EUROPEAN JOURNAL OF PURE AND APPLIED MATHEMATICS

Vol. 10, No. 3, 2017, 495-505 ISSN 1307-5543 – www.ejpam.com Published by New York Business Global

Hermite-Hadamard type fractional integral inequalities for generalized $(r; s, m, \varphi)$ -preinvex functions

Artion Kashuri^{1,*}, Rozana Liko¹

¹ Department of Mathematics, Faculty of Technical Science, University "Ismail Qemali", Vlora, Albania

Abstract. In the present paper, a new class of generalized $(r; s, m, \varphi)$ -preinvex functions is introduced and some new integral inequalities for the left hand side of Gauss-Jacobi type quadrature formula involving generalized $(r; s, m, \varphi)$ -preinvex functions are given. Moreover, some generalizations of Hermite-Hadamard type inequalities for generalized $(r; s, m, \varphi)$ -preinvex functions via Riemann-Liouville fractional integrals are established. These results not only extend the results appeared in the literature (see [1], [2]), but also provide new estimates on these types.

2010 Mathematics Subject Classifications: Primary: 26A51. Secondary: 26A33, 26D07, 26D10, 26D15.

Key Words and Phrases: Hermite-Hadamard type inequality, Hölder's inequality, Minkowski's inequality, Cauchy's inequality, power mean inequality, Riemann-Liouville fractional integral, s-convex function in the second sense, m-invex, P-function.

1. Introduction and Preliminaries

The following notations are used throughout this paper. We use I to denote an interval on the real line $\mathbb{R} = (-\infty, +\infty)$ and I° to denote the interior of I. For any subset $K \subseteq \mathbb{R}^n$, K° is used to denote the interior of K. \mathbb{R}^n is used to denote a generic n-dimensional vector space. The nonnegative real numbers are denoted by $\mathbb{R}_{\circ} = [0, +\infty)$. The set of integrable functions on the interval [a, b] is denoted by $L_1[a, b]$.

The following inequality, named Hermite-Hadamard inequality, is one of the most famous inequalities in the literature for convex functions.

Theorem 1. Let $f: I \subseteq \mathbb{R} \longrightarrow \mathbb{R}$ be a convex function on an interval I of real numbers and $a, b \in I$ with a < b. Then the following inequality holds:

$$f\left(\frac{a+b}{2}\right) \le \frac{1}{b-a} \int_a^b f(x)dx \le \frac{f(a)+f(b)}{2}.\tag{1}$$

Email addresses: artionkashuri@gmail.com (A. Kashuri), rozanaliko86@gmail.com (R. Liko)

495

^{*}Corresponding author.

Fractional calculus (see [14]) and the references cited therein, was introduced at the end of the nineteenth century by Liouville and Riemann, the subject of which has become a rapidly growing area and has found applications in diverse fields ranging from physical sciences and engineering to biological sciences and economics.

Definition 1. Let $f \in L_1[a,b]$. The Riemann-Liouville integrals $J_{a+}^{\alpha}f$ and $J_{b-}^{\alpha}f$ of order $\alpha > 0$ with $a \geq 0$ are defined by

$$J_{a+}^{\alpha}f(x) = \frac{1}{\Gamma(\alpha)} \int_{a}^{x} (x-t)^{\alpha-1} f(t) dt, \quad x > a$$

and

$$J_{b-}^{\alpha}f(x) = \frac{1}{\Gamma(\alpha)} \int_{x}^{b} (t-x)^{\alpha-1} f(t) dt, \quad b > x,$$

where
$$\Gamma(\alpha) = \int_0^{+\infty} e^{-u} u^{\alpha-1} du$$
. Here $J_{a+}^0 f(x) = J_{b-}^0 f(x) = f(x)$. In the case of $\alpha = 1$, the fractional integral reduces to the classical integral.

Due to the wide application of fractional integrals, some authors extended to study fractional Hermite-Hadamard type inequalities for functions of different classes (see [13], [14]) and the references cited therein.

Now, let us recall some definitions of various convex functions.

Definition 2. (see [4]) A nonnegative function $f: I \subseteq \mathbb{R} \longrightarrow \mathbb{R}_{\circ}$ is said to be P-function or P-convex, if

$$f(tx + (1-t)y) < f(x) + f(y), \forall x, y \in I, t \in [0,1].$$

Definition 3. (see [5]) A function $f: \mathbb{R}_{\circ} \longrightarrow \mathbb{R}$ is said to be s-convex in the second sense, if

$$f(\lambda x + (1 - \lambda)y) \le \lambda^s f(x) + (1 - \lambda)^s f(y) \tag{2}$$

for all $x, y \in \mathbb{R}_{\circ}$, $\lambda \in [0, 1]$ and $s \in (0, 1]$.

It is clear that a 1-convex function must be convex on \mathbb{R}_{\circ} as usual. The s-convex functions in the second sense have been investigated in (see [5]).

Definition 4. (see [6]) A set $K \subseteq \mathbb{R}^n$ is said to be invex with respect to the mapping $\eta: K \times K \longrightarrow \mathbb{R}^n$, if $x + t\eta(y, x) \in K$ for every $x, y \in K$ and $t \in [0, 1]$.

Notice that every convex set is invex with respect to the mapping $\eta(y,x) = y - x$, but the converse is not necessarily true. For more details please see (see [6], [7]) and the references therein.

Definition 5. (see [8]) The function f defined on the invex set $K \subseteq \mathbb{R}^n$ is said to be preinvex with respect η , if for every $x, y \in K$ and $t \in [0, 1]$, we have that

$$f(x + t\eta(y, x)) < (1 - t)f(x) + tf(y).$$

The concept of preinvexity is more general than convexity since every convex function is preinvex with respect to the mapping $\eta(y,x) = y - x$, but the converse is not true.

The Gauss-Jacobi type quadrature formula has the following

$$\int_{a}^{b} (x-a)^{p} (b-x)^{q} f(x) dx = \sum_{k=0}^{+\infty} B_{m,k} f(\gamma_{k}) + R_{m}^{\star} |f|,$$
 (3)

for certain $B_{m,k}$, γ_k and rest $R_m^{\star}|f|$ (see [9]).

Recently, Liu (see [10]) obtained several integral inequalities for the left hand side of (3) under the Definition 2 of P-function.

Also in (see [11]), Özdemir et al. established several integral inequalities concerning the left-hand side of (3) via some kinds of convexity.

Motivated by these results, in Section 2, the notion of generalized $(r; s, m, \varphi)$ -preinvex function is introduced and some new integral inequalities for the left hand side of (3) involving generalized $(r; s, m, \varphi)$ -preinvex functions are given. In Section 3, some generalizations of Hermite-Hadamard type inequalities for generalized $(r; s, m, \varphi)$ -preinvex functions via fractional integrals are given. These general inequalities give us some new estimates for the left hand side of Gauss-Jacobi type quadrature formula and Hermite-Hadamard type fractional integral inequalities.

2. New integral inequalities for generalized $(r; s, m, \varphi)$ -preinvex functions

Definition 6. (see [3]) A set $K \subseteq \mathbb{R}^n$ is said to be m-invex with respect to the mapping $\eta: K \times K \times (0,1] \longrightarrow \mathbb{R}^n$ for some fixed $m \in (0,1]$, if $mx + t\eta(y,x,m) \in K$ holds for each $x,y \in K$ and any $t \in [0,1]$.

Remark 1. In Definition 6, under certain conditions, the mapping $\eta(y, x, m)$ could reduce to $\eta(y, x)$. For example when m = 1, then the m-invex set degenerates an invex set on K.

Definition 7. (see [12]) A positive function f on the invex set K is said to be logarithmically preinvex, if

$$f(u+t\eta(v,u)) \le f^{1-t}(u)f^t(v)$$

for all $u, v \in K$ and $t \in [0, 1]$.

Definition 8. (see [12]) The function f on the invex set K is said to be r-preinvex with respect to η , if

$$f(u + t\eta(v, u)) \le M_r(f(u), f(v); t)$$

holds for all $u, v \in K$ and $t \in [0, 1]$, where

$$M_r(x, y; t) = \begin{cases} \left[(1 - t)x^r + ty^r \right]^{\frac{1}{r}}, & \text{if } r \neq 0; \\ x^{1 - t}y^t, & \text{if } r = 0, \end{cases}$$

is the weighted power mean of order r for positive numbers x and y.

We next give new definition, to be referred as generalized $(r; s, m, \varphi)$ -preinvex function.

Definition 9. Let $K \subseteq \mathbb{R}^n$ be an open m-invex set with respect to $\eta: K \times K \times (0,1] \longrightarrow \mathbb{R}^n$, and $\varphi: I \longrightarrow K$ is a continuous increasing function. The function $f: K \longrightarrow (0,\infty)$ is said to be generalized $(r; s, m, \varphi)$ -preinvex with respect to η , if

$$f(m\varphi(x) + t\eta(\varphi(y), \varphi(x), m)) \le M_r(f(\varphi(x)), f(\varphi(y)), m, s; t)$$
(4)

holds for any fixed $s, m \in (0,1]$ and for all $x, y \in I, t \in [0,1]$, where

$$M_r(f(\varphi(x)), f(\varphi(y)), m, s; t) = \begin{cases} \left[m(1-t)^s f^r(\varphi(x)) + t^s f^r(\varphi(y)) \right]^{\frac{1}{r}}, & \text{if } r \neq 0; \\ f(\varphi(x))^{m(1-t)^s} f(\varphi(y))^{t^s}, & \text{if } r = 0, \end{cases}$$

is the weighted power mean of order r for positive numbers $f(\varphi(x))$ and $f(\varphi(y))$.

Remark 2. In Definition 9, it is worthwhile to note that the class of generalized $(r; s, m, \varphi)$ preinvex function is a generalization of the class of s-convex in the second sense function
given in Definition 3. Also, for r = 1 and $\varphi(x) = x$, $\forall x \in I$, we get the notion of
generalized (s, m)-preinvex function (see [3]).

Example 1. Let f(x) = |x|, $\varphi(x) = x$, r = s = 1 and

$$\eta(y, x, m) = \begin{cases} y - mx, & if \ x \ge 0, \ y \ge 0; \\ y - mx, & if \ x \le 0, \ y \le 0; \\ mx - y, & if \ x \ge 0, \ y \le 0; \\ mx - y, & if \ x \le 0, \ y \ge 0. \end{cases}$$

Then f(x) is a generalized (1; 1, m, x)-preinvex function of with respect to $\eta : \mathbb{R} \times \mathbb{R} \times (0, 1] \longrightarrow \mathbb{R}$ and any fixed $m \in (0, 1]$. However, it is obvious that f(x) = |x| is not a convex function on \mathbb{R} .

In this section, in order to prove our main results regarding some new integral inequalities involving generalized $(r; s, m, \varphi)$ -preinvex functions, we need the following new Lemma:

Lemma 1. Let $\varphi: I \longrightarrow K$ be a continuous increasing function. Assume that $f: K = [m\varphi(a), m\varphi(a) + \eta(\varphi(b), \varphi(a), m)] \longrightarrow \mathbb{R}$ is a continuous function on the interval of real numbers K° with respect to $\eta: K \times K \times (0,1] \longrightarrow \mathbb{R}$, for $m\varphi(a) < m\varphi(a) + \eta(\varphi(b), \varphi(a), m)$. Then for any fixed $m \in (0,1]$ and p,q > 0, we have

$$\int_{m\varphi(a)}^{m\varphi(a)+\eta(\varphi(b),\varphi(a),m)} (x-m\varphi(a))^p (m\varphi(a)+\eta(\varphi(b),\varphi(a),m)-x)^q f(x) dx$$

$$=\eta(\varphi(b),\varphi(a),m)^{p+q+1}\int_0^1t^p(1-t)^qf(m\varphi(a)+t\eta(\varphi(b),\varphi(a),m))dt.$$

Proof. It is easy to observe that

$$\int_{m\varphi(a)}^{m\varphi(a)+\eta(\varphi(b),\varphi(a),m)} (x-m\varphi(a))^p (m\varphi(a)+\eta(\varphi(b),\varphi(a),m)-x)^q f(x) dx$$

$$= \eta(\varphi(b),\varphi(a),m) \int_0^1 (m\varphi(a)+t\eta(\varphi(b),\varphi(a),m)-m\varphi(a))^p$$

$$\times (m\varphi(a)+\eta(\varphi(b),\varphi(a),m)-m\varphi(a)-t\eta(\varphi(b),\varphi(a),m))^q$$

$$\times f(m\varphi(a)+t\eta(\varphi(b),\varphi(a),m)) dt$$

$$= \eta(\varphi(b),\varphi(a),m)^{p+q+1} \int_0^1 t^p (1-t)^q f(m\varphi(a)+t\eta(\varphi(b),\varphi(a),m)) dt.$$

The following definition will be used in the sequel.

Definition 10. The Euler Beta function is defined for x, y > 0 as

$$\beta(x,y) = \int_0^1 t^{x-1} (1-t)^{y-1} dt = \frac{\Gamma(x)\Gamma(y)}{\Gamma(x+y)}.$$

Theorem 2. Let $\varphi: I \longrightarrow K$ be a continuous increasing function. Assume that $f: K = [m\varphi(a), m\varphi(a) + \eta(\varphi(b), \varphi(a), m)] \longrightarrow (0, \infty)$ is a continuous function on the interval of real numbers K° with $m\varphi(a) < m\varphi(a) + \eta(\varphi(b), \varphi(a), m)$. Let k > 1 and $0 < r \le 1$. If $f^{\frac{k}{k-1}}$ is a generalized $(r; s, m, \varphi)$ -preinvex function on an open m-invex set K with respect to $\eta: K \times K \times (0, 1] \longrightarrow \mathbb{R}$ for any fixed $s, m \in (0, 1]$, then for any fixed p, q > 0,

$$\int_{m\varphi(a)}^{m\varphi(a)+\eta(\varphi(b),\varphi(a),m)} (x-m\varphi(a))^{p} (m\varphi(a)+\eta(\varphi(b),\varphi(a),m)-x)^{q} f(x) dx$$

$$\leq |\eta(\varphi(b),\varphi(a),m)|^{p+q+1} \left(\frac{r}{s+r}\right)^{\frac{k-1}{k}} \beta^{\frac{1}{k}} (kp+1,kq+1)$$

$$\times \left[mf^{\frac{rk}{k-1}}(\varphi(a))+f^{\frac{rk}{k-1}}(\varphi(b))\right]^{\frac{k-1}{rk}}.$$
(5)

Proof. Let k > 1 and $0 < r \le 1$. Since $f^{\frac{k}{k-1}}$ is a generalized $(r; s, m, \varphi)$ -preinvex function on K, combining with Lemma 1, Hölder inequality and Minkowski inequality for all $t \in [0, 1]$ and for any fixed $s, m \in (0, 1]$, we get

$$\int_{m\varphi(a)}^{m\varphi(a)+\eta(\varphi(b),\varphi(a),m)} (x-m\varphi(a))^p (m\varphi(a)+\eta(\varphi(b),\varphi(a),m)-x)^q f(x) dx$$

$$\leq |\eta(\varphi(b),\varphi(a),m)|^{p+q+1} \left[\int_0^1 t^{kp} (1-t)^{kq} dt \right]^{\frac{1}{k}}$$

$$\begin{split} &\times \Bigg[\int_0^1 f^{\frac{k}{k-1}}(m\varphi(a)+t\eta(\varphi(b),\varphi(a),m))dt\Bigg]^{\frac{k-1}{k}}\\ &\leq |\eta(\varphi(b),\varphi(a),m)|^{p+q+1}\beta^{\frac{1}{k}}(kp+1,kq+1)\\ &\times \Bigg[\int_0^1 \Big(m(1-t)^s f^r(\varphi(a))^{\frac{k}{k-1}}+t^s f^r(\varphi(b))^{\frac{k}{k-1}}\Big)^{\frac{1}{r}}dt\Bigg]^{\frac{k-1}{k}}\\ &\leq |\eta(\varphi(b),\varphi(a),m)|^{p+q+1}\beta^{\frac{1}{k}}(kp+1,kq+1)\\ &\times \Bigg[\left(\int_0^1 m^{\frac{1}{r}}(1-t)^{\frac{s}{r}}f^{\frac{k}{k-1}}(\varphi(a))dt\right)^r+\left(\int_0^1 t^{\frac{s}{r}}f^{\frac{k}{k-1}}(\varphi(b))dt\right)^r\Bigg]^{\frac{k-1}{rk}}\\ &= |\eta(\varphi(b),\varphi(a),m)|^{p+q+1}\left(\frac{r}{s+r}\right)^{\frac{k-1}{k}}\beta^{\frac{1}{k}}(kp+1,kq+1)\\ &\times \Big[mf^{\frac{rk}{k-1}}(\varphi(a))+f^{\frac{rk}{k-1}}(\varphi(b))\Big]^{\frac{k-1}{rk}}\,. \end{split}$$

Corollary 1. Under the same conditions as in Theorem 2 for r = 1, we get (see [1], Theorem 2.2).

Theorem 3. Let $\varphi: I \longrightarrow K$ be a continuous increasing function. Assume that $f: K = [m\varphi(a), m\varphi(a) + \eta(\varphi(b), \varphi(a), m)] \longrightarrow (0, \infty)$ is a continuous function on the interval of real numbers K° with $m\varphi(a) < m\varphi(a) + \eta(\varphi(b), \varphi(a), m)$. Let $l \geq 1$ and $0 < r \leq 1$. If f^l is a generalized $(r; s, m, \varphi)$ -preinvex function on an open m-invex set K with respect to $\eta: K \times K \times (0, 1] \longrightarrow \mathbb{R}$ for any fixed $s, m \in (0, 1]$, then for any fixed p, q > 0,

$$\int_{m\varphi(a)}^{m\varphi(a)+\eta(\varphi(b),\varphi(a),m)} (x-m\varphi(a))^{p} (m\varphi(a)+\eta(\varphi(b),\varphi(a),m)-x)^{q} f(x) dx$$

$$\leq |\eta(\varphi(b),\varphi(a),m)|^{p+q+1} \beta^{\frac{l-1}{l}} (p+1,q+1)$$

$$\times \left[mf^{rl}(\varphi(a))\beta^{r} \left(p+1,q+\frac{s}{r}+1 \right) + f^{rl}(\varphi(b))\beta^{r} \left(p+\frac{s}{r}+1,q+1 \right) \right]^{\frac{1}{rl}}. \tag{6}$$

Proof. Let $l \ge 1$ and $0 < r \le 1$. Since f^l is a generalized $(r; s, m, \varphi)$ -preinvex function on K, combining with Lemma 1, the well-known power mean inequality and Minkowski inequality for all $t \in [0, 1]$ and for any fixed $s, m \in (0, 1]$, we get

$$\int_{m\varphi(a)}^{m\varphi(a)+\eta(\varphi(b),\varphi(a),m)} (x-m\varphi(a))^p (m\varphi(a)+\eta(\varphi(b),\varphi(a),m)-x)^q f(x) dx$$
$$=\eta(\varphi(b),\varphi(a),m)^{p+q+1}$$

$$\begin{split} &\times \int_{0}^{1} \left[t^{p}(1-t)^{q} \right]^{\frac{l-1}{l}} \left[t^{p}(1-t)^{q} \right]^{\frac{1}{l}} f(m\varphi(a) + t\eta(\varphi(b),\varphi(a),m)) dt \\ & \leq |\eta(\varphi(b),\varphi(a),m)|^{p+q+1} \left[\int_{0}^{1} t^{p}(1-t)^{q} dt \right]^{\frac{l-1}{l}} \\ & \times \left[\int_{0}^{1} t^{p}(1-t)^{q} f^{l}(m\varphi(a) + t\eta(\varphi(b),\varphi(a),m)) dt \right]^{\frac{1}{l}} \\ & \leq |\eta(\varphi(b),\varphi(a),m)|^{p+q+1} \beta^{\frac{l-1}{l}}(p+1,q+1) \\ & \times \left[\int_{0}^{1} t^{p}(1-t)^{q} \left(m(1-t)^{s} f^{r}(\varphi(a))^{l} + t^{s} f^{r}(\varphi(b))^{l} \right)^{\frac{1}{r}} dt \right]^{\frac{1}{l}} \\ & \leq |\eta(\varphi(b),\varphi(a),m)|^{p+q+1} \beta^{\frac{l-1}{l}}(p+1,q+1) \\ & \times \left[\left(\int_{0}^{1} m^{\frac{1}{r}} t^{p}(1-t)^{q+\frac{s}{r}} f^{l}(\varphi(a)) dt \right)^{r} + \left(\int_{0}^{1} t^{p+\frac{s}{r}} (1-t)^{q} f^{l}(\varphi(b)) dt \right)^{r} \right]^{\frac{1}{rl}} \\ & = |\eta(\varphi(b),\varphi(a),m)|^{p+q+1} \beta^{\frac{l-1}{l}}(p+1,q+1) \\ & \times \left[m f^{rl}(\varphi(a)) \beta^{r} \left(p+1,q+\frac{s}{r}+1 \right) + f^{rl}(\varphi(b)) \beta^{r} \left(p+\frac{s}{r}+1,q+1 \right) \right]^{\frac{1}{rl}}. \end{split}$$

Corollary 2. Under the same conditions as in Theorem 3 for r = 1, we get (see [1], Theorem 2.3).

3. Hermite-Hadamard type fractional integral inequalities for generalized $(r; s, m, \varphi)$ -preinvex functions

In this section, we prove our main results regarding some generalizations of Hermite-Hadamard type inequalities for generalized $(r; s, m, \varphi)$ -preinvex functions via fractional integrals.

Theorem 4. Let $\varphi: I \longrightarrow K$ be a continuous increasing function. Suppose $K \subseteq \mathbb{R}$ be an open m-invex subset with respect to $\eta: K \times K \times (0,1] \longrightarrow \mathbb{R}$ for any fixed $s,m \in (0,1]$ with $m\varphi(a) < m\varphi(a) + \eta(\varphi(b), \varphi(a), m)$. Assume that $f: K = [m\varphi(a), m\varphi(a) + \eta(\varphi(b), \varphi(a), m)] \longrightarrow (0, \infty)$ be a generalized $(r; s, m, \varphi)$ -preinvex function on an open m-invex set K° . Then for $\alpha > 0$ and $0 < r \le 1$, we have

$$\frac{\Gamma(\alpha)}{\eta^{\alpha}(\varphi(b), \varphi(a), m)} J^{\alpha}_{(m\varphi(a)+\eta(\varphi(b), \varphi(a), m))-} f(m\varphi(a))$$

$$\leq \left[mf^{r}(\varphi(a))\beta^{r} \left(\alpha, \frac{s}{r} + 1\right) + f^{r}(\varphi(b)) \left(\frac{r}{\alpha r + s}\right)^{r} \right]^{\frac{1}{r}}.$$
(7)

Proof. Let $0 < r \le 1$. Since f is a generalized $(r; s, m, \varphi)$ -preinvex function on an open m-invex set K° , combining with Minkowski inequality for all $t \in [0, 1]$ and for any fixed $s, m \in (0, 1]$, we get

$$\begin{split} \frac{\Gamma(\alpha)}{\eta^{\alpha}(\varphi(b),\varphi(a),m)} J^{\alpha}_{(m\varphi(a)+\eta(\varphi(b),\varphi(a),m))-} f(m\varphi(a)) \\ &= \int_{0}^{1} t^{\alpha-1} f(m\varphi(a) + t\eta(\varphi(b),\varphi(a),m)) dt \\ &\leq \int_{0}^{1} t^{\alpha-1} \Big[m(1-t)^{s} f^{r}(\varphi(a)) + t^{s} f^{r}(\varphi(b)) \Big]^{\frac{1}{r}} dt \\ &\leq \left\{ \left[\int_{0}^{1} t^{\alpha-1+\frac{s}{r}} f(\varphi(b)) dt \right]^{r} + \left[\int_{0}^{1} m^{\frac{1}{r}} t^{\alpha-1} (1-t)^{\frac{s}{r}} f(\varphi(a)) dt \right]^{r} \right\}^{\frac{1}{r}} \\ &= \left[m f^{r}(\varphi(a)) \beta^{r} \left(\alpha, \frac{s}{r} + 1 \right) + f^{r}(\varphi(b)) \left(\frac{r}{\alpha r + s} \right)^{r} \right]^{\frac{1}{r}}. \end{split}$$

Corollary 3. Under the same conditions as in Theorem 4 for $m = s = 1, \varphi(x) = x$ and $\eta(\varphi(b), \varphi(a), m) = \eta(b, a)$, we get (see [2], Theorem 3.1).

Theorem 5. Let $\varphi: I \longrightarrow K$ be a continuous increasing function. Suppose $K \subseteq \mathbb{R}$ be an open m-invex subset with respect to $\eta: K \times K \times (0,1] \longrightarrow \mathbb{R}$ for any fixed $s,m \in (0,1]$ with $m\varphi(a) < m\varphi(a) + \eta(\varphi(b), \varphi(a), m)$. Assume that $f, h: K = [m\varphi(a), m\varphi(a) + \eta(\varphi(b), \varphi(a), m)] \longrightarrow (0, \infty)$ are respectively generalized $(r; s, m, \varphi)$ -preinvex function and generalized $(l; s, m, \varphi)$ -preinvex function on an open m-invex set K° . Then for $\alpha > 0, r > 1$ and $r^{-1} + l^{-1} = 1$, we have

$$\frac{\Gamma(\alpha)}{\eta^{\alpha}(\varphi(b),\varphi(a),m)} J^{\alpha}_{(m\varphi(a)+\eta(\varphi(b),\varphi(a),m))-} f(m\varphi(a)) h(m\varphi(a))$$

$$\leq \frac{1}{2} \left\{ \left[m f^{r}(\varphi(a)) \beta^{\frac{r}{2}} \left(\frac{2(\alpha-1)}{r} + 1, \frac{2s}{r} + 1 \right) + f^{r}(\varphi(b)) \left(\frac{r}{2(\alpha-1+s)+r} \right)^{\frac{r}{2}} \right]^{\frac{2}{r}} + \left[m h^{l}(\varphi(a)) \beta^{\frac{l}{2}} \left(\frac{2(\alpha-1)}{l} + 1, \frac{2s}{l} + 1 \right) + h^{l}(\varphi(b)) \left(\frac{l}{2(\alpha-1+s)+l} \right)^{\frac{l}{2}} \right]^{\frac{2}{l}} \right\}.$$
(8)

Proof. Let r > 1 and $r^{-1} + l^{-1} = 1$. Since f and h are respectively generalized $(r; s, m, \varphi)$ -preinvex function and generalized $(l; s, m, \varphi)$ -preinvex function on an open m-invex set K° , combining with Cauchy and Minkowski inequalities for all $t \in [0, 1]$ and for any fixed $s, m \in (0, 1]$, we get

$$\frac{\Gamma(\alpha)}{\eta^{\alpha}(\varphi(b),\varphi(a),m)}J^{\alpha}_{(m\varphi(a)+\eta(\varphi(b),\varphi(a),m))-}f(m\varphi(a))h(m\varphi(a))$$

$$\begin{split} &= \int_0^1 t^{(\alpha-1)\left(\frac{1}{r}+\frac{1}{l}\right)} f(m\varphi(a) + t\eta(\varphi(b),\varphi(a),m)) \\ &\qquad \qquad \times h(m\varphi(a) + t\eta(\varphi(b),\varphi(a),m)) dt \\ &\leq \int_0^1 t^{(\alpha-1)\left(\frac{1}{r}+\frac{1}{l}\right)} \left[m(1-t)^s f^r(\varphi(a)) + t^s f^r(\varphi(b)) \right]^{\frac{1}{r}} \\ &\qquad \qquad \times \left[m(1-t)^s h^l(\varphi(a)) + t^s h^l(\varphi(b)) \right]^{\frac{1}{l}} dt \\ &\leq \frac{1}{2} \Bigg\{ \int_0^1 \left[t^{\alpha-1+s} f^r(\varphi(b)) + mt^{\alpha-1}(1-t)^s f^r(\varphi(a)) \right]^{\frac{2}{r}} dt \\ &\qquad \qquad + \int_0^1 \left[t^{\alpha-1+s} h^l(\varphi(b)) + mt^{\alpha-1}(1-t)^s h^l(\varphi(a)) \right]^{\frac{2}{l}} dt \Bigg\} \\ &\leq \frac{1}{2} \Bigg[\Bigg\{ \left(\int_0^1 t^{\frac{2(\alpha-1+s)}{r}} f^2(\varphi(b)) dt \right)^{\frac{r}{2}} + \left(\int_0^1 m^{\frac{2}{r}} t^{\frac{2(\alpha-1)}{r}} (1-t)^{\frac{2s}{r}} f^2(\varphi(a)) dt \right)^{\frac{r}{2}} \Bigg\}^{\frac{2}{r}} \\ &\qquad \qquad + \Bigg\{ \left(\int_0^1 t^{\frac{2(\alpha-1+s)}{l}} h^2(\varphi(b)) dt \right)^{\frac{1}{2}} + \left(\int_0^1 m^{\frac{2}{l}} t^{\frac{2(\alpha-1)}{l}} (1-t)^{\frac{2s}{l}} h^2(\varphi(a)) dt \right)^{\frac{1}{2}} \Bigg\}^{\frac{2}{l}} \Bigg] \\ &= \frac{1}{2} \Bigg\{ \Bigg[m f^r(\varphi(a)) \beta^{\frac{r}{2}} \left(\frac{2(\alpha-1)}{l} + 1, \frac{2s}{l} + 1 \right) + f^r(\varphi(b)) \left(\frac{r}{2(\alpha-1+s)+l} \right)^{\frac{l}{2}} \Bigg]^{\frac{2}{l}} \Bigg\}. \end{split}$$

Corollary 4. Under the same conditions as in Theorem 5 for $m = s = 1, \varphi(x) = x$ and $\eta(\varphi(b), \varphi(a), m) = \eta(b, a)$, we get (see [2], Theorem 3.3).

Theorem 6. Let $\varphi: I \longrightarrow K$ be a continuous increasing function. Suppose $K \subseteq \mathbb{R}$ be an open m-invex subset with respect to $\eta: K \times K \times (0,1] \longrightarrow \mathbb{R}$ for any fixed $s,m \in (0,1]$ with $m\varphi(a) < m\varphi(a) + \eta(\varphi(b), \varphi(a), m)$. Assume that $f,h: K = [m\varphi(a), m\varphi(a) + \eta(\varphi(b), \varphi(a), m)] \longrightarrow (0, \infty)$ are respectively generalized $(r; s, m, \varphi)$ -preinvex function and generalized $(l; s, m, \varphi)$ -preinvex function on an open m-invex set K° . Then for $\alpha > 0, r > 1$ and $r^{-1} + l^{-1} = 1$, we have

$$\frac{\Gamma(\alpha)}{\eta^{\alpha}(\varphi(b),\varphi(a),m)} J^{\alpha}_{(m\varphi(a)+\eta(\varphi(b),\varphi(a),m))-} f(m\varphi(a)) h(m\varphi(a))$$

$$\leq \left\{ \frac{f^{r}(\varphi(b))}{s+\alpha} + mf^{r}(\varphi(a))\beta(\alpha,s+1) \right\}^{\frac{1}{r}} + \left\{ \frac{h^{l}(\varphi(b))}{s+\alpha} + mh^{l}(\varphi(a))\beta(\alpha,s+1) \right\}^{\frac{1}{l}}. \tag{9}$$

REFERENCES 504

Proof. Let r > 1 and $r^{-1} + l^{-1} = 1$. Since f and h are respectively generalized $(r; s, m, \varphi)$ -preinvex function and generalized $(l; s, m, \varphi)$ -preinvex function on an open m-invex set K° , combining with Hölder inequality for all $t \in [0, 1]$ and for any fixed $s, m \in (0, 1]$, we get

$$\begin{split} \frac{\Gamma(\alpha)}{\eta^{\alpha}(\varphi(b),\varphi(a),m)} J^{\alpha}_{(m\varphi(a)+\eta(\varphi(b),\varphi(a),m))-} f(m\varphi(a))h(m\varphi(a)) \\ &= \int_{0}^{1} t^{(\alpha-1)\left(\frac{1}{r}+\frac{1}{l}\right)} f(m\varphi(a)+t\eta(\varphi(b),\varphi(a),m)) \\ &\qquad \times h(m\varphi(a)+t\eta(\varphi(b),\varphi(a),m))dt \\ &\leq \left\{ \int_{0}^{1} \left[t^{\alpha-1+s} f^{r}(\varphi(b))+mt^{\alpha-1}(1-t)^{s} f^{r}(\varphi(a)) \right]^{\frac{1}{r}} \\ &\qquad \times \left[t^{\alpha-1+s} h^{l}(\varphi(b))+mt^{\alpha-1}(1-t)^{s} h^{l}(\varphi(a)) \right]^{\frac{1}{l}} dt \right\} \\ &\leq \left\{ \int_{0}^{1} \left[t^{\alpha-1+s} f^{r}(\varphi(b))+mt^{\alpha-1}(1-t)^{s} f^{r}(\varphi(a)) \right] dt \right\}^{\frac{1}{r}} \\ &+ \left\{ \int_{0}^{1} \left[t^{\alpha-1+s} h^{l}(\varphi(b))+mt^{\alpha-1}(1-t)^{s} h^{l}(\varphi(a)) \right] dt \right\}^{\frac{1}{l}} \\ &= \left\{ \frac{f^{r}(\varphi(b))}{s+\alpha}+mf^{r}(\varphi(a))\beta(\alpha,s+1) \right\}^{\frac{1}{r}} + \left\{ \frac{h^{l}(\varphi(b))}{s+\alpha}+mh^{l}(\varphi(a))\beta(\alpha,s+1) \right\}^{\frac{1}{l}}. \end{split}$$

Corollary 5. Under the same conditions as in Theorem 6 for $m = s = 1, \varphi(x) = x$ and $\eta(\varphi(b), \varphi(a), m) = \eta(b, a)$, we get (see [2], Theorem 3.9).

Remark 3. For different choices of positive values $r, l = \frac{1}{2}, \frac{1}{3}, 2$, etc., for any fixed $s, m \in (0,1]$ and a particular choices of a continuous increasing function $\varphi(x) = e^x$ for all $x \in \mathbb{R}$, x^n for all x > 0 and for all $n \in \mathbb{N}$, etc., by Theorem 4, Theorem 5 and Theorem 6 we can get some special kinds of Hermite-Hadamard type fractional integral inequalities.

References

- [1] A. Kashuri, R. Liko, Ostrowski type fractional integral inequalities for generalized (s, m, φ) -preinvex functions, Aust. J. Math. Anal. Appl., 13, 1 (2016), Article 16, 1-11.
- [2] A. Akkurt, H. Yildirim, On some fractional integral inequalities of Hermite-Hadamard type for r-preinvex functions, Khayyam J. Math., 2, 2 (2016), 119-126.

REFERENCES 505

[3] T. S. Du, J. G. Liao, Y. J. Li, Properties and integral inequalities of Hadamard-Simpson type for the generalized (s, m)-preinvex functions, J. Nonlinear Sci. Appl., $\mathbf{9}$, (2016), 3112-3126.

- [4] S. S. Dragomir, J. Pečarić, L. E. Persson, Some inequalities of Hadamard type, Soochow J. Math., 21, (1995), 335-341.
- [5] H. Hudzik, L. Maligranda, Some remarks on s-convex functions, Aequationes Math., 48, (1994), 100-111.
- [6] T. Antczak, Mean value in invexity analysis, Nonlinear Anal., 60, (2005), 1473-1484.
- [7] X. M. Yang, X. Q. Yang, K. L. Teo, Generalized invexity and generalized invariant monotonicity, J. Optim. Theory Appl., 117, (2003), 607-625.
- [8] R. Pini, Invexity and generalized convexity, Optimization., 22, (1991), 513-525.
- [9] D. D. Stancu, G. Coman, P. Blaga, Analiză numerică și teoria aproximării, *Cluj-Napoca: Presa Universitară Clujeană.*, **2**, (2002).
- [10] W. Liu, New integral inequalities involving beta function via *P*-convexity, *Miskolc Math Notes.*, **15**, 2 (2014), 585-591.
- [11] M. E. Özdemir, E. Set, M. Alomari, Integral inequalities via several kinds of convexity, *Creat. Math. Inform.*, **20**, 1 (2011), 62-73.
- [12] W. Dong Jiang, D. Wei Niu, F. Qi, Some Fractional Inequalties of Hermite-Hadamard type for r- φ -Preinvex Functions, $Tamkang\ J.\ Math.$, 45, 1 (2014), 31-38.
- [13] F. Qi, B. Y. Xi, Some integral inequalities of Simpson type for $GA \epsilon$ -convex functions, Georgian Math. J., **20**, 5 (2013), 775-788.
- [14] W. Liu, W. Wen, J. Park, Hermite-Hadamard type inequalities for MT-convex functions via classical integrals and fractional integrals, J. Nonlinear Sci. Appl., 9, (2016), 766-777.