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Abstract. In this article, we study the space-fractional wave equation with Riesz fractional deriva-
tive. The continuation of the solution of this space-fractional equation to the solution of the cor-
responding integer order equation is proved. The series solution is obtained based on properties of
Riesz fractional derivative operator and utilizing the optimal homotopy analysis method (OHAM).
Numerical simulations are presented to validate the method and to show the effect of changing the
fractional derivative parameter on the solution behavior.
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1. Introduction

Fractional derivatives, as generalizations of classical integer order derivatives, are in-
creasingly used to model numerous problems in different fields of applied science. In recent
years, the fractional derivative models are developed to describe the dissipative attenua-
tion in complex materials, such as anomalous diffusion [12] and [15], viscoelastic damping
[1] and [11], and wave propagation [4] and [5]. The operators of fractional differentiation
and integration are also used for extensions of the diffusion and wave equations [13] and
[14]. Studies have been devoted for a type of anomalous diffusion modeled by the frac-
tional diffusion equation with spatial Riesz and Riesz-Feller fractional derivatives [6] and
[8].

Yet, few articles dealt with applying iterative techniques to Riesz fractional partial
differential equations (FPDEs). This is due to the difficulty in repeated application of
Riesz fractional derivative to solution components. This work is based on properties that
show repetitive behavior for complex exponential function, hence sine and cosine functions,
when subjected to the application of Riesz fractional derivative [6] and [7].

In this work, the motivation is to establish the continuation of the solution of the space-
fractional wave equation with spatial derivative in Riesz sense to the exact solution of the
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corresponding integer-order equation as the order of the fractional derivative approaches
its integer limit. This objective is carried out theoretically then via approximate series
solution obtained iteratively by applying the optimal homotopy analysis method (OHAM).
We consider the space-fractional wave equation of the form

∂2

∂t2
u(x, t) = Rαxu(x, t) + P (u), −∞ < x <∞ , t > 0, (1)

subject to the initial conditions 
u(x, 0) = f1(x),

∂
∂tu(x, 0) = f2(x).

(2)

where Rαx denotes the Riesz fractional derivative (in space) of order α. The parameter
α is restricted to the conditions 0 < α < 2 and α 6= 1. The function P is a continuous
function in u, and the two functions f1 and f2 are functions in the space of integrable
functions L1(−∞,∞).

This paper is organized as follows. In Section two, basic definitions of fractional deriva-
tive operators involved are presented. Proof of continuation of solution is presented in
Section three. The OHAM is illustrated in Section four. In Section five, the results of nu-
merical experiments are presented, considering the space fractional sine-Gordan equation.
Section six contains the conclusion of this work.

2. Fractional derivatives and integrals

Definition 1. A real function f(x), x > 0, is said to be in the space Cµ, µ ∈ R, if there
exists a real number p > µ, such that f(x) = xpf1(x), where f1(x) ∈ C(0,∞), and it is
said to be in the space Cmµ if fm ∈ Cµ, m ∈ N.

Definition 2. The Riemann-Liouville fractional integral operator of order α ≥ 0 of a
function f(x) ∈ Cµ, µ ≥ −1 is defined as Jαf(x) = 1

Γ(α)

x∫
0

(x− τ)α−1f(τ)dτ, α > 0, x > 0,

J0f(x) = f(x).
(3)

Definition 3. The fractional derivative in Riemann-Liouville sense of f(x),m ∈ N, x > 0
is defined as

Dβ
xf(t) =

dm

dxm
Jm−βf(x), m− 1 < β < m. (4)

Definition 4. The fractional derivative in Caputo sense of f(x) ∈ Cm−1, m ∈ N, x > 0 is
defined as

CDβ
xf(x) =

{
Jm−β dm

dxm f(x), m− 1 < β < m,
dm

dxm f(x), β = m.
(5)
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Definition 5. The Riesz partial fractional derivative Rαx is defined as [8]

Rαxu(x) = − 1

2 cos(απ/2)
[Dα

+u(x) +Dα
−u(x)], 0 < α < 2, α 6= 1 (6)

where Dα
±u(x) are the Weyl fractional derivatives

Dα
±u(x) =

{
± d
dxW

1−α
± u(x), 0 < α < 1

d2

dx2
W 2−α
± u(x), 1 < α < 2

, (7)

and W β
± denote the Weyl fractional integrals of order β > 0, given by

W β
+u(x) = 1

Γ(β)

x∫
−∞

(x− z)β−1u(z)dz,

W β
−u(x) = 1

Γ(β)

∞∫
x

(z − x)β−1u(z)dz.
(8)

When α = 0 the Weyl fractional derivative degenerates into the identity operator

D0
±u(x) = u(x). (9)

For continuity we have

D1
±u(x) = ± d

dx
u(x), D2

±u(x) =
d2

dx2
u(x). (10)

Evidently, in case α = 2, we define

Rαxu(x) =
d2

dx2
u(x). (11)

For the case α = 1 we have

R1
xu(x) =

d

dx
Hu(x) (12)

=
d

dx

1

π

∞∫
−∞

u(z)

z − x
dz, (13)

where H is the Hilbert transform and the integral is understood in the Cauchy principal
value sense.

3. Continuation of the solution

In this section, we prove the continuation of the solution to fractional-order wave
equation with Riesz spatial derivative to the solution of the corresponding integer-order
equation.
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Theorem 1. If f1(x) and f2(x) are functions in the space of integrable functions L1(−∞,∞),
then the exact solution uα(x, t) of the space fractional wave equation

∂2

∂t2
u(x, t) = Rαxu(x, t), −∞ < x <∞ t > 0, (14)

with the initial conditions


u(x, 0) = f1(x),

∂
∂tu(x, 0) = f2(x).

(15)

is given by

uα(x, t) =
1

π

∞∫
−∞

∞∫
0

(
E2,1(−ωα t2)f1(v) + t E2,2(−ωα t2)f2(v)

)
cos(ω(x− v))dωdv (16)

where Eη,γ(z) is the Mittage Leffler function defined by [16]

Eη,γ(z) =

∞∑
n=0

zn

Γ(ηn+ γ)
, (17)

where

E2,1(−ωα t2) = cos(ωα/2 t), (18)

E2,2(−ωα t2) =
sin(ωα/2 t)

ωα/2t
. (19)

Theorem 2. Let α ∈ (1, 2), f1(x) and f2(x) are functions in the space of integrable
functions L1(−∞,∞), and uα displayed in (16) be the solution of the space-fractional
problem (14-15) , then

lim
α→2

uα(x, t) = u(x, t),

where u(x, t) is the exact solution of the integer-order wave equation{
utt(x, t) = uxx(x, t), −∞ < x <∞, t > 0,
u(x, 0) = f1(x), ut(x, 0) = f2(x).

(20)

Proof. Consider the set of functions ϕn(ω) and ψn(ω) for ω ∈ (0,∞), n ∈ N+ by

ϕn(ω) =
1

π
E2,1(−ω2− 1

n+1 t2)

∞∫
−∞

f1(v) cos(ω(x− v))dv, (21)
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ψn(ω) =
1

π
tE2,2(−ω2− 1

n+1 t2)

∞∫
−∞

f2(v) cos(ω(x− v))dv. (22)

These two set of functions satisfy Lebesgue dominated convergence theorem as

|ϕn(ω)| ≤ 1

π

∣∣∣E2,1(−ω2− 1
n+1 t2)

∣∣∣ ∞∫
−∞

|f1(v)| |cos(ω(x− v))| dv,

≤ 1

π

∣∣∣E2,1(−ω2− 1
n+1 t2)

∣∣∣ ∞∫
−∞

|f1(v)| dv,

and since f1 ∈ L1(−∞,∞), there exists M > 0 such that
∞∫
−∞
|f1(v)| dv < M . Hence

|ϕn(ω)| ≤ M

π

∣∣∣E2,1(−ω2− 1
n+1 t2)

∣∣∣ . (23)

From [16] Theorem (1.6), there exits K1 > 0 such that

|Eη,γ(−z)| ≤ K1

1 + |z|
, (24)

then

|ϕn(ω)| ≤ MK1

π

1

1 +
∣∣∣ω2− 1

n+1 t2
∣∣∣ , ω ∈ (0,∞), n = 1, 2, ... (25)

For bounded time interval 0 < t < T <∞, there exists K2(ρ) > 0 such that

|ϕn(ω)| ≤ g1(ω) =
K2(ρ)

1 + ω1+ρ
, ρ ∈ (0, 0.5),

and g1(ω) ∈ L1(0,∞) since

∞∫
0

|g1(ω)| dω = K2(ρ)Γ(
ρ

1 + ρ
)Γ(1 +

1

1 + ρ
). (26)

Thus the set of functions ϕn(ω) satisfy Lebesgue dominated convergence theorem.
Following the same steps, one can prove that the set of functions ψn(ω) satisfy Lebesgue
dominated convergence theorem as well. Now, as

lim
n→∞

ϕn(ω) =
1

π
E2,1(−ω2t2)

∞∫
−∞

f1(v) cos(ω(x− v))dv, (27)
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lim
n→∞

ψn(ω) =
1

π
tE2,2(−ω2t2)

∞∫
−∞

f2(v) cos(ω(x− v))dv. (28)

then setting α = 2− 1
n+1

u2(x, t) = lim
α→2

uα(x, t)

= lim
n→∞

∞∫
0

[ϕn(ω) + ψn(ω)]dω (29)

=

∞∫
0

lim
n→∞

[ϕn(ω) + ψn(ω)]dω, (30)

which yields

u2(x, t) =
1

π

∞∫
−∞

∞∫
0

(
cos(ω t)q1(v) +

sin(ω t)

ω
q2(v)

)
cos(ω(x− v))dωdv,

which is the exact solution of the integer-order wave equation (20).

4. Optimal homotopy analysis method (OHAM)

We begin by illustrating the classical homotopy analysis method (HAM). Consider the
following nonlinear equation

N [u(x, t)] = 0, (31)

where N is a nonlinear operator, u(x, t) is the unknown function and x and t denote
spatial and temporal independent variables, respectively. By generalizing the traditional
homotopy method, Liao [9] constructs the so-called zero-order deformation equation

(1− p)L[φ(x, t; p)− u0(x, t)] = p~H(x, t)N [φ(x, t; p)], (32)

where p ∈ [0, 1] is an embedding parameter, ~ is a nonzero auxiliary parameter, H(x, t)
is an auxiliary function, L is an auxiliary linear operator, u0(x, t) is an initial guess of
u(x, t) and φ(x, t; p) is an unknown function. Obviously, when p = 0 and p = 1, we have
φ(x, t; 0) = u0(x, t), φ(x, t; 1) = u(x, t), respectively. Thus, as p increases from 0 to 1, the
solution φ(x, t; p) varies from the initial guess u0(x, t) to the solution u(x, t). By expanding
φ(x, t; p) in Taylor series with respect to p, we have

φ(x, t; p) = u0(x, t) +
∞∑
m=1

um(x, t)pm, (33)
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where

um(x, t) =
1

m!

∂mφ(x, t; p)

∂pm
|p=0 . (34)

If the auxiliary linear operator, the initial guess and the auxiliary parameter ~ and the
auxiliary function are so properly chosen, then, as proved by Liao [9], series (33) converges
at p = 1 and one has

u(x, t) = u0(x, t) +
∞∑
m=1

um(x, t) (35)

which must be one of solutions of the original nonlinear equation, as proved by Liao
[9]. Using definition (34), the governing equation of the HAM can be deduced from the
zero-order deformation equation (32) as follows. Define the vector

−→u n = {u0(x, t), u1(x, t), u2(x, t), ..., un(x, t)} (36)

From equation (32), the so-called m th-order deformation equation is given by

L[um(x, t)− χmum−1(x, t)] = ~H(x, t)<m[−→u m−1(x, t)], (37)

where

<m[−→u m−1] =
1

(m− 1)!

∂m−1N [φ(x, t; p)]

∂pm−1
|p=0, (38)

and

χm =

{
0,m ≤ 1,
1,m > 1.

(39)

Applying the inverse operator L−1 to both sides of (37), um(x, t) can be easily solved
for by symbolic computations software. The HAM has been successfully applied to solve
various classes of equations and applied problems [3]-[2].

In the classical HAM, choosing the value of parameter ~ depends on inspecting the
graph of the quantity of interest; the solution or one of its derivatives. Yet, when H(x, t) is
fixed, it is obvious that um(x, t) contains only one control parameter ~. Thus, by con-
structing a formula for the residual error, the OHAM solution is obtained by choosing the
value for parameter ~ that minimizes the error. Here, the averaged residual error defined
for ordinary differential equations in [10] is generalized to the case of two variable partial
differential equations in the following form

Em(~) =
1

MK

M∑
i=0

K∑
j=0

[
N

m∑
n=0

un

(
i

M
,
j

K

)]2

, (40)

which is a nonlinear algebraic equation of one unknown; the convergence-control parameter
~. Thus the optimal value of ~ is determined by the minimum of the averaged residual
error Em to ensure the fast convergence of the homotopy series.

To apply the OHAM recursive technique to the problem, a repeated evaluation of Riesz
fractional derivative to solution components is needed. This obstacle is overcome by using
property of Riesz fractional derivative in the following lemma.



A. Elsaid, S. Shamseldeen, S. Madkour / Eur. J. Pure Appl. Math, 10 (3) (2017), 586-601 593

Lemma 3. Let α ∈ (0, 2), α 6= 1. Then

Rαx(eiωx) = −ωαei(ωx), (41)

or in a trigonometric form

Rαx sin(ωx) = −ωα sin(ωx), (42)

Rαx cos(ωx) = −ωα cos(ωx). (43)

Proof. See [6] and [7].

5. Numerical simulation

In this section, we consider linear and nonlinear problems to illustrate the efficiency of
the method of solution to this type of problems and to illustrate the continuation of the
solution we proved in Section 3. In each problem, a table is presented to show the estimated
values the optimal convergence control parameter ~ and the corresponding residual error
Em at different values of the fractional derivative α. These estimated values are calculated
via minimizing of the averaged residual error Em displayed in (40) in the space domain
0 ≤ x ≤ 2.0 and the time interval 0 ≤ t ≤ 2.0.

Example 1. Consider problem (1-2) with p(u) = u, f1(x) = sin(πx/a) and f2(x) = −
sin(πx/a)

{
utt(x, t) = Rαxu(x, t) + u, −∞ < x <∞, t > 0,
u(x, 0) = sin(πx/a), ut(x, 0) = sin(πx/a),

(44)

where a is a real constant.

The auxiliary linear operator is chosen as

L[φ] =
∂2

∂t2
(φ), (45)

and the nonlinear operator N is chosen as

N [φ] = φtt −Rαx(φ)− φ. (46)

The m th-order deformation equation, with H(x, t) = 1, for this linear problem is given
by

∂2

∂t2
[um(x, t)− χmum−1(x, t)] = ~

(
∂2

∂t2
(um−1)−Rαx(um−1)− um−1

)
, (47)
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with

u0(x, t) = f1(x) + t f2(x) = (1− t) sin(πx/a) (48)

The inverse integral operator is applied to both sides of equation (47) to obtain the
series solution terms. The first three terms are given by

u0 = (1− t) sin(
πx

a
),

u1 = −ht
2

6

(
−1 +

(π
a

)α)
(−3 + t) sin

(πx
a

)
,

u2 = − ht
2

120

(
−1 +

(π
a

)α)
(

20(−3 + t) + h
(
−60 + 20t+

(
5− 5

(π
a

)α)
t2 +

(
−1 +

(π
a

)α)
t3
))

sin
(πx
a

)
.

Table 1 shows the estimated values of the optimal convergence control parameter ~ and
the corresponding residual error Em for the linear problem displayed in (44) at different
values of the fractional derivative α in the space domain 0 ≤ x ≤ 2.0 and the time interval
0 ≤ t ≤ 2.0.

Table 1: The estimated optimal convergence parameter ~ and the corresponding residual error Em for 0 ≤ x ≤
2.0 and 0 ≤ t ≤ 2.0 at different fractional derivative α for Example (1).

α ~ Em
Optimal parameter Residual Error

1.7 −0.940496 1.12317E − 5
1.8 −0.938046 8.19812E − 5
1.9 −0.933025 1.75198E − 4
2.0 −0.928713 3.51187E − 4

Α = 1.7

Α = 1.9

Α = 1.8

Α = 2.0

0.5 1.0 1.5 2.0
x

0.02

0.04

0.06

0.08

uΑHx,0.7L

Figure 1: The solution of (44) at t = 0.5, 0 ≤ x ≤ 2 and different values of the fractional order α =
1.7, 1.8, 1.9 and 2.0.

The series solution is obtained by u = u0 +u1 +u2 +u3 + ..... Figures (1) and (2) show
the effect of the fractional order derivative α on the behavior of the solution at fixed time
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Α = 1.7

Α = 1.8

Α = 2.0

Α = 1.9

0.5 1.0 1.5 2.0
x

-0.4

-0.3

-0.2

-0.1

uΑHx,1.0L

Figure 2: The solution of (44) at t = 1.0, 0 ≤ x ≤ 2 and different values of the fractional order α =
1.7, 1.8, 1.9 and 2.0.

t = 0.5

t = 1.0

t = 0.0

t = 1.5

0.5 1.0 1.5 2.0
x

-1.0

-0.5

0.5

1.0

u1.9Hx,tL

Figure 3: The solution of (44) at different times t = 0.0, 0.5, 1.0, and 1.5, 0 ≤ x ≤ 2 and the fractional order
α = 1.9.

t = 0.5 and t = 1.0, respectively, while Figure (3) illustrates the temporal behavior of the
solution at a fixed fractional order, α = 1.9. The plots represent the sum of the first four
terms (u0 to u3) in the OHAM series when a = 2.0

Example 2. Consider problem (1-2) with P (u) = u + c u3, f1(x) = sin(πx/a) and
f2(x) = − sin(πx/a)

{
utt(x, t) = Rαxu(x, t) + u + c u3, −∞ < x <∞, t > 0,
u(x, 0) = sin(πx/a), ut(x, 0) = sin(πx/a),

(49)

where a is a constant.
The auxiliary linear operator is chosen as

L[φ] =
∂2

∂t2
(φ), (50)

and the nonlinear operator N is chosen as

N [φ] = φtt −Rαx(φ)− φ− c φ3. (51)

Then, m th-order deformation equation for this problem is given by

∂2

∂t2
[um(x, t)− χmum−1(x, t)] = ~H(x, t)<m[−→u m−1(x, t)], (52)
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where <m[−→u m−1(x, t)] is given by

<m[−→u m−1(x, t)] =
∂2

∂t2
(um−1)−Rαx(um−1)− um−1 − c

m−1∑
i=0

i∑
j=0

um−1−iujui−j . (53)

We choose H(x, t) = 1 and

u0(x, t) = f1(x) + t f2(x) = (1− t) sin(πx/a). (54)

By applying the inverse integral operator to both sides of equation (52), we obtain

u0 = (1− t) sin(πx/a)

u1 = − ht
2

120

(
20
(
−1 +

(π
a

)α)
(−3 + t)

)
sin
(πx
a

)
− ht

2

120

(
−3c2

(
−10 + 10t− 5t2 + t3

) [
1− cos

(
2πx

a

)])
sin
(πx
a

)
...

Table 2 shows the estimated values of the optimal convergence control parameter ~ and
the corresponding residual error Em for problem (49) at different values of the fractional
derivative α in the space domain 0 ≤ x ≤ 2.0 and the time interval 0 ≤ t ≤ 2.0.

Table 2: The estimated optimal convergence parameter ~ and the corresponding residual error Em for 0 ≤ x ≤
2.0 and 0 ≤ t ≤ 2.0 at different fractional derivative α for Example (2).

α ~ Em
Optimal parameter Residual Error

1.7 −0.620896 1.66374E − 3
1.8 −0.687193 3.59934E − 3
1.9 −0.740338 5.55095E − 3
2.0 −0.736543 7.51805E − 3

Α = 1.7

Α = 1.8

Α = 1.9

Α = 2.0

0.5 1.0 1.5 2.0
x

0.02

0.04

0.06

0.08

0.10

0.12

uΑHx,0.7L

Figure 4: The solution of (49) at t = 0.5, 0 ≤ x ≤ 2 and different values of the fractional order α =
1.7, 1.8, 1.9 and 2.0.
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Α = 1.7

Α = 1.8

Α = 1.9

Α = 2.0

0.5 1.0 1.5 2.0
x

-0.4

-0.3

-0.2

-0.1

uΑHx,1.0L

Figure 5: The solution of (49) at t = 1.0, 0 ≤ x ≤ 2 and different values of the fractional order α =
1.7, 1.8, 1.9 and 2.0.

t = 0.5

t = 0.0

t = 1.0

t = 1.5

0.5 1.0 1.5 2.0
x

-1.0

-0.5

0.5

1.0

u1.9Hx,tL

Figure 6: The solution of (49) at different times t = 0.0, 0.5, 1.0, and 1.5, 0 ≤ x ≤ 2 and the fractional
order α = 1.9.

and the solution is thus obtained as

u = u0 + u1 + u2 + u3 + ....

The solution behavior as the Riesz parameter α changes is shown in Figures (4) and
(5) at a fixed time t = 0.5 and t = 1.0, respectively. As α increases, the amplitude of the
sinusoidal behavior in solution decreases. The series displayed in plots is the partial sum
of the first four terms; n = 3 (summing u0 to u3 ). Figure (6) shows the evolution with
time of the solution at a fixed fractional order α = 1.9 in the interval 0 ≤ x ≤ 2.

Example 3. Consider the problem (1-2) with p(u) = − sin(u), f1(x) = π+ ε cos(µx) and
f2(x) = 0 (the space-fractional sine-Gordan equation), i.e.,

{
utt(x, t) = Rαxu(x, t)− sin(u), −∞ < x <∞, t > 0,
u(x, 0) = π + ε cos(µx), ut(x, 0) = 0,

(55)

where ε and µ are real constants.
Here the auxiliary linear operator is

L[φ] =
∂2

∂t2
(φ), (56)



A. Elsaid, S. Shamseldeen, S. Madkour / Eur. J. Pure Appl. Math, 10 (3) (2017), 586-601 598

and the nonlinear operator N is chosen as

N [φ] = φtt −Rαx(φ) + sin(φ). (57)

Then, m th-order deformation equation for this problem is given by

∂2

∂t2
[um(x, t)− χmum−1(x, t)] = ~H(x, t)<m[−→u m−1(x, t)], (58)

where <m[−→u m−1(x, t)] is given by

<m[−→u m−1(x, t)] =
∂2

∂t2
(um−1)−Rαx(um−1) +

m−1∑
k=0

Ak, (59)

where Ak is the Adomian polynomials for sin(u) [? ]: A0 = sin(u0), A1 = u1 cos(u0), A2 =
1/2(−u2

1 sin(u0) + 2u2 cos(u0)), .... We choose H(x, t) = 1, and by applying the inverse
integral operator to both sides of (58), one can obtain the first four terms as

u0 = π,

u1 = ε cos(µx),

u2 =
ε

2

(
2 + h

(
2 + t2 (−1 + µα)

))
cos(µx),

u3 =
ε

24

(
24 + 24h(2 + t2(−1 + µα)) + h2(24 + 24t2(−1 + µα) + t4(−1 + µα)2)

)
cos(µx)

and the solution is u = u0 + u1 + u2 + u3 + .....
Table 3 shows the estimated values of the optimal convergence control parameter ~

and the corresponding residual error Em for the problem displayed in (55) at different
values of the fractional derivative α in the space domain 0 ≤ x ≤ 2.0 and the time interval
0 ≤ t ≤ 2.0.

Table 3: The estimated optimal convergence parameter ~ and the corresponding residual error Em for 0 ≤ x ≤
2.0 and 0 ≤ t ≤ 2.0 at different fractional derivative α for Example (3).

α ~ Em
Optimal parameter Residual Error

1.7 −0.928016 1.42983E − 4
1.8 −0.926483 3.41879E − 4
1.9 −0.925981 6.10878E − 4
2.0 −0.923954 9.76395E − 4

The behavior of the solution of the sine-Gordan equation (55) as the Riesz parameter
α changes is shown in Figures (7) and (8) at a fixed time t = 1.0 and t = 1.5, respec-
tively, while the temporal evolution of the solution is depicted in Figure (9) at a fixed
fractional order α = 1.9. As α increases, the amplitude of the sinusoidal behavior in solu-
tion decreases. The series displayed in the figures is the partial sum of the first four terms;
n = 3 (summing u0 to u3 ).



REFERENCES 599

Α = 1.7

Α = 1.8

Α = 2.0

Α = 1.9

0.5 1.0 1.5 2.0
x

3.05

3.10

3.15

3.20

3.25

3.30

uΑHx,1.0L

Figure 7: The solution of (55) at ε = 0.3, µ = π/2, t = 1.0, 0 ≤ x ≤ 0.2 and different values of the fractional
order α = 1.7, 1.8, 1.9 and 2.0.
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Figure 8: The solution of (55) at ε = 0.3, µ = π/2, t = 1.5, 0 ≤ x ≤ 0.2 and different values of the fractional
order α = 1.7, 1.8, 1.9 and 2.0.

6. Conclusion

We present a study to the behavior of the solution to the space-fractional wave equa-
tion where the spatial derivative is given in Riesz sense. We proved the continuation of
the solution of the considered fractional-order wave equation to the solution of the corre-
sponding integer order problem. The iterative series solution for the fractional equation
is obtained using the OHAM. The advantage of using this technique is the ability to esti-
mate an approximation to the residual error. The results obtained illustrate graphically
the continuation of the solution we proved theoretically.
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