2.8], we show the existence of an element b in V^{-}and a sequence $\left\{a_{n}\right\}$ in V^{+}such that $b \notin \cup_{n} P_{n}^{-}, \pi_{m}\left(a_{n}\right)$ is invertible in $\left(V / P_{m}\right)_{\bar{b}}$ for $n<m$ and $\pi_{m}\left(a_{n}\right)=0$ for $m<n$ where $\pi_{m}: V^{+} \longmapsto V^{+} / P_{m}^{+}$is the natural projection. Indeed, take b_{1} in V^{-} such that $b_{1} \notin P_{1}^{-}$. By induction we can construct the sequences $\left\{b_{n}\right\}$ in V^{-}and $\left\{\lambda_{n}\right\}$ in the complex field such that $\lambda_{1}=1$. Having defined b_{1}, \ldots, b_{n-1} and $\lambda_{1}, \ldots, \lambda_{n-1}$, we take b_{n} in $\bigcap_{i=1}^{n-1} P_{i}^{-}$with $\left\|b_{n}\right\|=1,1<\lambda_{n}<\frac{1}{2^{n}}$ and $\sum_{i=1}^{n} \lambda_{i} b_{i} \notin P_{n}^{-}$. This last condition is satisfied since ${ }_{i=1}^{n-1} P_{i}$ is not contained in P_{n}. Since the series $\sum_{i=1}^{n} \lambda_{i} b_{i}$, converges in V^{-}, we write $b=\sum_{i=1}^{\infty} \lambda_{i} b_{i}$. We see that $\bar{b}=\sum_{i=1}^{n} \lambda_{i} \overline{b_{i}}$ is nonzero in V^{-} / P_{n}^{-}and hence $b \notin \cup_{n} P_{n}^{-}$. Now take u_{1} in V^{+}such that $u_{1} \notin P_{1}^{+}$. We proceed by choosing $\left\{u_{n}\right\}$ in V^{+}and, for any natural number k, the scalars $\left\{\lambda_{n}^{k}\right\}_{n=k}^{\infty}$ such that $\lambda_{k}^{k}=1$. Having selected them up to $n-1$, we take u_{n} and λ_{n}^{k} such that $u_{n} \in{ }_{i=1}^{n-1} P_{i}^{+}, \pi_{n}\left(u_{n}\right)$ is the unit of the Banach-Jordan algebra $\left(V / P_{m}\right)_{\bar{b}}, 0<\lambda_{n}^{k}<\frac{1}{2^{n}\left\|u_{n}\right\|}$ and $\pi_{n}\left(\sum_{i=k}^{n} \lambda_{i}^{k} u_{i}\right)$ is invertible. If we take $a_{n}=\sum_{i=n}^{\infty} \lambda_{i}^{n} u_{i}$, then we will have $\pi_{m}\left(a_{n}\right)$ is invertible in $\left(V / P_{m}\right)_{\bar{b}}$ for $m>n$ and $\pi_{m}\left(a_{n}\right)=0$ for $m<n$ as required.

Now consider an arbitrary x in V^{+}and positive integers m, n. We compute in $\left(V / P_{n}\right)_{\bar{b}}$ to have

$$
\begin{aligned}
\pi_{n} D_{k+1} U_{a_{1}}^{(b)} U_{a_{2}}^{(b)} \ldots U_{a_{m}}^{(b)}(x)= & \frac{1}{4} \pi_{n} D_{k+1}\left\{a_{1},\left\{b, U_{a_{2}}^{(b)} \ldots U_{a_{m}}^{(b)}(x), b\right\}, a_{1}\right\} \\
= & \frac{1}{4} \pi_{n} \sum_{i+j+h=k+1}\left\{D_{i} a_{1}, D_{j}\left\{b, U_{a_{2}}^{(b)} \ldots U_{a_{m}}^{(b)}(x), b\right\}, D_{h} a_{1}\right\} \\
= & \frac{1}{4} \pi_{n} \sum_{\substack{i+j+h=k+1 \\
j \leq k}}\left\{D_{i} a_{1}, D_{j}\left\{b, U_{a_{2}}^{(b)} \ldots U_{a_{m}}^{(b)} x, b\right\}, D_{h} a_{1}\right\} \\
& +\frac{1}{4} \pi_{n}\left\{a_{1}, D_{k+1}\left\{b, U_{a_{2}}^{(b)} \ldots U_{a_{m}}^{(b)} x, b\right\}, a_{1}\right\} \\
= & \varphi(x)+\frac{1}{2} \pi_{n} Q_{a_{1}}\left(\sum_{i+j+h=k+1}\left\{D_{i} b, D_{j} U_{a_{2}}^{(b)} \ldots U_{a_{m}}^{(b)} x, D_{h} b\right\}\right) \\
= & \varphi(x)+\frac{1}{2} \pi_{n} Q_{a_{1}}\left(\sum_{i+j+h=k+1}\left\{D_{i} b, D_{j} U_{a_{2}}^{(b)} \ldots U_{a_{m}}^{(b)} x, D_{h} b\right\}\right) \\
& +\pi_{n} Q_{a_{1}} Q_{b} D_{k+1} U_{a_{2}}^{(b) \ldots} \ldots U_{a_{m}}^{(b)} x \\
= & \psi_{1}(x)+\pi_{n} U_{a_{1}}^{(b)} D_{k+1} U_{a_{2}}^{(b)} \ldots U_{a_{m}}^{(b)}(x),
\end{aligned}
$$

where

$$
\begin{aligned}
\psi_{1}(x) & =\varphi(x)+\frac{1}{2} \pi_{n} Q_{a_{1}}\left(\sum_{\substack{i+j+h=k+1 \\
j \leq k}}\left\{D_{i} b, D_{j} U_{a_{2}}^{(b)} U_{a_{3}}^{(b)} \ldots U_{a_{m}}^{(b)} x, D_{h} b\right\}\right) \\
\varphi(x) & =\frac{1}{4} \pi_{n} \sum_{\substack{i+j+h=k+1 \\
j \leq k}}\left\{D_{i} a_{1}, D_{j}\left\{U_{a_{1}}^{(b)} U_{a_{2}}^{(b)} \ldots U_{a_{m}}^{(b)}(x)\right\}, D_{h} a_{1}\right\}
\end{aligned}
$$

are clearly continuous operators. By iterating the same process, we show that there exits a continuous linear operator ψ_{m} such that

$$
\pi_{n} D_{k+1} U_{a_{1}}^{(b)} U_{a_{2}}^{(b)} \ldots U_{a_{m}}^{(b)}(x)=\psi_{m}(x)+\pi_{n} U_{a_{1}}^{(b)} U_{a_{2}}^{(b)} \ldots U_{a_{m}}^{(b)} D_{k+1}(x) .
$$

But we have $\pi_{n} U_{a_{1}}^{(b)} U_{a_{2}}^{(b)} \ldots U_{a_{m}}^{(b)} D_{k+1}=0$ when $n<m$. It follows that the operator $\pi_{n} D_{k+1} U_{a_{1}}^{(b)} U_{a_{2}}^{(b)} \ldots U_{a_{m}}^{(b)}$ is continuous. Now, Lemma 3 applies to the sequences $\left\{R_{i}\right\}$ and $\left\{T_{i}\right\}$ with $R_{i}=\pi_{i}$ and $T_{i}=U_{a_{i}}^{(b)}$ to obtain the continuity of the operator $\pi_{n} D_{k+1} U_{a_{1}}^{(b)} U_{a_{2}}^{(b)} \ldots U_{a_{n}}^{(b)}$ when the integer n is sufficiently large. That is

$$
S\left(\pi_{n} D_{k+1} U_{a_{1}}^{(b)} U_{a_{2}}^{(b)} \ldots U_{a_{n}}^{(b)}\right)=0 .
$$

But since $\pi_{n}\left(a_{i}\right)$ is invertible for $i \leq n$, we have

$$
S\left(\pi_{n} D_{k+1} U_{a_{1}}^{(b)} U_{a_{2}}^{(b)} \ldots U_{a_{n}}^{(b)}\right)=S\left(\pi_{n} U_{a_{1}}^{(b)} U_{a_{2}}^{(b)} \ldots U_{a_{n}}^{(b)} D_{k+1}\right)
$$

$$
\begin{aligned}
& =C l\left(U_{\pi_{1} a_{1}}^{(\bar{b}} U_{\pi_{2} a_{2}}^{(\bar{b})} U_{\pi_{n} a_{n}}^{(\bar{b})} S\left(\pi_{n} D_{k+1}\right)\right) \\
& =C l\left(S\left(\pi_{n} D_{k+1}\right)\right),
\end{aligned}
$$

which is a contradiction because $C l\left(S\left(\pi_{n} D_{k+1}\right)\right) \neq 0$ since otherwise we will have $S\left(D_{k+1}\right) \subseteq$ P_{n} for any positive integer n. The set Γ is actually finite, say $\Gamma=\left\{P_{1}, \ldots, P_{n}\right\}$. Set $H=\bigcap_{P \notin \Gamma} P$. The ideals $P_{1}, P_{2}, \ldots, P_{n}$ and H satisfy the requirements of Lemma 4 since $\left(\bigcap_{i=1}^{n} P_{i}\right) \cap H=\operatorname{Rad}(V)$ is the intersection of all primitive ideals of $V(2.4)$ and $\operatorname{Rad}(V)=0$. We conclude that $H=0$. But $S\left(D_{k+1}\right) \subseteq P$ for any primitive ideal P not contained in Γ, then $S\left(D_{k+1}\right) \subseteq \bigcap_{P \& \Gamma} P=H=0$, which is a contradiction. D_{k+1} is finally continuous.

As it is pointed out, any Jordan algebra gives rise to a Jordan pair (J, J) with the quadratic map $Q_{a}=U_{a}$ defined by $U_{a} b=2 a(a b)-a^{2} b$.

A family $\left\{d_{n}\right\}(n=0,1,2, \ldots, k, k$ may be $\infty)$ of linear operators defined on J is said to be a higher derivation if, for all a, b in J, we have

$$
d_{n}(a b)=\sum_{k=1}^{k=n} d_{k}(a) d_{n-k}(b) .
$$

A tedious computation enables to prove that any higher derivation $\left\{d_{n}\right\}_{n \geq 0}$ on a Jordan algebra gives rise to a higher derivation $\left\{\left(d_{n}, d_{n}\right)\right\}_{n \geq 0}$ on the Jordan pair (J, \bar{J}) with respect to the triple product

$$
\{x, y, z\}=(x y) z+(y z) x-(z x) y .
$$

The Jordan pair is semiprimitive if so is J. Hence, according to Theorem 2, we have the following.

Corollary 2. . Any higher derivation $\left\{d_{n}\right\}_{n \geq 0}$ on a semiprimitive Banach-Jordan algebra consists of continuous operators.

5. Higher derivations on Banach alternative pairs and $J B^{*}$-triples

The reader is referred to [18] for definitions and basic results on alternative pairs. Given an alternative pair $A=\left(A^{+}, A^{-}\right)$, we write $(x, y, z) \longmapsto\langle x y z\rangle$ to denote the triple product of (x, y, z) in $A^{\sigma} \times A^{-\sigma} \times A^{\sigma}(\sigma= \pm)$.

By a normed alternative pair we mean a complex alternative pair $A=\left(A^{+}, A^{-}\right)$, where the vector spaces A^{+}and A^{-}are equipped with norms $\|\cdot\|_{\sigma}$ making continuous the triple product $\langle x y z\rangle . A=\left(A^{+}, A^{-}\right)$is said to b Banach alternative pair provided the norms $\|\cdot\|_{\sigma}$ are complete. The Banach spaces $\mathcal{M}_{p, q}(\mathbb{C}), \mathcal{M}_{q, p}(\mathbb{C})$ of rectangular matrices with entries in the complex field \mathbb{C} define a Banach alternative pair $A=\left(\mathcal{M}_{p, q}(\mathbb{C}), \mathcal{M}_{q, p}(\mathbb{C})\right)$, with respect to the triple product $\langle R S T\rangle=R S T$, the usual matrices product.

A higher derivation on an alternative pair $A=\left(A^{+}, A^{-}\right)$is a sequence $\left\{D_{n}=\left(D_{n}^{+}, D_{n}^{-}\right)\right\}_{n \geq 0}$ of linear operators $D_{n}^{\sigma}: A^{\sigma} \longmapsto A^{\sigma}$ satisfying the formula

$$
D_{n}^{\sigma}(<x y z>)=\sum_{i+j+h=n}<D_{i}^{\sigma}(x) D_{j}^{-\sigma}(y) D_{h}^{\sigma}(z)>,\left(x, z \in A^{\sigma}, y \in A^{-\sigma}, n=0,1,2, \ldots\right.
$$

with $D_{0}^{\sigma}=I d_{A^{\sigma}}$.

Corollary 3. Let $\left\{D_{n}=\left(D_{n}^{+}, D_{n}^{-}\right)\right\}_{n \geq 0}$ be a higher derivation on a Banach alternative pair $A=\left(A^{+}, A^{-}\right)$. If A is semiprimitive, then D_{k}^{σ} is continuous for every positive integer k.

Proof. It is known that any alternative pair $A=\left(A^{+}, A^{-}\right)$gives rise to a Jordan pair frequently denoted by A^{J} (see [18, Theorem 7.1]) by considering the quadratic operators

$$
Q_{x} y=\langle x y x\rangle \text { for all }(x, y) \text { in } A^{\sigma} \times A^{-\sigma} .
$$

Clearly A^{J} is a Banach-Jordan pair whenever A is a Banach alternative pair. By [18, 7.9(1)], A^{J} is semiprimitive if and only if so is A. Moreover, a simple computation enables to verify that every higher derivation $\left\{D_{n}=\left(D_{n}^{+}, D_{n}^{-}\right)\right\}$on A induces a higher derivation on A^{J} with respect to its triple product defined by

$$
\{x, y, z\}=Q_{(x, z)} y=\langle x y z\rangle+\langle z y x\rangle \text { for all }(x, y, z) \text { in } A^{\sigma} \times A^{-\sigma} \times A^{\sigma} .
$$

Actually, Theorem 2 applies to deduce that D_{n}^{σ} is continuous for every natural number n.
Following [4], we mean by a higher derivation on a $J B^{*}-\operatorname{triple} E$, a sequence $\left\{\delta_{n}\right\}_{n \geq 0}$ of linear operators $\delta_{k}: E \longrightarrow E$ satisfying

$$
\delta_{n}(\{x, y, z\})=\sum_{i+j+k=n}\left\{\delta_{i} x, \delta_{j} y, \delta_{k} z\right\}, \text { for all } x, y, z \text { in } E,
$$

where $\delta_{0}=I d_{E}$.
Corollary 4. Any higher derivation $\left\{\delta_{n}\right\}_{n \geq 0}$ on a JB*-triple E is continuous.
Proof. Since every $J B^{*}$-triple E gives rise to a complex semiprimitive Banach-Jordan pair $V=\left(V^{+}, V^{-}\right)$, where $V^{+}=E$ as vector space and V^{-}is the conjugate complex vector space of E that is the vector space with the new scalar multiplication $\lambda . x=\bar{\lambda} x$ for $x \in E$ and $\lambda \in \mathbb{C}$. Moreover, $\left\{\delta_{n}\right\}_{n \geq 0}$ defines a higher derivation $\left\{\left(\delta_{n}, \delta_{n}\right)\right\}_{n \geq 0}$ on the complex semiprimitive Banach-Jordan pair $V=\left(V^{+}, V^{-}\right)$. Thus the continuity of δ_{n} holds by Theorem 2 .

References

[1] J. Anquela and T. Cortes, Primitive Jordan Pairs and triple systems, J. Algebra 184 (1996), 632-678.
[2] J. Anquela and T. Cortes, Primitivity in Jordan systems is Ubiquitous, J. Algebra 202 (1998), 295-314.
[3] J. Anquela, T. Cortes, and F. Montaner, On primitive Jordan algebras, J. Algebra 163 (1998), 663-674.
[4] T. J. Barton and Y. Friedman, Bounded derivations on JB*-triples, Quart. J. Math. 41 (1990), 255-268.
[5] P.E. Bland, Higher derivations on rings and modules, Int. J. Math. Sci. 15 (2001), 2373-2387.
[6] N. Boudi, H. Marhnine, and C. Zarhouti, Additive Derivations on Jordan Banach Pairs, Comm. in Algebra, Vol. 32 N. 9, (2004), pp. 3609-3625.
[7] W. Cortes and C. Haetinger, On Jordan generalized higher derivations on rings, Turk. J. Math, 29 (2005), 1-10.
[8] M. Cabrera Garcia, A. Moreno Galindo, and A. Rodriguez Palacios, Zel'manov's theorem for primitive Banach-Jordan algebras, J. London Math. Soc. (2) 57 (1998) 231244.
[9] A. D'Amour ant K. McCrimmon, The Local algebra of Jordan Systems, J. Algebra 177 (1995), 199-239.
[10] A. Fernandez Lopez, H. Marhnine and C. Zarhouti, Derivations on Banach-Jordan Pairs, Quart. J. Math. 3 (2001), 1-15.
[11] C. Haetinger, Higher derivations on Lie ideals, Tendencias em Matematica e computacional 3 (2002),141-145.
[12] H. Hasse and F. K. Shmidt, Noch eine begrüdung der theorie der höheren Differential quotienten einem algebraischen Funtionenkörper einer Unbestimmeten, J. Reine Angew Math. 177 (1937), 215-237.
[13] S. Hejazian and L. Shatery, Automatic continuity of higher derivations on JB*-algebras, Bull. Iranian Math. Soc. Vol. 33, 1 (2007), pp 11-23.
[14] G. Hessenberger, Riesz und Fredholm-Theorie in Banach-Jordan Systemen, Universität Innsbruck, 1994.
[15] N. P. Jewell, Continuity of modules and higher derivations, Pacific J. Math. 68 (1977), 91-98.
[16] N. P. Jewell and A. M. Sinclair, Epimorphisms and derivations on $L^{1}(0,1)$ are continuous, Bull. London Math. Soc. 8 (1976) 135-139.
[17] K.W. Jun and Y.W. Lee, The image of a continuous strong higher derivation is contained in the radical, Bull. Korean Math. Soc. 33 (1996), 229-232.
[18] O. Loos, Jordan pairs, Lecture Notes in Mathematics, Vol 460, Springer Verlag, New York, 1975.
[19] O. Loos, Recent results on finiteness conditions in Jordan pairs, Jordan algebras, Proceedings of a conference in Overwolfach, 1992, De Gruyter, pp. 83-95.
[20] O. Loos Properly algebraic and spectrum-finite ideals in Jordan systems, Math. Proc. Camb. Phil. Soc. (1993), 114, 149-161.
[21] O. Loos, Bounded symmetric domains and Jordan pairs, Lecture Notes, University of California, 1975.
[22] R. J. Loy, Continuity of higher derivations, Proc. Amer. Math. Soc. 37 (1973) 505-510.
[23] H. Marhnine, Caractérisation de certaines classes de paires de Banach-Jordan, Thèse doctorale, Université Abdelmalek Essaadi, Faculté des Sciences de Tétouan, Maroc (2000).
[24] M. Mirzavaziri, Characterization of higher derivations on algebras, Comm. in Algebra, 38 (2010), no 3, 981-987.
[25] F. Montaner, Local PI- Theory of Jordan systems, J. Algebra 216 (1999), 302-327.
[26] J. M. Osborn and M. L. Racine, Jordan rings with nonzero socle, Trans. Amer. Math. Soc. 251 (1979), 375-387.
[27] A. Roy and R. Sridharan, higher derivations and central simple algebras, Nagoya Math. J. 32 (1968), 21-30.
[28] S. Satô, On rings with a higher derivation, Proc. Amer. Math. Soc. 30 (1971), 21-30.
[29] M. P. Thomas, Primitive ideals and derivations on noncommutative Banach algebras, Pacific J. Math, 159 (1993) 139-152.
[30] Y. Uchino and T. Satoh, Function field modular forms and higher derivations, Math. Ann. 311 (1998), 439-466.
[31] E. I. Zelmanov, Primary Jordan triple systems III, Sib. Math. J. 26 (1985), 55-64.

[^0]: *Corresponding author.

