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Abstract. Clive Granger developed the fundamental concept of cointegration for linking variables
within non-stationary vector time series. Granger discovered cointegration while trying to refute
a critique by Hendry of his research with Paul Newbold on ‘nonsense regressions’ between non-
stationary data. Although the initial estimation and testing approach in his paper with Robert
F. Engle has been superceded by a plethora of methods, the concept of cointegration has led to a
merger of economic analyses of long-run equilibrium relations with empirical dynamic systems. The
multivariate cointegration method of Søren Johansen extended Nobel Laureate Trygve Haavelmo’s
earlier formulation of an economy as a system of simultaneous stochastic relationships to non-
stationary time series. Clive Granger was awarded The Sveriges Riksbank Prize in Economic
Science in Memory of Alfred Nobel in 2003 for his contribution, sharing it with Rob Engle, whose
citation was for developing methods for analyzing changing variances.
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1. Introduction

How cointegration was discovered is similar to many other scientific discoveries, namely
the outcome of exploring numerous paths leading to useful but incomplete insights plagued
by anomalies, yet eventually resolved, in this case by Clive Granger’s major breakthrough.
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Its history has been recounted a number of times, including by Hendry (2004) and Hendry
and Timo Teräsvirta (2013) (see [56], [66]) on both of which we draw. For general histories
of econometrics and time series, see Mary Morgan (1990) [81], Duo Qin (1993, 2013)
[94][95], Hendry and Morgan (1995) [62], who also reprint many of the salient original
historical publications, and Judy Klein (1997) [77].

‘Odd’ correlations between pairs of variables were found almost as soon as co-relation†

analysis was invented by Francis Galton (1889) (see [31]) in the late 19th century, im-
mediately followed by efforts to understand why these turned up surprisingly often. Two
explanations soon appeared. The first was called ‘spurious correlation’, attributed by Udny
Yule (1897) (see [110]) to the two variables being correlated with a third not included in
the analysis. The second was called ‘nonsense correlations’, namely high correlations lack-
ing sensible explanations, such as between the numbers of church marriages and mortality
in the United Kingdom. Yule (1926) [111] argued such correlations were due to the vari-
ables involved being non-stationary, where some features of the distributions changed over
time. This was the first important breakthrough in helping to understand why a specific
type of non-stationarity could distort statistical inference so badly. A glance at many
time-series suggests that stationarity, in the weak sense of constant unconditional means
and variances, is not a reasonable starting point for empirical modeling.

Figure 1 (a) shows plots of the logs of annual nominal wages and prices in the UK over
1860–2011, which have trended dramatically (nominal wages have risen by 70,000% during
that time): see Castle and Hendry (2014) [11]. Panel (b) records two key real variables
over the same epoch, namely logs of productivity (measured by output per person per
year) and of the associated capital stock (matched by mean values), which have moved
in tandem except for the inter-war period, but also display changing trends. Panel (c)
switches to the post-war period showing logs of quarterly UK real consumers’ expenditure
and disposable income, 1955–2004, which exhibit changing trends and evolving seasonality,
as well as an increasing divergence. Finally, panel (d) illustrates that non-stationarity is
not merely of interest in economics by showing a consequence of energy driven economic
growth, namely greatly increasing atmospheric levels of carbon dioxide (CO2) at Mauna
Loa, with the marked seasonality driven by vegetation growth and decay (see Hendry and
Felix Pretis, 2013, [63]).

Nevertheless, most theoretical and empirical econometric analyses assumed stationarity
until the mid-to-late 1970s. For example, the ‘error-correction’ formulation by Denis
Sargan (1964) (see [98]), which will play an important role later, did not address non-
stationarity. Then there was a resurgence of interest in nonsense regressions beginning
with the papers by Granger and Paul Newbold (1974,1977) [45][46], and the derivations of
critical values for tests of unit roots in autoregressions by Wayne Fuller (1976) (see [30]).
The attempt to rebut the critique of Granger and Newbold (1977) (see [46]) by Hendry
(1977) (see [54]) prompted a counter critique by Granger, which led him to the discovery
of cointegration. There are now more than 200,000 citations to publications that have
included the word ‘cointegration’ in their title, based on Anne-Wil Harzing’s invaluable

†Later renamed correlation, just as co-integration became cointegration: will co-breaking follow to be
renamed cobreaking?
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Figure 1: (a) Logs of annual wages and prices in the UK over 1860–2011; (b) Logs of annual productivity
and the capital stock in the UK over 1860–2011; (c) Logs of quarterly UK real consumers’ expenditure and
disposable income, 1955–2004; (d) CO2 levels at Mauna Loa in parts per million

Publish or Perish, Melbourne (2016),‡ a testimony to Clive’s massive impact.
Section 2 first summarizes the intellectual history leading from nonsense regressions

to equilibrium-correction models. The next phase was moving from long-run equilibrium-
correction relations to cointegration between non-stationary time series, considered in
section 3. Section 4 discusses the intrusion of unit-root distributions into statistical esti-
mation and inference about the parameters of equilibrium-correction models. Then section
5 describes Granger’s general formulation of cointegration and the key role of the Granger
Representation Theorem. Section 6 discusses some of the implications of cointegration
both for economic analyses and climate modeling. Section 7 concludes.

2. From nonsense regressions to equilibrium-correction models

In their historical review of econometrics, Hendry and Morgan (1995) (see [62]) record
that one of the first analyses of ‘problematic’ correlations between time series when data
are not stationary was by R.H. Hooker (1901) (see [67]), who suggested the difficulties
arose from what he viewed as ‘common trends’ in the variables. Hooker in fact empiri-
cally modeled the relation between marriage rates and ‘trade’, and sorted out effects due

‡See http://www.harzing.com/publications/publish-or-perish-book?source=pop 4.28.1.6105
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to trends and those due to ‘oscillations’, as well as considering the impacts of ‘regime
shifts’. A quarter century later, Udny Yule (1926) [111] showed that singly, and especially
doubly, integrated data (I(1) and I(2) processes) generated ‘nonsense correlations’ between
unconnected time series.§ In the same year, but apparently unaware of each other’s contri-
butions, Bradford Smith (1926) (see [101]) discussed how to nest models in first differences
with those in levels, a precursor to the ‘error-correction’ formulation in Sargan (1964) [98]:
see Terence Mills (2011) [80].

The model Yule used in his 1926 Presidential Address to the Royal Statistical Society
to understand correlation coefficients between I(1) or I(2) variables used two indepen-
dent homoskedastic, random variables {et} and {ut} independently drawn from normal
distributions with zero means and variances σ2e and σ2u, denoted by et ∼ IN[0, σ2e ] and
ut ∼ IN[0, σ2u]. Generate yt and xt from y0 = x0 = 0 to be I(1) by:

yt =
t∑
i=1

ei and xt =
t∑

j=1

uj . (1)

In modern terms, the data generation process in Yule’s (hand) simulations was the bivari-
ate random walk:(

yt
xt

)
=

(
yt−1
xt−1

)
+

(
et
ut

)
where

(
et
ut

)
∼ IN2

[(
0
0

)
,

(
σ2e 0
0 σ2u

)]
. (2)

Yule found that the distribution of their correlation coefficient was approximately uniform
and that the null of no relation between yt and xt could be rejected most of the time
(around 70% at a nominal 5% significance level for a sample size of T = 100), even though
the series were independently generated. Regressing either of these two I(1) variables on
the other, as in (say):

yt = β0 + β1xt + vt. (3)

reveals massively excess rejections of the correct null on a Student-t test of H0:β1 = 0.
That test is derived under the assumption that the observations are independent, identi-
cally distributed (IID), and over-rejection is due to serious underestimation of the estimated
coefficient standard error, rather than really high correlations per se. The residuals, v̂t,
of an estimated equation like (3) are almost bound to be strongly positively autocorre-
lated because yt is, and xt cannot capture that phenomenon. Herman Wold (1952) (see
[109]) had proved that least-squares conventionally-calculated estimated coefficient stan-
dard errors would be badly downward biased when there is strong positive residual serial
correlation. In turn, that would inflate calculated t-statistics and lead to excess rejections
of correct null hypotheses.

The problem of spurious rejection actually gets worse in larger samples even though
unrelated random walks should wander apart: at T = 1000 in (3), using conventional

§Although Yule (1897) (see [110]) had discussed ‘spurious’ correlations, where two variables were apparently
related because each was related to a third, that research seems to have been forgotten, and ‘nonsense
correlations’ are sometimes called ‘spurious’ correlations.



J. L. Castle, D. F. Hendry / Eur. J. Pure Appl. Math, 10 (1) (2017), 58-81 62

t-tests assuming stationarity, the null hypothesis H0: β1 = 0 is incorrectly rejected 90%
of the time at a 1% significance level; that is, the actual rejection percentage is 90% and
not 1% as one might mistakenly believe from the use of the theoretical t-distribution. To
explain high correlations, rather than over-rejection Yule found that when both variables
were I(2), generated by separately cumulating yt and xt, the distribution of their correlation
coefficient was approximately U-shaped, with the most likely values under the null being
±1.

During the late 1960s and early 1970s, the large empirical macroeconomic systems had
been found by Phillip Cooper (1972) and Charles Nelson (1972) (see [15][82]) to forecast
less accurately than a-theoretic scalar time-series models, such as autoregressions or au-
toregressive moving-averages of the form advocated by George Box and Gwilym Jenkins
(1970) (see [9]). Those large simultaneous-equations macroeconomic systems focused on
being derived from economic theory analyses (see e.g. Duesenberry, Klein, Fromm, and
Kuh, 1965, [21]), so were not very dynamic.¶ Building on these findings, Granger and
Newbold (1974,1977) (see [45][46]) proposed that nonsense regressions could be relatively
common in macroeconomics as judged by their high correlations (measured by the value of
R2, the squared coefficient of determination), yet exhibiting substantial residual serial cor-
relation (as measured by the statistic formulated by James Durbin and Geoffrey Watson
(1950,1951) [22][23], denoted DW, but already shown by Kenneth Wallis (1967) [104], to
understate the extent of residual autocorrelation in dynamic models). Granger and New-
bold (1974) (see [45]) argued that nonsense regressions were probably present when R2 >
DW, a not uncommon finding in large macroeconomic models of the time. By stressing
both the need to account for the dynamic properties of economic relationships and the
importance of testing estimated models, [45] became widely cited.

Alexander Aitken (1935) (see [1]) had earlier proposed generalized least squares (GLS)
to take account of residual heteroskedasticity or residual autocorrelation for regression
models with ‘strongly exogenous’ regressors, namely explanatory variables that were valid
conditioning variables and were not dependent on lagged values of the dependent variable
(i.e., not Granger caused by the dependent variable: see Granger, 1969, [34], and the paper
by Hendry in this volume). However, GLS could hardly solve the problem in (3) where
the residual autocorrelation was generated by omitting the non-stationary regressor yt−1.

The alternative solution proposed by Granger and Newbold (1974) (see [45]) was to
use first differences of variables in regressions like (3), rather than levels, an idea Hooker
had explored earlier. From (2), ∆yt = yt−yt−1 = et and ∆xt = ut, so differencing reduces
these variables to a non-integrated form (denoted I(0)) sustaining conventional statistical
inference. Thus, they postulated that nonsense regressions could be eliminated by instead
estimating relationships like (for some error term wt):

∆yt = λ0 + λ1∆xt + wt. (4)

When the original variables are I(1), their differences are I(0), so nonsense-regression prob-
lems from unit roots in data generation processes (DGPs) like (2) should be removed.

¶Much later, Hendry and Jean-François Richard (1982) (see [64]) showed that choosing the formulations
of models by dynamic simulation falsely suggested such specifications performed better.
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Although differencing also attenuates large positive residual serial correlation, as shown
by Donald Cochrane and Guy Orcutt (1949) (see [84]), only data can be differenced, not
equations. Differencing (3) would generate a negative moving average process for {wt},
whereas when β1 = 0 in (3), then λ0 = λ1 = 0 in (4) and wt = et so is actually white
noise. Moreover, if (4) were a valid solution, and {xt} was weakly exogenous (see Engle,
Hendry and Richard, 1983, [25]) then the Bradford Smith approach of formulating the
nesting equation:

yt = γ0 + γ1xt + γ2xt−1 + γ3yt−1 + wt. (5)

where γ0 = γ1 = γ2 = 0 and γ3 = 1 when (2) is the DGP should also work (although the
legitimacy of conventional inference may be in doubt as we will see in §4).

Moreover, when the null is not true because β1 6= 0, then an estimate of λ1 in (4) could
be very far from β1—which is precisely the problem Hooker found comparing estimates
in levels and differences in 1901! Nevertheless, when it came to forecasting, Granger and
Newbold (1974) [45] felt that it was important to use differenced-data dynamic models
rather than systems of simultaneous-equations in levels, an issue discussed by Michael
Clements in this volume and one we return to below.

Granger and Newbold (1977) (see [46]) then proposed a ‘time-series approach to econo-
metric model building’, emphasizing their 1974 critique of nonsense regressions, and their
solution of analyzing only data in differences. They also showed that applying to (3) GLS-
based residual serial-correlation corrections (wrongly attributed to Cochrane and Orcutt)
did not resolve the nonsense-regression problem. Clive felt he had amassed strong argu-
ments for this approach, further supported by the findings that so-called ‘naive’ forecasting
devices like a random walk often outperformed the large macroeconomic models. However,
all was not what it seemed: indeed, much remained to be discovered at this stage.

Clive was taken aback by the critique in Hendry (1977) (see [54]) to the effect that
‘nonsense regressions were a nonsense problem’, easily resolved for relationships between
levels by including appropriate lags of the regressors. He had expected economists to
criticize his approach, but not time-series econometricians, and anyway he did not at first
accept the validity of the critique. To explain the issues, and what they precipated, we
turn to the origins and formulations of equilibrium-correction models.

3. From equilibrium correction to cointegration

A large control theory literature existed by the early 1950s, applicable to many sit-
uations from running chemical plants to stabilizing moving mechanisms. Bill Phillips
(1954,1957) (see [88][89]) discussed its application to economies, proposing roles for deriva-
tive, proportional and integral control mechanisms to stabilize economic fluctuations based
on feedbacks of departures from the planned path. Denis Sargan (1964) (see [98]) then for-
mulated an important variant of (5), which transpired to be related to derivative and pro-
portional control mechanisms. Transform (5) to Sargan’s formulation with εt ∼ IN[0, σ2ε ]
as:

∆yt = γ0 + γ1∆xt + (γ2 + γ1)xt−1 + (γ3 − 1)yt−1 + εt. (6)
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Provided γ3 6= 1, the lagged terms in (6) can be combined using κ1 = (γ1 + γ2)/(1 − γ3)
as:

∆yt = γ0 + γ1∆xt + (γ3 − 1)(yt−1 − κ1xt−1) + εt (7)

The derivative control is provided by γ1∆xt, and the proportional control by (γ3−1)(yt−1−
κ1xt−1). In his model of the determination of wages in the UK, where yt denotes the log of
nominal wages and xt is the log of prices, so (yt − xt) measures real wages, Sargan (1964)
[98] considered the ‘homogeneous’ case that γ1 + γ2 = 1 − γ3 6= 0, so κ1 = 1. He also
explicitly included a ‘planned path’, which we denote by (y − x)∗t−1, towards which the
model would equilibrate. The resulting formulation can be expressed as:

∆yt = γ0 + γ1∆xt + (γ3 − 1)
(
yt−1 − xt−1 − (y − x)∗t−1

)
+ εt. (8)

In (8), (y−x)∗t−1 could represent productivity, so real wages would equilibrate to that: an
updated example is provided in Castle and Hendry (2014) (see [11]). The third term in
(8) was originally called an error-correction mechanism (ECM), in line with its control-
theory origins, as it corrected past discrepancies between yt and xt, assumed to arise from
past mistakes, but is now usually called an equilibrium-correction mechanism (EqCM) for
reasons explained below.

Assuming (8) is a viable representation (we will consider issues of statistical inference in
§4), several important features are revealed. First, since ∆xt and (yt−1−xt−1−(y−x)∗t−1)
are unlikely to be highly correlated, the estimate of γ1 will be essentially unaffected by
whether or not the equilibrium-correction mechanism (EqCM) is included in the model.
Comparing (8) with (4) reveals the estimate of λ1 is the short-run response of ∆yt to
∆xt. However, the long-run relation between y and x is κ1 given in equation (7), which
could differ radically from γ1, especially when κ1 = 1. The role of the EqCM is to
ensure yt and xt do not drift apart, which would occur if γ1 6= κ1 without the EqCM
term in (8). This requires −1 < (γ3 − 1) < 0. Second, Lawrence Klein (1953) (see
[78]) had argued for the existence of constant ‘great ratios’ like consumers’ expenditure to
income, capital to output, etc., which in log form would be differentials like (yt − xt). To
economists, such stabilizing relationships seemed natural: for example, unless expenditure
and income were closely related, savings would diverge. Formulations like (7) or (8)
seemed to ensure divergence would not occur. Although it may seem anachronistic because
they were published later, the papers by Hendry and Gordon Anderson (1977) [58] and
James Davidson, Hendry, Frank Srba and Stephen Yeo (1978) [16] (usually known as
DHSY, and pronounced ‘daisy’) were prepared well before Hendry (1977) [54] and both
included what they called ECMs. Indeed, the former adopted a control theory approach
to deriving their dynamic model with ‘disequilibrium’ adjustment between past levels, and
as an indirect criticism of Granger and Newbold (1974) [45], (to quote) ‘there are ways to
achieve stationarity other than blanket differencing’.

These papers provided the basis for Hendry (1977) [54], who unknowingly used the
same formulation as Bradford Smith and cited the ECM in Sargan (1964) [98] to argue
that the ‘nonsense regressions problem’ was easily resolved. Instead of fitting static models
like (3), use specifications like (5), or better still (7). However, the stationarity of EqCM



J. L. Castle, D. F. Hendry / Eur. J. Pure Appl. Math, 10 (1) (2017), 58-81 65

log-ratios required that any non-stationarity in the two series would have to cancel in
the differential—which at that time, Clive Granger believed could not occur. When each
time series was driven by an I(1) process, they would wander, and hence could not stay
connected. Hendry’s critique provoked Clive to try and formally disprove the possibility of
substantive relations between the levels of I(1) variables: reconciling the divergent views
of economists and statisticians would lead to cointegration. But before that, the story
takes another twist.

4. The intrusion of non-standard unit-root distributions

Analyses of potentially non-stationary autoregressive processes have a distinguished
pedigree including those by John White (1958,1959) (see [106][107]) for both random
walks and explosive roots. [106] also derived the Laplace transform of the denominator and
numerator in the t-statistic discussed above. Wayne Fuller (1976) (see [30]) demonstrated
the need for different critical values when testing null hypotheses involving unit roots,
followed up by David Dickey and Fuller (1979,1981) (see [18][19]) and Gwyn Aneuryn-
Evans and Gene Savin (1981,1984) (see [3][4]) although those papers post date the debate
in the previous section. The required critical values depended on whether the DGP and/or
the model included deterministic terms like constants, dummy variables and/or trends,
and how they are modeled, making for a rather complicated testing problem, later clarified
(see e.g., Anders Rahbek and Bent Nielsen, 2000, [83]). Nevertheless, even before 1975, it
was known that non-standard distributions occurred when estimating models of processes
with unit roots.

Initially, this complication was ignored by those building EqCM models for I(1) data.
While theoretical derivations needed to use tools like integrals of Brownian motion that in
1975 were new to econometricians, Monte Carlo simulation is the weak-theorist’s friend, or
perhaps not... Hendry and Grayham Mizon (1978) (see [60]) used a mainframe version of
what is now called PcNaive‖ to simulate the distributions of estimators and tests in models
like (7) when the DGP had a unit root, and found a relatively negligible difference from
conventional (limiting Normal) distributions. We were completely misled. In stationary
processes, the value of the constant term is relatively innocuous, but not when there are
unit roots, as then it can act as a drift term as in, say, a random walk. Unknowingly,
Hendry and Mizon (1978) [60] had set a value for the constant term that entailed rapid
growth in the levels (this was before it was easy to obtain graphs of the data, which would
have revealed the problem). Kenneth West (1988) (see [105]) proved that in such a case,
limiting Normal distributions did indeed result. In most settings, however, growth is not
sufficiently fast to avoid using non-standard distributions. Inference procedures need to
deliver correct decisions under both the null hypothesis of no relation and the alternative,
and in unit-root processes, conventional critical values can over-reject the null when it is
true. For models like (7), James Stock (1987) (see [102]) derived the limiting distributions

‖For Numerical Analysis of Instrumental Variables Estimators: see Jurgen Doornik and Hendry (2013)
[20].
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of parameter estimators under the alternative that the I(1) variables under analysis are
genuinely linked.

Thus, the story twists again: were the findings of apparently ‘well behaved’ EqCMs
an artefact of using incorrect critical values, and Granger was right that no such relations
could exist? On the one hand, nonsense regressions seemed to depend on dynamic mis-
specification, which could be avoided by including lagged values of all the variables in the
relation. Transforming such regressions to equilibrium-correction models both provided a
link to long-run economic equilibria that were essential to explain ‘great ratios’, and seemed
a good characterization of I(1) data, whereas differencing all variables was not a viable
solution for economics. On the other hand, estimation and testing in models of DGPs with
unit roots required non-standard critical values, casting doubt on earlier inferences based
on conventional significance levels. Moreover, single equation EqCMs simply assumed the
unmodeled variables like xt had the appropriate properties to generate the observed non-
stationarity. If the model postulated for xt also had an EqCM feedback with a coefficient
µ different from κ1 above, the solved long-run equilibrium of the bivariate process for yt
and xt must be a point, contradicting the evidence that the data were I(1).

To look ahead, the deliberate creation and detection of nonsense regressions in Hendry
(1980) (see [55]) summarizes the understanding at the time Granger began to formulate the
concept of cointegration. However, the ‘nonsense regressions problem’ was only eventually
clarified in the formal analyses by Peter Phillips (1986,1998) (see [90][92]). Also Yoon
Park and Phillips (1988,1989) (see [85][86]) analyzed statistical inference when regressions
were fitted to integrated processes, Christopher Sims, James Stock and Mark Watson
(1990) [100] showed that conventional inference about the parameters in models like (5)
was valid when the variables could be transformed such that the parameter was that of
an I(0) combination, and Neil Ericsson and James MacKinnon (1999) [28] derived the
distributions of ‘error-correction’ tests for cointegration based on EqCMs like (7), thereby
providing appropriate critical values for tests of (γ3 − 1) = 0 in I(1) processes. However,
in the early 1980s, the analysis was about to move to a system formulation for vector I(1)
processes, heralding the arrival of cointegration methods.

5. Cointegrated variables

Fortune favours the prepared mind when it comes to discoveries (or inventions), and in
Clive’s case the background preparation included Granger (1966) (see [33]), which showed
that many economic time series had most of their spectral mass at the lowest frequencies
of the spectrum. One possible explanation for that phenomenon was that the variables
trended; another of course was that they were non-stationary from a unit root. Thus,
Granger was already thinking about trends, then viewed as comprising frequencies with
a period at least as long as the length of the series. Such a notion must have helped
him towards (common) stochastic trends. His final published paper, Granger and Halbert
White (2011) [51], again concerned trends.

Clive Granger did not accept the claims that the class of EqCM models like (8) were
the end game. In his discussion of Hendry and Richard (1983) (see [65]), he questioned
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whether some of the purported equilibrium-correction terms were genuinely I(0): is the UK
wage share over 1860–2011 graphed in Figure 2 (taken from Hendry (2015) [57]) actually
I(0), and how could that be reliably established? The simplest test of the claim that the
wage share in Figure 2 is not I(1) would be to use an augmented Dickey–Fuller (ADF)
test, with sufficient lagged differences, to test the null of a unit root. Here, with two lags
(which are in fact insignificant) the test rejects the null of a unit root at 5%. Although that
rejected, the linear combinations of the log-level variables involved had assumed known
coefficients, so the homogeneity hypotheses also needed to be tested.

wage share 
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-0.075

-0.050

-0.025

0.000

0.025

0.050

0.075

0.100
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Figure 2: Wage share in the UK over 1860–2011.

5.1. Granger Representation Theorem

An important insight by Granger was that earlier analyses had assumed the data
were I(1), somehow ‘inherited’ from unmodeled variables, rather than that property being
endogenously generated by the process under analysis, as in (2). Instead, Granger com-
menced with processes akin to (1) with common errors to give a system representation in
vector notation (denoted by bold) where z′t = (yt : xt):

∆zt = Cεt +

∞∑
i=0

Ci∆εt−i. (9)

By assuming C has reduced rank, (9) can be inverted to obtain the infinite order AR
process:

∆zt = Πzt−1 +
∞∑
i=0

Γi∆zt−i. (10)
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with Π of reduced rank and ΠC = CΠ = 0. This is the Granger representation theorem,
which enables transition from the moving average representation to the autoregressive
representation (and back again) when there are I(1) variables in the system, although in
practice the lag length is truncated.

While Granger’s starting point was the moving average representation, the more fre-
quent use of the Granger Representation Theorem is to derive the moving average repre-
sentation from the autoregressive respresentation assuming Π has reduced rank. Given
the symmetry, both directions of proof are feasible, but it is notable that the more com-
mon direction is for the converse to Granger’s original proof (see Engle and Granger,
1987, p.255, [24]). Hence, we explore cointegration commencing from the autoregressive
representation, before noting Granger’s original theorem in (19) and (20).

Let us assume that yt is generated by (7) and the equation for xt is also of the form:

∆xt = θ0 + θ1∆xt−1 + θ2 (yt−1 − κ1xt−1) + ηt, where ηt ∼ IN
[
0, σ2η

]
(11)

with |θ1| < 1 and θ2 6= 0, so the same feedback as in (7) occurs in both equations, then
the data must be I(1). That this occurs is most easily seen by looking at the simplest
special cases of (7) and (11) written as:

∆yt = φ0 + φ1(yt−1 − κ1xt−1) + εt (12)

∆xt = θ0 + θ2 (yt−1 − κ1xt−1) + ηt (13)

Then the combination of θ2 times ∆yt minus φ1 times ∆xt eliminates the EqCM:

θ2∆yt − φ1∆xt = (θ2φ0 − φ1θ0) + θ2εt − φ1ηt (14)

so is a random walk with drift, whereas yt minus κ1xt delivers:

yt − κ1xt = (φ0 − κ1θ0) + (1 + φ1 − κ1θ2) (yt−1 − κ1xt−1) + εt − ηt (15)

which is a stationary autoregression when |1 + φ1 − κ1θ2| < 1, so that condition is also
required. Consequently, from (15) there is one I(0) relation, and from (14), one I(1).

The long-run relation must be a trajectory (rather than a point) along which
(y − κ1x− κ0) = 0 on average, where κ0 = (φ0 − κ1θ0) / (κ1θ2 − φ1) is the long-run equi-
librium mean (dependent on the units of measurement of yt and xt). Suddenly, I(1) is not
needed as a separate postulate: if there are fewer EqCM feedbacks in the levels (here one)
than variables (here two), the process cannot be stationary. Nevertheless, the feedback
term (yt−1 − κ1xt−1) must be stationary (subject to some parametric restrictions) and
consequently eliminates one unit root. As Granger records in both Phillips (1997) and
Granger (2004) (see [91] and [40]), he tried to prove that linear combinations of I(1) vari-
ables like (yt − κ1xt) must still be I(1), so EqCMs were not a viable model class. Instead,
he established conditions under which co-integration would occur, namely some linear
combinations of I(1) variables were I(0), or more generally, of a lower order of integration
than the original variables.
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Granger (1981) (see [36]) provided the first analysis. When the dependent variables of
the bivariate representation are the I(0) first differences, ∆yt and ∆xt, of the I(1) variables
yt and xt, where the regressor variables include (say) ∆xt, ∆xt−1, ∆yt−1, yt−1 and xt−1,
of which (6) and (11) are special cases, then the equations are balanced if and only if a
linear combination of yt−1 and xt−1 is I(0). If there is a combination like (yt − κ1xt) that
is I(0), then both sides of the equations are stationary, and the formulations are internally
consistent. If that combination is I(1), however, then either the coefficients of the levels
variables must be zero, or at least one of ∆yt and ∆xt become I(1), contradicting the
starting assumptions. Writing equations (7) and (11) as a system with γ4 = γ3 − 1:

(
1 −γ1
0 1

)(
∆yt
∆xt

)
=

(
γ0
θ0

)
+

(
0 0
0 θ1

)(
∆yt−1
∆xt−1

)
+

(
γ4
θ2

)
(yt−1 − κ1xt−1)+

(
εt
ηt

)
(16)

then (16) generalizes (2) in four ways by including: (i) a contemporaneous relation in
the first equation; (ii) potentially non-zero intercepts; (iii) lagged reactions to the first
differences; and most importantly, (iv) the same levels feedback in both equations. When
yt and xt are I(1) and (yt−1 − κ1xt−1) is I(0), then the representation in (16) is I(0) and
conventional statistical inference applies. However, to establish that a linear combination
of I(1) variables is I(0) involves non-standard distributions.

In vector notation (16) can be written as:

Γ0∆zt = δ0 + Γ1∆zt−1 + α
(
β′zt−1

)
+ ξt where ξt ∼ IN2 [0,Σξ] (17)

with ξ′t = (εt : ηt). In (17), the coefficient matrix for the lagged levels zt−1 has been
written as a singular product of α = (γ4 : θ2)

′ and β′ = (1 : −κ1) which are 2×1 and 1×2
so both are (at most) of rank 1. A stationary linear combination of two I(1) variables is
a special case, but when it holds, such a pair of level variables is now called cointegrated.
Thus, the I(1) component must be common to yt and xt (Hooker’s ‘common trends’) and
it must cancel to achieve a balanced formulation. In general, if there are n I(1) levels
variables, zt, connected by r < n feedbacks β′zt−1, then the system generates both n− r
integrated variables and r cointegrated combinations. For simplicity of notation, we set
Γ0 = I, noting that it is non-singular, so rewrite (17) as the n-dimensional vector process:

∆zt = π0 + Π0∆zt−1 + Π1zt−1 + ζt where ζt ∼ INn [0,Ωζ ] (18)

When Π0 has a value consistent with zt being either I(0) or I(1) as required for the
following special cases, then the rank of the n × n matrix Π1 determines the properties
of the data. When rank(Π1) = n, the process in (18) must be stationary, because the
change in every variable is related to its level. This was implicitly the assumption of earlier
EqCM equations like DHSY, although as discussed below, it was later established that
many inferences remain valid using conventional critical values even when the system is
I(1). Conversely, when rank(Π1) = 0, (18) describes a vector autoregression (VAR) in ∆zt
so all variables are I(1). In between, when rank(Π1) = r < n, then zt is I(1) and there are
r I(0) linear combinations β′zt, where β is n× r of rank r. In that case, as explained in a
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series of papers starting with Søren Johansen (1988), and his book Johansen (1995) (see
[69][71]), Π1 = αβ′ where α is n× r of rank r. This reduced-rank of the long-run matrix
of the dynamics is what determines cointegration. Moreover, α represents the ‘strength’
of the feedbacks of the various cointegrating combinations onto each change. However,
the role of Π0∆zt−1 in (18) is not innocuous, as we discuss in §5.2.

Sticking to the case when ∆zt is a vector of n stationary I(0) variables and setting
E[∆zt] = 0 ∀t for simplicity, from the famous decomposition theorem in Herman Wold
(1938) (see [108]), we have the moving-average representation:

∆zt =
∞∑
i=0

Riεt−i where εt ∼ IIDn [0,Ωε] (19)

with R0 = In and
∑s

i=0 Ri = R(1) has rank n − r, truncation the lag length to s. The
Granger representation theorem, in the direction that Granger originally solved, states
that (19) can be inverted to the vector autoregressive formulation:

∆zt =

k∑
i=1

Ai∆zt−i + αβ′zt−1 + εt (20)

(k = ∞ but in practice the lag length is truncated) where α and β′ are of rank r as in
(18), delivering a vector EqCM. Johsen (1988) [69] provides a clear general formulation,
so the representation is often called ‘Granger–Johansen’.

Clive linked cointegration with Granger causality in Granger (1986) (see [37]) by show-
ing that if two series are cointegrated then at least one of them must cause the other, tying
together two of his main ideas. Indeed, a non-zero reduced rank n > r > 0 of Π1 in (18)
entails that some EqCM(s) must enter at least one equation, so ensuring both cointegration
and Granger causality for those variables.

Granger (1981) (see [36]) precipitated a vast literature, although he did not suggest
any statistical tests for cointegration to make the notion operational. His first proposal
was in Granger and Andrew Weiss (1983) (see [50]), generalizing previous unit-root tests
and extending cointegration to more than a bivariate framework. Engle and Granger
(1987) (see [24]) developed a two-step estimator for the parameters of cointegrated rela-
tionships (also see Anindya Banerjee, Juan Dolado, Hendry and Gregor Smith, 1986, [5]),
closely followed by many approaches including full maximum likelihood methods (see e.g.,
Johansen, 1988, [69]).

An earlier literature had considered reduced-rank conditions both for multiple regres-
sion models (see Maurice Bartlett, 1938, [7]), and when estimating simultaneous equations
systems (see e.g., Ted Anderson and Herman Rubin, 1949, [2]), then later for multivariate
statistical models (see e.g., Box and George Tiao, 1977, [10]). In such settings, eigenvalues
play a key role, and indeed the eigenvalues of the companion matrix also determine the
dynamic properties of (18) as discussed in §5.2. However, the eigenvalues can be real or
complex, making statistical derivations complicated. The beauty of the formulation in
Johansen (1988) [69] is to construct the analysis such that the eigenvalues must be real
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and lie between zero and unity, facilitating the derivations of the limiting distributions of
their estimators. Moreover, using the [69] formulation will enable a more formal statement
of the conditions that will induce an I(2) process, as discussed in §5.2.

An alternative interpretation of why time series are cointegrated is by the cancella-
tion of their ‘common stochastic trends’: see e.g., Stock and Watson, 1988, [103]. That
approach focuses on α in (20) rather than β. Let α⊥ be the n × (n − r) matrix such
that α′⊥α = 0 and (α⊥ : α) is full rank, where α is the adjustment matrix in (20). Jesus
Gonzalo and Granger (1995) (see [32]) propose estimating the common stochastic trends
by the linear combination α′⊥zt, since α′⊥αβ

′ = 0, thereby eliminating the cointegration
vector. However, Johansen (1995, p.62, exercise 4.3) [72] gives an example of a model
with two lags in which α′⊥zt is stationary with α⊥ = β. So while the approach is popular,
one must be cautious of estimating common trends by α′⊥zt because α′⊥

∑t
i=0 εi is elimi-

nated by α′⊥β⊥ = 0. Instead, calculating α′⊥Γzt, where Γ is the coefficient on the lagged
difference vector, delivers α′⊥

∑t
i=0 εi as α′⊥Γβ⊥(α′⊥Γβ⊥)−1α′⊥ = α′⊥.

On the one hand, testing for cointegration remains important to clarify the properties
of models and the validity of inference in empirical estimates. On the other hand, the impli-
cations of the Granger Representation Theorem for economics suggest that economies are
high-dimensional integrated-cointegrated systems, albeit subject to evolution and shifts,
as most economic agents use fewer decision variables (such as bank balances, incomes,
and wealth) than the huge number of decisions they make, inducing reduced rank in the
equilibrium correction feedbacks. Thus, taking economic data as being generated by at
least an integrated-cointegrated system seems a better starting point for empirical analyses
than assuming stationarity.

5.2. Doubly integrated processes

Methods for handling cointegration in doubly integrated data have been extensively
investigated: among many others, see Johansen (1992,1995) [70][73], Katarina Juselius
(2006) [76], Rahbek, Hans-Christian Kongsted and Clara Jørgensen, (1999) [96], and
Paulo Paruolo and Rahbek (1999) [87]. Granger’s counter critique of Hendry and Richard
(1983) [65] questioned whether their ‘error-correction’ term, based on theory and not
tested for stationarity, was indeed I(0). For the much studied UK demand for money
relation, his complaint has transpired to be well founded, as the EqCM was still I(1),
having cointegrated from I(2) to I(1), but still needing combinations with differences of
the I(2) variables (making them I(1)) to finally become I(0). To demonstrate, assume that
(1 + φ1 − κ1θ2) = 1 in (15), such that yt − κ1xt is I(1). Then (12) and (13) must imply
that yt and xt are I(2). Extensions to multicointegration, where the cumulated sum of
the stationary linear combinations of a vector integrated series is cointegrated with itself,
links stocks and flows, as in Granger and Tae-Hwy Lee (1989,1991) (see [43][44]) and Tom
Engsted and Niels Haldrup (1999) [27].

The accuracy in finite samples of critical values for testing cointegration depends on
how close the I(1) process is to I(2), so a number of ‘correction’ approaches have been
proposed. These include Bartlett corrections (see Johansen, 2002, [75]), and bootstrap-
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based critical values (see e.g., Giuseppe Cavaliere, Rahbek and Robert Taylor, 2012, [12]).

5.3. Other developments

Generalizations in many directions soon followed, including among others, to non-
stationary seasonal processes (see Svend Hylleberg, Engle, Granger and Byung Sam Yoo,
1990, [68]), non-linear cointegration (see e.g., Granger, 1993, [38], and Alvaro Escrib-
ano and Gerard Pfann, 1998, [29]) and stochastic unit roots (see Granger and Norman
Swanson, 1997, [49]).

Cointegration is basically a linear concept, and the classical assumption in empirical
work has been that drift towards the equilibrium, postulated by models with cointegrated
variables, is symmetric: the strength of attraction is a linear function of the distance of
the system from the equilibrium. Granger has also investigated non-linear cointegration,
loosening the symmetry assumption. This is sometimes necessary in macroeconomics:
planned inventories and orders, for example, help to smooth production so have asym-
metric effects as in Granger and Lee (1989), Granger and Swanson (1996), and Granger
(1996) (see [43] [48] and [39]), as well as Frédérique Bec and Rahbek (2004) and Dennis
Kristensen and Rahbek (2013) (see [8] and [79]). The paper by Timo Teräsvirta in this
volume discusses Granger’s contributions to understanding non-linear relationships.

Forecasting in cointegrated systems has also attracted a lot of interest from Engle and
Yoo (1987) (see [26]) onwards, including Michael Clements and Hendry (1995,1999) (see
[13][14]) as well as in threshold cointegrated systems by (e.g.) Jan De Gooijer and Antoni
Vidiella-i-Anguera (2004) [17]. Optimal forecasts of cointegrated variables should also be
cointegrated, helping to improve long-term forecasting. However, forecast failure revealed
two problems with standard linear cointegration analyses.

First, other forms of non-stationarity needed to be tackled jointly with cancelling unit
roots, and co-breaking offered one possibility for doing so (see Hendry and Michael Mass-
mann, 2007, [59]). Co-breaking is analogous to cointegration by cancelling location shifts
across variables, rather than cancelling common trends. Like cointegration, it leads to only
a subset of stable relations (the ones which co-break) with the remainder still exhibiting
shifts. In both cases, differencing provides a ‘solution’ for the remaining variables in that
it removes unit roots for integrated processes, or converts location shifts to impulses.

Secondly, by construction, equilibrium-correction representations converge back to the
imposed underlying equilibrium, but do so even if the actual equilibrium has shifted. This
problem clarified the real distinction between equilibrium correction, and error correction,
mechanisms: the latter would track the new location of the data even after shifts.∗∗ Gen-
eralizations to modeling breaks in cointegrated models are provided by Johansen, Rocco
Mosconi and Nielsen (2000) and Peter Hansen (2003) among others (see [74] and [53]).

As discussed by Ryoko Ito in this volume, Granger pioneered research into fractionally-
integrated processes with Roselyne Joyeux in 1980. In Granger (1980) (see [35]), he
also showed that the aggregation of autoregressive processes generates such fractionally-

∗∗Clive had in fact thought of using ‘equilibrium correction’ rather than ‘error correction’ in the title of
Engle and Granger (1987) [24].



J. L. Castle, D. F. Hendry / Eur. J. Pure Appl. Math, 10 (1) (2017), 58-81 73

integrated processes. Given long time series data for many financial variables, conditional
variances have been shown to be persistent, consistent with long memory in volatility.
Granger demonstrated empirically that on decomposing a high-frequency return time series
(such as a stock return) into the product of its absolute value and sign, only the former
had long-memory: its autocorrelation function decays slowly, whereas the sign is almost
unpredictable – see Granger and Zhuanxin Ding (1995), Granger and Chor-Yiu Sin (2000),
and Tina Rydberg and Neil Shephard (2003) ([41], [47] and [97]). This started another
fertile field, since the forecastability of the absolute-value series is interesting for evaluating
financial risk.

6. Implications of cointegration for empirical analyses

The debate about econometric methods for modeling economic time series in the 1970s
began with the need to reconcile the economists desire for relationships connecting the (log)
levels of variables with the statisticians desire to difference data given their worries about
unit roots in time series leading to nonsense regressions. Cointegration provided a valid
way of incorporating economic theory about relationships in levels into dynamic economet-
ric systems of endogenous variables in first differences, nesting the two approaches, a major
generalization of the (forgotten) proposal by Bradford Smith (1926) [101]. The stationary
linear combinations in levels are interpretable as long-run equilibrium relationships, defin-
ing steady states, with short-run adjustments determined by lagged differences. Granger
threw immense light on this problem by his formulation of cointegration and its links to
equilibrium correction, making his contribution one of the most important developments
in time-series econometrics since the probability foundations by Trygve Haavelmo (1944)
(see [52]).

General equilibrium analysis remains central to economic reasoning, and cointegration
provides a statistical formulation of long-run economic relationships, and conversely when
long-run relations genuinely exist, then their variables should be cointegrated. For exam-
ple, cointegration implications can sometimes be derived from the optimizing behavior of
economic agents subject to their budget constraints, or from intertemporal optimization
plans such as lifetime savings for pension provision. However, some macroeconomic theo-
ries still need to be revamped to be relevant to integrated rather than stationary processes,
and to take account of location shifts must move to modeling general disequilibria rather
than general equilibria (see e.g., Hendry and Mizon, 2014, [61]).

Cointegration can also arise as the empirical implementation of physical laws: Pretis
(2015) (see [93]) establishes the equivalence between a two-component energy-balance
model and a cointegrated vector autoregression (CVAR) like (18). Indeed, in any obser-
vational discipline facing non-stationary time series, cointegration should be investigated
as better representing any long-run relations that may be present, facilitating a more or-
thogonal parametrization, enabling clearer interpretations of the evidence through jointly
analyzing short-run and long-run properties, and sustaining viable statistical inference.
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7. Conclusion

Clive Granger’s unraveling of cointegration and common trends and their key proper-
ties was a major advance, buttressed by many later important insights. As with other key
intellectual developments, false paths and joint complications had to be overcome by new
thinking to understand the interacting problems. Doing so, in turn opened the door to
previously unsuspected issues and yet further advances. The wealth of citations, further
insights, and empirical applications such as the successful cointegration models in Gunnar
B̊ardsen, Øyvind Eitrheim, Eilev Jansen, and Ragnar Nymoen (2005) and Juselius (2006)
(see [6] and [76]), among many other empirical studies, bear witness to the fecundity
of Granger’s ideas. Hendry and Teräsvirta (2013) (see [66]) discuss Clive Granger as a
person, his career and the honours he received, as well as explaining his many research
contributions.
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