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Abstract. In the present paper, a new class of generalized (r; s, m, ¢)-preinvex functions is intro-
duced and some new integral inequalities for the left hand side of Gauss-Jacobi type quadrature
formula involving generalized (r;s,m, ¢)-preinvex functions are given. Moreover, some general-
izations of Hermite-Hadamard type inequalities for generalized (r; s, m, ¢)-preinvex functions via
Riemann-Liouville fractional integrals are established. These results not only extend the results
appeared in the literature (see [1], [2]), but also provide new estimates on these types.
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1. Introduction and Preliminaries

The following notations are used throughout this paper. We use I to denote an in-
terval on the real line R = (—o0,+00) and I° to denote the interior of I. For any sub-
set K C R" K° is used to denote the interior of K. R™ is used to denote a generic
n-dimensional vector space. The nonnegative real numbers are denoted by R, = [0, 4+00).
The set of integrable functions on the interval [a, b] is denoted by L1[a, b].

The following inequality, named Hermite-Hadamard inequality, is one of the most famous
inequalities in the literature for convex functions.

Theorem 1. Let f : I CR — R be a convex function on an interval I of real numbers
and a,b € I with a < b. Then the following inequality holds:

(5 < it [ rwar < 1OLI0, )
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Fractional calculus (see [14]) and the references cited therein, was introduced at the
end of the nineteenth century by Liouville and Riemann, the subject of which has become
a rapidly growing area and has found applications in diverse fields ranging from physical
sciences and engineering to biological sciences and economics.

Definition 1. Let f € Li[a,b]. The Riemann-Liouville integrals J&, f and J* f of order
a > 0 with a > 0 are defined by

Jo, fla) = F(la) /:(x _ 0@t > a
and

b
Jz?f(:v)zF(la) / (t— o) f(dt, b> e,

+oo
where I'(a)) = / e “u*"tdu. Here JO f(x) =) f(z) = f(=).
0
In the case of a =1, the fractional integral reduces to the classical integral.

Due to the wide application of fractional integrals, some authors extended to study frac-
tional Hermite-Hadamard type inequalities for functions of different classes (see [13], [14])
and the references cited therein.

Now, let us recall some definitions of various convex functions.

Definition 2. (see [4]) A nonnegative function f: 1 CR — R, is said to be P-function
or P-convex, if

fltz+ (1 —t)y) < f(x)+ fly), Vo,yel, tel0,1].

Definition 3. (see [5]) A function f : Ro — R is said to be s-convex in the second
sense, if

Oz + (1= XNy) <X f(z) + (1= X2)f(y) (2)
for all z,y € Ry, XA € [0,1] and s € (0,1].

It is clear that a 1-convex function must be convex on R, as usual. The s-convex
functions in the second sense have been investigated in (see [5]).

Definition 4. (see [6]) A set K C R" is said to be invex with respect to the mapping
n: KxK-—R" ifx+itn(y,x) € K for every x,y € K and t € [0, 1].

Notice that every convex set is invex with respect to the mapping n(y,z) = y — =,
but the converse is not necessarily true. For more details please see (see [6], [7]) and the
references therein.

Definition 5. (see [8]) The function f defined on the inver set K C R™ is said to be
preinvex with respect n, if for every x,y € K and t € [0,1], we have that

flx+tn(y,z) <A —t)f(z) +tf(y).
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The concept of preinvexity is more general than convexity since every convex function
is preinvex with respect to the mapping 7(y,x) = y — x, but the converse is not true.

The Gauss-Jacobi type quadrature formula has the following

—+00

b
/ (= alP(b—2)1f(@)dr = Y Bupf (i) + Rialf1, (3)

k=0

for certain By, j, v, and rest Ry, |f] (see [9]).

Recently, Liu (see [10]) obtained several integral inequalities for the left hand side of (3)
under the Definition 2 of P-function.

Also in (see [11]), Ozdemir et al. established several integral inequalities concerning the
left-hand side of (3) via some kinds of convexity.

Motivated by these results, in Section 2, the notion of generalized (r;s, m,p)-preinvex
function is introduced and some new integral inequalities for the left hand side of (3) in-
volving generalized (r; s, m, p)-preinvex functions are given. In Section 3, some generaliza-
tions of Hermite-Hadamard type inequalities for generalized (r; s, m, ¢)-preinvex functions
via fractional integrals are given. These general inequalities give us some new estimates
for the left hand side of Gauss-Jacobi type quadrature formula and Hermite-Hadamard
type fractional integral inequalities.

2. New integral inequalities for generalized (r; s, m, p)-preinvex functions

Definition 6. (see [3]) A set K C R"™ is said to be m-invex with respect to the mapping
n: K xKx(0,1] — R"™ for some fired m € (0,1], if mz +tn(y,x,m) € K holds for each
xz,y € K and any t € [0,1].

Remark 1. In Definition 6, under certain conditions, the mapping n(y, x,m) could reduce
to n(y,x). For example when m = 1, then the m-invex set degenerates an invex set on K.

Definition 7. (see [12]) A positive function f on the inver set K is said to be logarith-
mically preinvez, if

Fluttn(v,u) < f170u) f(v)
for allu,v € K and t € [0,1].

Definition 8. (see [12]) The function f on the invexr set K is said to be r-preinvex with
respect to n, if

fluttn(v,u)) < My (f(u), f(v);t)
holds for all u,v € K and t € [0, 1], where

1
-

M, (z,y;t) = { (1~ B)a” +ty7]7, ifr #0;

xltyt, ifr =0,

is the weighted power mean of order r for positive numbers x and y.
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We next give new definition, to be referred as generalized (r; s, m, )-preinvex function.

Definition 9. Let K C R™ be an open m-invex set with respect ton : K x K x(0,1] — R™,
and ¢ : I — K is a continuous increasing function. The function f : K — (0,00) is
said to be generalized (r; s, m, p)-preinver with respect to n, if

f(me(z) +tn(e(y), e(z),m)) < M, (f(e(x)), f(e(y)), m, s;t) (4)

holds for any fized s,m € (0,1] and for all z,y € I,t € [0, 1], where

1
p

[m(1 = 0 (@) + (e, i £ 0;
Mr(f<¢(x))7 f(@(y))7 m,s; t) -

Flo(@))m =" fo(y))™, ifr =0,
is the weighted power mean of order r for positive numbers f(p(x)) and f(p(y)).

Remark 2. In Definition 9, it is worthwhile to note that the class of generalized (r; s, m, ¢)-
preinver function is a generalization of the class of s-convex in the second sense function
given in Definition 3. Also, for r = 1 and p(x) = z, Vo € I, we get the notion of
generalized (s, m)-preinvez function (see [3]).

Example 1. Let f(z) = |z|, po(z) =z, r=s=1 and

y—mx, ifx>0,y>0;
y—mx, ifr<0,y<0;
mx—y, ifx>0,y<0;
mx —y, ifx<0,y>0.

77(117 z, m) =

Then f(x) is a generalized (1;1,m,x)-preinver function of with respect to n : R x R X
(0,1] — R and any fired m € (0,1]. However, it is obvious that f(z) = |z| is not a
convex function on R.

In this section, in order to prove our main results regarding some new integral in-
equalities involving generalized (r; s, m, )-preinvex functions, we need the following new
Lemma:

Lemma 1. Let ¢ : I — K be a continuous increasing function. Assume that f : K =
[me(a), mp(a) + n(e((b),p(a),m)] — R is a continuous function on the interval of real
numbers K° with respect ton : K x K x(0,1] — R, for mp(a) < me(a)+n(e(b), (a), m).
Then for any fixred m € (0,1] and p,q > 0, we have

/WSO(G)+77(<P(6) ,cp(a) 7m)

“ (z —mep(a))?(me(a) +1(e(b), p(a), m) — x) f (x)dx
me(a

1
= 1(p(b), p(a), m)PHert /O (1 = 1) f(mep(a) + tn(p(b), p(a), m))dt.
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Proof. Tt is easy to observe that

/mw(a)Jrn(w(b),so(a),m)

“ (z —mep(a))?(mp(a) +1(p(b), p(a), m) — x) f(x)dz
me(a

1
= n(sﬂ(b)jw(a),m)/o (me(a) +tn(p(b), p(a), m) — mp(a))?

x(mp(a) +n(p(b), p(a),m) — me(a) — tn(p(d), p(a),m))?
x f(mep(a) + tn(p(b), p(a), m))dt

1
= n(@(b),w(a)m)p*q“/o (1= 1)7f(mep(a) + tn(p(b), p(a), m))dt.

The following definition will be used in the sequel.

Definition 10. The Euler Beta function is defined for x,y > 0 as

g _ L(2)C(y)
_ =11 _ n\y—144 _
B(x,y) /0 Tl =)V dt Tty
Theorem 2. Let ¢ : I — K be a continuous increasing function. Assume that f: K =
[me(a), mp(a) + n(e((b), p(a),m)] — (0,00) is a continuous function on the interval of
real numbers K° with my(a) < mp(a) + n(e((b),¢(a),m). Let k > 1 and 0 < r < 1. If
f% is a generalized (13 s, m, @)-preinvex function on an open m-invex set K with respect
ton: K x K x (0,1 — R for any fixred s,m € (0, 1], then for any fixed p,q > 0,

mep(a)+n(e(b)p(a),m)
L (2 — me(@))?(me(a) + n(p(b). ¢(a), m) — )1 (x)de
mep(a
< (@) (et () T s+ Lk 1)
< [m P o) + £ (o)) 5)

k
Proof. Let k > 1 and 0 < r < 1. Since f*T is a generalized (r;s,m,¢)-preinvex

function on K, combining with Lemma 1, Holder inequality and Minkowski inequality for
all t € [0,1] and for any fixed s,m € (0, 1], we get

/mw(a)+n(so(b),<p(a),m)

“ (z —mep(a))?(me(a) +n(p(b), p(a),m) — x)! f(z)dz

=

< [n(p(b), p(a), m)[Pratt [/0 (1 —t)kth]



A. Kashuri, R. Liko / Eur. J. Pure Appl. Math, 10 (3) (2017), 495-505 500

k-1
k

1 k
x [ /0 7T (mp(a) + tn(p(b), p(a), m))dt

< (e (b), p(a), m)[P 8% (kp + 1, kq + 1)

! k B\ "
[ /0 (m(1 = 01 () T + 1 (p(6) 77 dt]
< In((b), p(a), m)[P* 1% (kp + 1,kq + 1)
! 1 s .k " 1 s .k " %
[(/0 w1 =07 (gt ) + ([ Gponar) ]
— o0 p(al Pt () T gk e+ 1k + )

k-1

x[m ¥ (e(a) + T ()]

Corollary 1. Under the same conditions as in Theorem 2 for r = 1, we get (see [1],
Theorem 2.2).

Theorem 3. Let ¢ : I — K be a continuous increasing function. Assume that f : K =

[me(a), mp(a) + n(e(d), p(a),m)] — (0,00) is a continuous function on the interval of

real numbers K° with me(a) < me(a) + n(p(b),p(a),m). Let 1 > 1 and 0 < r < 1. If

f!is a generalized (r; s, m, ©)-preinvez function on an open m-invex set K with respect to
n: K x K x(0,1] — R for any fized s,m € (0,1], then for any fized p,q > 0,

mep(a)+n(p(b),p(a),m)

/ (z —mip(a))’(me(a) +n(eb), p(a),m) — z)? f(x)dz

mey(a)
< (), p(a), m)PHH BT (p+ 1,4+ 1)
x [mf’"’(w(a))ﬁr (p +1,q+ ; + 1) + (b)) 8" (p + ; +1,q+ 1) } T (6)

Proof. Let 1 > 1 and 0 < r < 1. Since f! is a generalized (r; s, m, ¢)-preinvex function
on K, combining with Lemma 1, the well-known power mean inequality and Minkowski
inequality for all ¢ € [0, 1] and for any fixed s, m € (0, 1], we get

/WSO(G)+77(<P(6) ,cp(a) 7m)

“ (z —mep(a))?(mp(a) +1(e(b), p(a), m) — x) f(x)dx
me(a

= 1(p(b), p(a), m)P+oHt
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-1 1
1

1 =1
<[ lra =0 T [ra -] romet@ + o) pla). ma

1
/ (1 — t)th]
0

1
xl/%u—Wﬂmw@+mwwwwmmw]
0

-1
l

< [n(e(b), p(a), m)[Frett

1
I

< In(e(d), p(a), m)[PrHBT (p+1,q 4+ 1)

1
[

X[At”L%VQML%ffme+ﬁWW@Wfd4

< In(p(d), pla), m)PHH BT (p+1,q+ 1)

X [ </01 S t)q+ifl(¢(a))dt>r ! </01 (1 - t)qf’(so(b))dty] n

— (e (b), p(a), m)PTITBT (p+ 1,9+ 1)

X [mf”(so(a))ﬁr <p+ g+ ; * 1) 1O (p+ ; That 1) } "

Corollary 2. Under the same conditions as in Theorem 3 for r = 1, we get (see [1],
Theorem 2.3).

3. Hermite-Hadamard type fractional integral inequalities for
generalized (r; s, m, p)-preinvex functions

In this section, we prove our main results regarding some generalizations of Hermite-
Hadamard type inequalities for generalized (r;s,m,p)-preinvex functions via fractional
integrals.

Theorem 4. Let ¢ : I — K be a continuous increasing function. Suppose K C R be
an open m-invexr subset with respect to n : K x K x (0,1] — R for any fized s,m €
(0,1] with mp(a) < me(a) + n(e(d), (a),m). Assume that f : K = [me(a),mp(a) +
n(p(b), ¢(a),m)] — (0,00) be a generalized (r; s, m,p)-preinvexr function on an open m-
invexr set K°. Then for a >0 and 0 < r < 1, we have

['(a) o
T oB), pla), m) et tate)star o)~ 1AW

gkwwmw@jﬂwwww(r )

ar + s
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Proof. Let 0 < r < 1. Since f is a generalized (r; s, m, ¢)-preinvex function on an open
m-invex set K°, combining with Minkowski inequality for all ¢ € [0, 1] and for any fixed
s,m € (0, 1], we get

(o)
n*(o(b), p(a), m)

(@) +n(o(0) sola),m))— | (Mep(a)

_ / 121 f(mep(a) + tn(p(b), @(a), m))dt

1

< [ [t - 07 ot + 77 o)

1 1 i
s{[ /O (1 (b))t /0 mit“*(l—t)?f(go(a))dt] }

_ [mfr(so(a))y (a7§+ 1) + f"(p(b)) ( - >r

ar + s

T
+

S =

Corollary 3. Under the same conditions as in Theorem 4 for m = s = 1,p(z) = x and
n(p(b), ¢(a),m) =n(b,a), we get (see [2], Theorem 3.1).

Theorem 5. Let ¢ : I — K be a continuous increasing function. Suppose K C R be
an open m-invexr subset with respect to n : K x K x (0,1] — R for any fized s,m €
(0,1] with mp(a) < me(a) + n(pd), p(a),m). Assume that f,h : K = [me(a), me(a) +
n(p(b), ¢(a),m)] — (0,00) are respectively generalized (r; s, m,@)-preinver function and
generalized (1; s, m, @)-preinvez function on an open m-invex set K°. Then for a > 0,r > 1
and r~' + 171 =1, we have

I'a o
na((p(b),(cp)(a), e (@ +(e(0) (@) my) - F (M(@) h(mip(a))

< ;{ [mfmo(a))ﬁ%‘ (22 ) e (51 ) ] ®)
+ |mhl(p(a)) B2 <2(al_1) +17278 + 1) + h(e(0)) (2(a— 1l+ s) +l>2 }

Proof. Let » > 1 and r—! + 17! = 1. Since f and h are respectively generalized
(r; s, m, p)-preinvex function and generalized (I; s, m, p)-preinvex function on an open m-
invex set K°, combining with Cauchy and Minkowski inequalities for all ¢ € [0, 1] and for
any fixed s, m € (0, 1], we get

['(a)
n*(¢(b), ¢(a), m)

S lmp(@)+n(0(0) 0(a),m))— f (Mep(a))h(mp(a))
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1 1
:/0 Ha=1)(7 +T)f(mgo(a)+1t?7(90(b),<P(a)7m))

xh(mep(a) + tn(p(b), p(a), m))dt

1

1 1
< [t D [ = 0 ol +°7 o0

1
T

~|

x| m(1 = 0k (p(@)) + R (p(0))] "t

2

1
<;{A [t 17 (0(6)) + (1= 07 (ol@)] e

1 2
+A[ﬁ*ﬁﬁw@»+mﬂl( )h%()ﬂﬂ%

2

gé[{(llﬂ“lmf% ) </'mr r w?f%wm»ﬁ);}T

+{ </°1tWh2(¢(b)>dt>é " </olmft2(“l”<1 - t)leh2(<P(a))dt>é H
) ;{ [mfr(go(a))ﬂg <2(ar_ & +1, 278 + 1> + f"(p(b)) (2(61 - 1r+ s) + r>g

Corollary 4. Under the same conditions as in Theorem 5 for m = s = 1,¢p(z) = x and
n(p(b), ¢(a),m) =n(b,a), we get (see [2], Theorem 3.3).

3

elmatetanst (2 012 00) o) ()

Theorem 6. Let ¢ : I — K be a continuous increasing function. Suppose K C R be
an open m-invex subset with respect ton : K x K x (0,1] — R for any fized s,m €
(0, 1] with mp(a) < me(a) + n(p(d), p(a),m). Assume that f,h : K = [me(a), me(a) +
n(e(d), p(a),m)] — (0,00) are respectively generalized (r; s, m, p)-preinvex function and
generalized (1; s, m, @)-preinvez function on an open m-invex set K°. Then for a > 0,r > 1
and r~—1 + 171 =1, we have

I'(«)
n*(¢(b), p(a),m

) ‘]gmp(a)—i-n(cp(b) spo(a),m))— f(mgp(a) ) h(mcp(a))
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Proof. Let » > 1 and r—! + 17! = 1. Since f and h are respectively generalized
(r; s,m, p)-preinvex function and generalized (I; s, m, p)-preinvex function on an open m-
invex set K°, combining with Holder inequality for all ¢ € [0, 1] and for any fixed s,m €
(0,1], we get

'« o
77“(4/3(5)7(@)(@), m) (@) +n(0(0) p(a),m))—f (mep(a))h(mp(a))

1 1 1
_ / DG f(mg(a) + tn(p(b), p(a),m))

xh(mep(a) + tn(p(b), p(a), m))dt

< { / [ o) + i (- 07 o)

S

R ) + i1 = 0l w%}

g{ /O [ 7 () + (1= 1) 7 (p(a) ] }

1
7

3=

+{ /0 R (b)) + e (1 - H >>]dt}

T % l %
= {fs(i([o)z)) +mf"(p(a))B(a, s + 1)} + {hs(i(fx)) +mh!(p(a))B(a, s + 1)} :

Corollary 5. Under the same conditions as in Theorem 6 for m = s = 1,¢p(z) =z and
n(p(b), ¢(a),m) =n(b,a), we get (see [2], Theorem 3.9).

1

Remark 3. For different choices of positive values r,l = '3 2, etc., for any fized s,m €

l\’)\»i

(0,1] and a particular choices of a continuous increasing function o(x) = e* for all x €
R, ™ for all x > 0 and for all n € N, etc., by Theorem 4, Theorem 5 and Theorem 6 we
can get some special kinds of Hermite-Hadamard type fractional integral inequalities.
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