EUROPEAN JOURNAL OF PURE AND APPLIED MATHEMATICS

Vol. 10, No. 3, 2017, 521-528 ISSN 1307-5543 – www.ejpam.com Published by New York Business Global

Weakly G-Supplemented modules

Celil Nebiyev^{1,*}, Hasan Hüseyin Ökten²

¹ Department of Mathematics, Ondokuz Mayıs University, Turkey

² Technical Sciences Vocational School, Amasya University, Turkey

Abstract. In this work, we define weakly g-supplemented modules and cofinitely weak g-supplemented modules. We investigate some properties of these modules. We show that the finite sum of weakly g-supplemented modules is weakly g-supplemented, an arbitrary sum of cofinitely weak g-supplemented modules is cofinitely weak g-supplemented. We also define g-semilocal modules and give some equivalencies for weakly g-supplemented, cofinitely weak g-supplemented and g-semilocal modules.

2010 Mathematics Subject Classifications: 16D60, 16D80

Key Words and Phrases: g-Small submodules, generalized radical, g-Supplemented modules, weakly supplemented modules

1. Introduction

Throughout this paper all rings have an identity and all modules are unital left modules. Let R be a ring and M be an R-module. We denote a submodule N of M by $N \leq M$. If M/N is finitely generated for $N \leq M$, then N is called a cofinite submodule of M. Let M be an R-module and $T \leq M$. If K = 0 for every $K \leq M$ with $T \cap K = 0$, then T is called an essential submodule of M and it is denoted by $T \subseteq M$. K is called a generalized small (briefly, g-small) submodule of M if for every $T \subseteq M$ with M = K + T implies that T=M, this is written by $K\ll_q M$ (in [5], it is called an e-small submodule of M and denoted by $K \ll_e M$). If T is both essential and maximal submodule of M, then T is called a generalized maximal submodule of M. The intersection of all generalized maximal submodules of M is called the generalized radical of M and it is denoted by Rad_qM (in [5], it is denoted by Rad_eM). If M have no generalized maximal submodules, then the generalized radical of M is defined by $Rad_{q}M = M$. Let U and V be submodules of M. If M = U + V and V is minimal with respect to this property, or equivalently, M = U + Vand $U \cap V \ll V$, then V is called a supplement of U in M. If M = U + V and M = U + Twith $T \subseteq V$ implies that T = V, or equivalently, M = U + V and $U \cap V \ll_q V$, then V is called a g-supplement of U in M. If every submodule of M has a supplement in

Email addresses: cnebiyev@omu.edu.tr (C. Nebiyev), hokten@gmail.com (H. Ökten)

^{*}Corresponding author.

M, then M is called a supplemented module. M is called a g-supplemented module, if every submodule of M has a g-supplement in M. Let $U, V \leq M$. If M = U + V and $U \cap V \ll M$, then V is called a weak supplement of U in M. If every submodule of M has a weak supplement in M, then M is called a weakly supplemented module. If every cofinite submodule of M has a weak supplement in M, then M is called a cofinitely weak supplemented module.

There are some important properties of g-small submodules in [1, 3, 4] and [5].

Lemma 1 ([4, 5]). Let M be an R-module and K, $N \leq M$. The following conditions are hold.

- (i) If $K \leq N$ and $N \ll_q M$, then $K \ll_q M$.
- (ii) If $K \ll_g N$, then K is an g-small submodule in submodules of M which contain N.
- (iii) If $f: M \to N$ is an R-module homomorphism and $K \ll_q M$, then $f(K) \ll_q N$.
- (iv) If $K \ll_q L$ and $N \ll_q T$ for $L, T \leq M$, then $K + N \ll_q L + T$.

Corollary 1. Let M be an R-module and $K \leq N \leq M$. If $N \ll_g M$, then $N/K \ll_g M/K$.

Corollary 2. Let M be an R-module, $K \ll_g M$ and $L \leq M$. Then $(K + L)/L \ll_g M/L$.

Lemma 2 ([1]). Let M be an R-module. Then $Rad_gM = \sum_{L \ll_g M} L$.

Lemma 3 ([1]). Let M be an R-module. If M has at least one proper essential submodule and every proper essential submodule of M is contained in a generalized maximal submodule, then $Rad_gM \ll_g M$.

Lemma 4 ([1]). If M is a finitely generated R-module and M has at least one proper essential submodule, then every proper essential submodule of M is contained in a generalized maximal submodule of M.

2. Weakly G-Supplemented Modules

Definition 1. Let M be an R-module and $U, V \leq M$. If M = U + V and $U \cap V \ll_g M$, then V is called a weak g-supplement of U in M. If every submodule of M has a weak g-supplement in M, then M is called a weakly g-supplemented module.

Clearly, we see that g-supplemented modules are weakly g-supplemented. We also see that every weakly supplemented module is weakly g-supplemented.

Lemma 5. Let M be an R-module, $M_1 \leq M$, $U \leq M$ and M_1 be a weakly g-supplemented module. If $M_1 + U$ has a weak g-supplement in M, then U has also a weak g-supplement in M.

Proof. Let X be a weak g-supplement of M_1+U in M. Then $M_1+U+X=M$ and $(M_1+U)\cap X\ll_g M$. Since M_1 is weakly g-supplemented, $(U+X)\cap M_1$ has a weak g-supplement Y in M_1 , i.e. $M_1\cap (U+X)+Y=M_1$ and $M_1\cap (U+X)\cap Y\ll_g M_1$. Following this, we have $M=M_1\cap (U+X)+Y+U+X=U+X+Y$ and

 $U \cap (X + Y) \le X \cap (U + Y) + Y \cap (U + X) \le X \cap (M_1 + U) + Y \cap M_1 \cap (U + X) \ll_q M.$

Hence X + Y is a weak g-supplement of U in M.

Corollary 3. Let M be an R-module $U \leq M$ and $M_i \leq M$ for i = 1, 2, ..., n. If $U + M_1 + M_2 + ... + M_n$ has a weak g-supplement in M and M_i is a weakly g-supplemented module for every i = 1, 2, ..., n, then U has a weak g-supplement in M.

Proof. Clear from Lemma 5. \Box

Lemma 6. Let $M = M_1 + M_2$. If M_1 and M_2 are weakly g-supplemented modules, then M is a weakly g-supplemented module.

Proof. Clear from Lemma 5. \Box

Corollary 4. A finite sum of weakly g-supplemented modules is weakly g-supplemented.

Proof. Clear from Lemma 6. \Box

Lemma 7. Let M be an R-module, $X \leq U \leq M$ and V be a weak g-supplement of U in M. Then (V + X)/X is a weak g-supplement of U/X in M/X.

Proof. Since V is a weak g-supplement of U in M, we have M=U+V and $U\cap V\ll_g M$. Thus $(U\cap V+X)/X\ll_g M/X$ by Lemma 1. Since M=U+V, it is easy to see that $\frac{M}{X}=\frac{U+V}{X}=\frac{U}{X}+\frac{V+X}{X}$ and $\frac{U}{X}\cap\frac{V+X}{X}=\frac{U\cap V+X}{X}\ll_g \frac{M}{X}$. Therefore (V+X)/X is a weak g-supplement of U/X in M/X.

Theorem 8. If M is a weakly g-supplemented module, then every factor module of M is weakly g-supplemented.

Proof. Clear from Lemma 7. \Box

Corollary 5. If M is a weakly g-supplemented module, then the homomorphic image of M is weakly g-supplemented.

Definition 2. Let M be an R-module. If M/Rad_gM is semisimple, then M is called a q-semilocal module.

Clearly, we see that every semilocal module is g-semilocal.

Lemma 9. For an R-module M, the following statements are equivalent.

- (i) M is q-semilocal.
- (ii) For every $U \leq M$ there exists a submodule $V \leq M$ such that U + V = M and $U \cap V \leq Rad_gM$.
- (iii) There exists a decomposition $M = M_1 \oplus M_2$ such that M_1 is semisimple, $Rad_gM \subseteq M_2$ and M_2/Rad_gM is semisimple.

Proof. Clear from [2, Proposition 2.1]. \Box

Lemma 10. Any homomorphic image of a g-semilocal module is g-semilocal.

Proof. Let M and N be R-modules, $f: M \longrightarrow N$ be an R-module epimorphism and M be g-semilocal. Since M is g-semilocal, M/Rad_qM is semisimple. Let

$$\varphi: M/Rad_{g}M \longrightarrow N/Rad_{g}N, x + Rad_{g}M \longrightarrow \varphi\left(x + Rad_{g}M\right) = f\left(x\right) + Rad_{g}N$$

be a map. It easy to check that φ is an R-module epimorphism, since $f(Rad_gM) \leq Rad_gN$. Since every homomorphic image of a semisimple module is semisimple, N/Rad_gN is semisimple. Hence N is g-semilocal.

Lemma 11. Let $M = M_1 + M_2$. If M_1 and M_2 are g-semilocal, then M is g-semilocal.

Proof. Since M_1 and M_2 are g-semilocal, M_1/Rad_gM_1 and M_2/Rad_gM_2 are semisimple. Then $\frac{M_1}{Rad_gM_1} \oplus \frac{M_2}{Rad_gM_2}$ is semisimple. Let

$$\begin{split} f: &\frac{M_1}{Rad_g M_1} \oplus \frac{M_2}{Rad_g M_2} \longrightarrow \frac{M}{Rad_g M}, \\ &(x_1 + Rad_g M_1, x_2 + Rad_g M_2) \longrightarrow f\left(x_1 + Rad_g M_1, x_2 + Rad_g M_2\right) = x_1 + x_2 + Rad_g M_1, \end{split}$$

be a map. It is easy to check that f is an R-module epimorphism. Since every homomorphic image of a semisimple module is semisimple, M/Rad_gM is semisimple. Hence M is g-semilocal.

Corollary 6. Let $M = M_1 + M_2 + ... + M_n$. If M_i is g-semilocal for every i = 1, 2, ..., n, then M is g-semilocal.

Proof. Clear from Lemma 11.

Lemma 12. If M is a weakly g-supplemented module, then M is g-semilocal.

Proof. Let U/Rad_gM be any submodule of M/Rad_gM . Since M is weakly g-supplemented, there exists a submodule V of M such that M=U+V and $U\cap V\ll_g M$. Since $U\cap V\ll_g M$, then by Lemma 2, $U\cap V\leq Rad_gM$. Then by $\frac{M}{Rad_gM}=\frac{U+V}{Rad_gM}=\frac{U}{Rad_gM}+\frac{V+Rad_gM}{Rad_gM}$ and

$$\frac{U}{Rad_gM}\cap\frac{V+Rad_gM}{Rad_gM}=\frac{U\cap V+Rad_gM}{Rad_gM}=\frac{Rad_gM}{Rad_gM}=0, \\ \frac{M}{Rad_gM}=\frac{U}{Rad_gM}\oplus\frac{V+Rad_gM}{Rad_gM}.$$
 Hence M is g-semilocal. \Box

Lemma 13. Assume M be an R-module and $Rad_gM \ll_g M$. If M is g-semilocal, then M is weakly g-supplemented.

Proof. Let U be any submodule of M. Since M is g-semilocal, $(U + Rad_gM)/Rad_gM$ is a direct summand of M/Rad_gM . Then there exists a submodule V of M such that $Rad_gM \leq V$ and $\frac{M}{Rad_gM} = \frac{U+Rad_gM}{Rad_gM} \oplus \frac{V}{Rad_gM}$. By $\frac{M}{Rad_gM} = \frac{U+Rad_gM}{Rad_gM} \oplus \frac{V}{Rad_gM} = \frac{U+V}{Rad_gM}$, M = U + V. Since

$$\frac{U\cap V+Rad_gM}{Rad_gM}=\frac{U+Rad_gM}{Rad_gM}\cap \frac{V}{Rad_gM}=0, U\cap V\leq Rad_gM\ll_gM.$$

Hence V is a weak g-supplement of U in M.

Corollary 7. Assume M be an R-module with $Rad_gM \ll_g M$. Then M is weakly g-supplemented if and only if M is g-semilocal.

Proof. Clear from Lemma 12 and Lemma 13. \Box

Lemma 14. Let M be a finitely generated R-module. Then $Rad_gM \ll_g M$.

Proof. If M has at least one proper essential submodule, since M is finitely generated, by Lemma 4, every proper essential submodule of M is contained in a generalized maximal submodule of M. Then by Lemma 3, $Rad_gM \ll_g M$. If M have no proper essential submodules, then $Rad_gM = M \ll_g M$ also holds.

Lemma 15. Let M be a finitely generated R-module. Then M is weakly g-supplemented if and only if M is g-semilocal.

Proof. By Lemma 14 and Corollary 7, this is clear. \Box

Corollary 8. $_RR$ is weakly g-supplemented if and only if $_RR$ is g-semilocal.

Proof. By Lemma 15, this is clear. \Box

Proposition 1. Let M be a weakly g-supplemented R-module. Then for every $U, V \leq M$ with M = U + V, there exists a weak g-supplement K of U in M with $K \leq V$.

Proof. Assume $U,V \leq M$ with M=U+V. Since M is weakly g-supplemented, $U \cap V$ has a weak g-supplement T in M. In this case, $M=U \cap V+T$ and $U \cap V \cap T \ll_g M$. Since $M=U+V=U \cap V+T$, $M=U+V \cap T$. Let $K=V \cap T$. Then $M=U+V \cap T=U+K$ and $U \cap K=U \cap V \cap T \ll_g M$. Hence K is a weak g-supplement of U in M with $K \leq V$

Example 1. Let p and q be prime numbers and consider the ring

$$R = \mathbb{Z}_{p,q} = \{ \frac{a}{b} \mid a, b \in \mathbb{Z}, b \neq 0, p \not | b \text{ and } q \not | b \}.$$

By [2, Remark 3.3], $_RR$ is weakly supplemented but not supplemented. Since every nonzero submodule of $_RR$ is essential in $_RR$, $_RR$ is weakly g-supplemented but not g-supplemented.

3. Cofinitely Weak G-Supplemented Modules

Definition 3. Let M be an R-module. If every cofinite submodule of M has a weak g-supplement in M, then M is called a cofinitely weak g-supplemented module.

Clearly we see that every weakly g-supplemented module is cofinitely weak g- supplemented.

Lemma 16. Assume M be a finitely generated R-module. If M is cofinitely weak g-supplemented, then M is weakly g-supplemented.

Proof. Clear, since every submodule of M is cofinite.

Lemma 17. Let M be a cofinitely weak g-supplemented module. Then every factor module of M is cofinitely weak g-supplemented.

Proof. Let M/X be any factor module of M and U/X be a cofinite submodule of M/X. Since $\frac{M}{U} \cong \frac{M/X}{U/X}$, U is a cofinite submodule of M. Since M is cofinitely weak g-supplemented, U has a weak g-supplement V in M. Then by Lemma 7, (V+X)/X is a weak g-supplement of U/X in M/X. Hence M/X is cofinitely weak g-supplemented. \square

Corollary 9. Any homomorphic image of a cofinitely weak g-supplemented module is cofinitely weak g-supplemented.

Proof. Clear from Lemma 17.

Lemma 18. Let M be an R-module, $M_1 \leq M$, U be a cofinite submodule of M and M_1 be a cofinitely weak g-supplemented module. If $M_1 + U$ has a weak g-supplement in M, then so does U.

Proof. Let X be a weak g-supplement of M_1+U in M. Then $M_1+U+X=M$ and $(M_1+U)\cap X\ll_g M$. Since U is a cofinite submodule of M, U+X is also a cofinite submodule of M. Then by $\frac{M_1}{M_1\cap (U+X)}\cong \frac{M_1+U+X}{U+X}=\frac{M}{U+X},\ M_1\cap (U+X)$ is a cofinite submodule of M_1 . Since M_1 is cofinitely weak g-supplemented, $M_1\cap (U+X)$ has a weak g-supplement Y in M_1 , i.e. $M_1\cap (U+X)+Y=M_1$ and $M_1\cap (U+X)\cap Y\ll_g M_1$. Following this, we have $M=M_1\cap (U+X)+Y+U+X=U+X+Y$ and

$$U \cap (X + Y) \le X \cap (U + Y) + Y \cap (U + X) \le X \cap (M_1 + U) + Y \cap M_1 \cap (U + X) \ll_q M.$$

Hence X + Y is a weak g-supplement of U in M.

Corollary 10. Let M be an R-module, U be a cofinite submodule of M and $M_i \leq M$ for i = 1, 2, ..., n. If $U + M_1 + M_2 + ... + M_n$ has a weak g-supplement in M and M_i is a cofinitely weak g-supplemented module for every i = 1, 2, ..., n, then U has a weak g-supplement in M.

Proof. Clear from Lemma 18.

Lemma 19. Any sum of cofinitely weak g-supplemented modules is cofinitely weak g-supplemented.

Proof. Let $\{M_i\}_{i\in I}$ be a family of cofinitely weak g-supplemented submodules of an R-module M and $M=\sum_{i\in I}M_i$. Let U be any cofinite submodule of M. Since U is cofinite submodule of M, there exists a finite subset $\{i_1,i_2,\ldots,i_n\}$ of I such that $M=U+M_{i_1}+M_{i_2}+\ldots+M_{i_n}$. Since $U+M_{i_1}+M_{i_2}+\ldots+M_{i_n}$ has a weak g-supplement 0 in M and M_{i_k} is cofinitely weak g-supplemented for $k=1,2,\ldots,n$, then by Corollary 10, U has a weak g-supplement in M.

Proposition 2. Let R be a ring. The following statements are equivalent.

- (1) $_RR$ is g-semilocal.
- (2) $_{R}R$ is weakly g-supplemented.
- (3) Every finitely generated R-module is g-semilocal.
- (4) Every finitely generated R-module is weakly g-supplemented.
- (5) $R^{(I)}$ is cofinitely weak g-supplemented for every index set I.
- (6) Every R-module is cofinitely weak q-supplemented.
 - *Proof.* (1) \Leftrightarrow (2) Clear from Corollary 8.
- $(1) \Rightarrow (3)$ Assume M be a finitely generated R-module and let $M = \langle m_2, m_2, \ldots, m_n \rangle$. Then $M = Rm_1 + Rm_2 + \ldots + Rm_n$. Since R is g-semilocal and Rm_i $(i = 1, 2, \ldots, n)$ is an homomorphic image of R, by Lemma 10, Rm_i is g-semilocal. Then by Corollary 6, M is g-semilocal.
 - $(3) \Leftrightarrow (4)$ Obtained from Lemma 15.
- $(4) \Rightarrow (5)$ By hypothesis, $_RR$ is weakly g-supplemented. Hence $_RR$ is cofinitely weak g-supplemented. Because of this, by Lemma 19, $_RI^{(I)}$ is cofinitely weak g-supplemented for every index set I.
 - $(5) \Rightarrow (6)$ Clear from Corollary 9, since every R-module is R-generated.
- $(6) \Rightarrow (2)$ By hypothesis, RR is cofinitely weak g-supplemented. Since RR is finitely generated, by Lemma 16, RR is weakly g-supplemented.

Proposition 3. Let M be weakly g-supplemented R-module and U be a cofinite submodule of M. Then for every $V \leq M$ with M = U + V and $U \cap V$ is a cofinite submodule of M, there exists a weak g-supplement K of U with $K \leq V$.

Proof. Similar to proof of Proposition 1. \Box

REFERENCES 528

References

- [1] B. Koşar, C. Nebiyev, and N. Sökmez. G-supplemented modules. *Ukrainian Mathematical Journal*, 67(6):861–864, 2015.
- [2] C. Lomp. On semilocal modules and rings. Communications in Algebra, 27(4):1921–1935, 1999.
- [3] T. C. Quynh and P. H. Tin. Some properties of e-supplemented and e-lifting modules. *Vietnam Journal of Mathematics*, 41(3):303–312, 2013.
- [4] N. Sökmez, B. Koşar, and C. Nebiyev. Genelleştirilmiş küçük alt modüller, 2010. Presented at the XXIII. Ulusal Matematik Sempozyumu, Erciyes Üniversitesi, Kayseri-Türkiye.
- [5] D. X. Zhou and X. R. Zhang. Small-essential submodules and morita duality. *Southeast Asian Bulletin of Mathematics*, 35(6):1051–1062, 2011.