EUROPEAN JOURNAL OF PURE AND APPLIED MATHEMATICS

Vol. 10, No. 4, 2017, 730-738 ISSN 1307-5543 – www.ejpam.com Published by New York Business Global

Modules that Have a δ -supplement in Every Extension

Esra Öztürk Sözen^{1,*}, Şenol Eren¹

¹ Ondokuz Mayıs University, Faculty of Science and Arts Department of Mathematics, Turkey

Abstract. Let R be a ring and M be a left R-module. In this paper, we define modules with the properties $(\delta - E)$ and $(\delta - EE)$, which are generalized version of Zöschinger's modules with the properties (E) and (EE), and provide various properties of these modules. We prove that the class of modules with the property $(\delta - E)$ is closed under direct summands and finite direct sums. It is shown that a module M has the property $(\delta - EE)$ if and only if every submodule of M has the property $(\delta - E)$. It is a known fact that a ring R is perfect if and only if every left R-module has the property (E). As a generalization of this, we prove that if R is a δ -perfect ring then every left R-module has the property $(\delta - E)$. Moreover, the converse is also true on δ -semiperfect rings.

2010 Mathematics Subject Classifications: 16D10, 16D90

Key Words and Phrases: Supplement, δ -supplement, δ -perfect ring, δ -semiperfect ring, module extension

1. Introduction

In this paper R is an associative ring with identity and all modules are unital left R-modules. Let M be a module $X \leq M$ means that X is a submodule of M or M is an extension of X. Recall that a submodule $N \leq M$ is called *small*, denoted by $N \ll M$, if $N + L \neq M$, for all proper submodules L of M. We call T a *supplement* of N in M if M = T + N and $T \cap N$ is small in T. A module M is called *supplemented* if every submodule of M has a supplement in M [14]. $L \leq M$ is said to be *essential* in M, denoted by $L \leq M$, if $L \cap K \neq 0$ for each nonzero submodule $K \leq M$. The *singular submodule* of a module M is called *singular* if $Z(M) = \{x \in M \mid Ix = 0 \text{ for some ideal } I \leq R\}$. A module M is called *singular* if Z(M) = M. Every submodule and every factor module of a singular module is singular. We refer to [6] for the further properties of singular modules.

In [15], Zhou introduced the concept of δ -small submodules as a generalization of small submodules. A submodule N of M is said to be δ -small in M (denoted by $N \ll_{\delta} M$) if whenever M = N + K and $\frac{M}{K}$ is singular, we have M = K. And we denote the sum of all δ -small submodules of M by $\delta(M)$. A submodule L of M is called a δ -supplement of

http://www.ejpam.com

© 2017 EJPAM All rights reserved.

^{*}Corresponding author.

Email addresses: esraozturk55@hotmail.com (E. Ö. Sözen), seren@omu.edu.tr (Ş. Eren)

N in M if M = N + L and $N \cap L \ll_{\delta} L$ and M is called δ -supplemented in case every submodule of M has a δ -supplement in M [7].

For a module M consider the following conditions:

(E): M has a supplement in every extension.

(EE): M has ample supplements in every extension.

The concept of these modules with these properties was first introduced by Zöschinger [16]. Adapting his concept in [4], Çalışıcı and Türkmen introduced modules with the properties (CE) and (CEE) as a generalization of the properties (E) and (EE). In addition, in [9] the authors worked on modules that have a weak supplement in every extension and in [5] Eryılmaz introduced modules that have a δ -supplement in every torsion extension.

In this paper we investigate the structure of modules with the properties $(\delta - E)$ and $(\delta - EE)$ as a generalization of Zöschinger's modules with the properties (E) and (EE). We prove that a module has the property $(\delta - EE)$ if and only if every submodule has the property $(\delta - E)$. We show that every direct summand and δ -small cover of M with the property $(\delta - E)$ has the property $(\delta - E)$. Using the property $(\delta - E)$, we present a relation between δ -perfect rings and modules with the property $(\delta - E)$, which are a generalization of perfect rings, that is, R is a δ -perfect ring, then every left R-module has the property $(\delta - E)$, then R is a δ -semiperfect ring.

2. Preliminaries

In this section, we begin by stating the following lemmas and theorems for the completeness.

2.1. δ -Small Submodues

Lemma 1. ([15, Lemma 1.2]). Let N be a submodule of M. The following are equivalent:

- 1. $N \ll_{\delta} M$.
- 2. If X + N = M, then $M = X \oplus Y$ for a projective semisimple submodule Y with $Y \subseteq N$.
- 3. If X + N = M with $\frac{M}{X}$ Goldie torsion, then X = M.

Lemma 2. (/15, Lemma 1.3). Let M be a module.

- 1. For submodules N, K, L of M with $K \subseteq N$, we have
 - (a) $N \ll_{\delta} M$ if and only if $K \ll_{\delta} M$ and $\frac{N}{K} \ll_{\delta} \frac{M}{K}$.
 - (b) $N + L \ll_{\delta} M$ if and only if $N \ll_{\delta} M$ and $L \ll_{\delta} M$.
- 2. If $K \ll_{\delta} M$ and $f : M \longrightarrow N$ is a homomorphism, then $f(K) \ll_{\delta} N$. In particular, if $K \ll_{\delta} M \subseteq N$, then $K \ll_{\delta} N$.

- E. Ö. Sözen, Ş. Eren / Eur. J. Pure Appl. Math, 10 (4) (2017), 730-738
 - 3. Let $K_1 \subseteq M_1 \subseteq M$, $K_2 \subseteq M_2 \subseteq M$ and $M = M_1 \oplus M_2$. Then $K_1 \oplus K_2 \ll_{\delta} M_1 \oplus M_2$ if and only if $K_1 \ll_{\delta} M_1$ and $K_2 \ll_{\delta} M_2$.

2.2. δ -Supplemented Modules

Lemma 3. ([7, Prop.2.7]). Let U and V be submodules of a module M. Assume that V is a δ -supplement of U in M. Then

- 1. If W + V = M for some $W \subseteq U$, then V is a δ -supplement of W in M.
- 2. If $K \ll_{\delta} M$, then V is a δ -supplement of U + K in M.
- 3. For $K \ll_{\delta} M$ we have $K \cap V \ll_{\delta} V$ and so $\delta(V) = V \cap \delta(M)$.
- 4. For $L \subseteq U$, $\frac{V+L}{L}$ is a δ -supplement of $\frac{U}{L}$ in $\frac{M}{L}$.
- 5. If $\delta(M) \ll_{\delta} M$, or $\delta(M) \subseteq U$ and if $p: M \longrightarrow \frac{M}{\delta(M)}$ is the canonical projection, then $\frac{M}{\delta(M)} = p(U) \oplus p(V)$.

In [7], a projective module P is called a *projective* δ -cover of a module M if there exists an epimorphism $f: P \longrightarrow M$ with $Ker(f) \ll_{\delta} M$, and a ring R is called δ -perfect (resp., δ -semiperfect) if every R-module (resp., every simple R-module) has a projective δ -cover. In addition, a module M is called δ -lifting if for any $N \leq M$, there exists a decomposition $M = A \oplus B$ such that $A \leq N$ and $N \cap B$ is δ -small in B since B is a direct summand of M.

Theorem 4. [7, Theorem 3.3]. The following are equivalent for a ring R:

- 1. R is δ -semiperfect.
- 2. Every finitely generated module is δ -supplemented.
- 3. Every finitely generated projective module is δ -supplemented.
- 4. Every finitely generated projective module is δ -lifting.
- 5. Every left ideal of R has a δ -supplement in _RR.

Theorem 5. [7, Theorem 3.4]. The following statements are equivalent for a ring R:

- 1. R is δ -perfect.
- 2. Every module is δ -supplemented.
- 3. Every projective module is δ -supplemented.
- 4. Every projective module is δ -lifting.

E. Ö. Sözen, Ş. Eren / Eur. J. Pure Appl. Math, 10 (4) (2017), 730-738

3. Modules with the Properties $(\delta - E)$ and $(\delta - EE)$

In this section, we define the concept of modules with the properties $(\delta - E)$ and $(\delta - EE)$.

Definition 1. A module M has the property $(\delta - E)$ if it has a δ -supplement in each module in which it is contained as a submodule.

Definition 2. A module M has the property (δ -EE) if it has ample δ -supplements in each module in which it is contained as a submodule, where $U \leq M$ has ample δ -supplements in M if for every $V \leq M$ with U + V = M, there is a δ -supplement V' of U with $V' \leq V$.

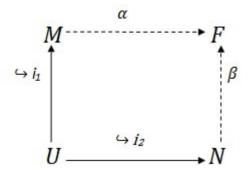
It is clear that every module with the property (E) has the property $(\delta - E)$. Also there exists the same relation between modules with the properties (EE) and $(\delta - EE)$. At the end of this section, we shall give an example of a module which has the property $(\delta - E)$ but not (E).

Zöschinger proved in [16] that a module has the property (EE) if and only if every submodule has the property (E). We give an analogous characterization of our modules with the following proposition.

Proposition 1. A module M has the property (δ -EE) if and only if every submodule of M has the property (δ -E).

Proof. Let M be a module and N be any extension of M. Suppose that for a submodule $X \leq N, X + M = N$. By hypothesis, the submodule $X \cap M$ of M has a δ -supplement V in X, that is, $(X \cap M) + V = X$ and $(X \cap M) \cap V \ll_{\delta} V$. Then, $N = M + X = M + [(X \cap M) + V] = M + V$ and $M \cap V = M \cap (V \cap X) = (X \cap M) \cap V \ll_{\delta} V$. Hence, V is a δ -supplement of M in N such that $V \leq X$.

Conversely, let U be a submodule of M and N be any module containing U. Then we can draw the following pushout:



 i_1 and i_2 are inclusion homomorphisms in this diagram. Additionally $\alpha : M \longrightarrow F$ and $\beta : N \longrightarrow F$ are monomorphisms by the properties of push out (see, for example, [11, Exercise 5.10]). Let $\alpha(M) = M' \subseteq F$ and $\beta(N) = N' \subseteq F$. Then it can be easily shown that F = M' + N'. So by using hypothesis, $M' \cong M$ has a δ -supplement V in F such that $V \leq N'$, that is, M' + V = F and $M' \cap V \ll_{\delta} V$. Hence,

$$(M^{'} \cap N^{'}) + V = (N^{'} \cap M^{'}) + V = N^{'} \cap (M^{'} + V) = N^{'} \cap F = N^{'}, \text{ and}$$
$$(M^{'} \cap N^{'}) \cap V = M^{'} \cap (N^{'} \cap V) = M^{'} \cap V \ll_{\delta} V.$$

So V is a δ -supplement of $M' \cap N'$ in N'. Now we will show that $\beta^{-1}(V)$ is a δ -supplement of U in N. We have an isomorphism $\stackrel{\sim}{\beta} : N \longrightarrow N'$ defined as $\beta(x) = \stackrel{\sim}{\beta}(x)$ for all $x \in N$, since β is a monomorphism. Using this, we obtain $\beta^{-1}(V)$ is a δ -supplement of $\beta^{-1}(M' \cap N')$ in $\beta^{-1}(N')$ since V is a δ -supplement of $M' \cap N'$ in N'. It can be seen that $\beta^{-1}(V) = \beta^{-1}(V)$, $\beta^{-1}(N') = N$ and $\beta^{-1}(M' \cap N') = U$. Thus $\beta^{-1}(V)$ is a δ -supplement of U in N.

Corollary 1. A module with the property (δ -EE) has the property (δ -E) and it is also δ -supplemented.

Recall that R is a (right) δ -V ring if for any right R-module M, $\delta(M) = 0$ (see, [13]).

Proposition 2. Let R be δ -V ring and M be an R-module. Then the following statements are equivalent:

- 1. *M* has the property (δE) .
- 2. M is injective.

Proof. (1) \Longrightarrow (2) : Suppose that M has the property (δ -E). Let N be any extension of M. So, there exists a δ -supplement V of M in N, that is, M + V = N and $M \cap V \ll_{\delta} V$ and so $M \cap V \leq \delta(V)$. Since R is a δ -V ring, $\delta(V) = 0$. So, $N = M \oplus V$. Therefore, M is injective.

 $(2) \Longrightarrow (1)$: is clear.

Now we show that the property $(\delta - E)$ is preserved by direct summands in the following proposition:

Proposition 3. Every direct summand of any module with the property $(\delta - E)$ has the property $(\delta - E)$.

Proof. Let M be a module with the property $(\delta - E)$, U be a direct summand of M and N be any extension of U. Then there exists a submodule A of M such that $M = U \oplus A$. By hypothesis, M has a δ -supplement V in $A \oplus N$ such that $(A \oplus U) + V = A \oplus N$ and $(A \oplus U) \cap V \ll \delta V$. Let $g : A \oplus N \longrightarrow N$ be the projection onto N. Then

$$N = g(A \oplus N) = g((A \oplus U) + V) = g(A \oplus U) + g(V) = U + g(V), \text{ and}$$
$$g((A \oplus U) \cap V) = U \cap g(V) \ll_{\delta} g(V).$$

Hence, g(V) is a δ -supplement of U in N.

E. Ö. Sözen, S. Eren / Eur. J. Pure Appl. Math, 10 (4) (2017), 730-738

Proposition 4. Let $A \leq B$. If A and $\frac{B}{A}$ have the property $(\delta - E)$, so does B.

Proof. Let N be any extension of B. So, there is a δ -supplement $\frac{V}{A}$ of $\frac{B}{A}$ in $\frac{N}{A}$ and a δ -supplement T of A in V. We have δ -small epimorphisms $f: T \longrightarrow \frac{V}{A}$ and $g: \frac{V}{A} \longrightarrow \frac{N}{B}$ that

Ker $f = T \cap A \ll_{\delta} T$ and Ker $g = \frac{V}{A} \cap \frac{B}{A} \ll_{\delta} \frac{V}{A}$. Then, $g \circ f : T \longrightarrow \frac{N}{B}$ is a δ -small epimorphism such that $T \cap B = Ker \ (g \circ f) \ll_{\delta} T$. Moreover, we have

$$B + T = (B + A) + T = B + (A + T) = B + V = N$$

since $\frac{V}{A}$ is a δ -supplement of $\frac{B}{A}$ in $\frac{N}{A}$. This completes the proof.

Corollary 2. If M_1 and M_2 have the property $(\delta - E)$, so does $M_1 \oplus M_2$.

Proof. Let $0 \longrightarrow M_1 \longrightarrow M_1 \oplus M_2 \longrightarrow M_2 \longrightarrow 0$ be a short exact sequence. Result follows by Proposition 4.

Proposition 5. Let $0 \longrightarrow K \longrightarrow M \longrightarrow L \longrightarrow 0$ be a short exact sequence. If K and L have the property $(\delta - E)$, so does M. If the sequence splits the converse is also true.

Proof. Let N be any extension of M. So $\frac{N}{K}$ is an extension of $\frac{M}{K}$ and is is a well known fact that $\frac{M}{K} \cong L$. Then there exists a δ -supplement $\frac{V}{K}$ for $\frac{M}{K}$ in $\frac{N}{K}$, that means $\frac{M}{K} + \frac{V}{K} = \frac{N}{K}$ and $\frac{M}{K} \cap \frac{V}{K} \ll_{\delta} \frac{V}{K}$ for some $\frac{V}{K} \leq \frac{N}{K}$. Since $K \leq V$ and K has the property (δ -E), $K+K' = V, K \cap K' \ll_{\delta} K'$ for some $K' \leq V$. Hence, N = M+V = M+K+K' = M+K'. Now we claim that $M \cap K' \ll_{\delta} K'$. For this let $M \cap K' + T = K'$ with $\frac{K'}{T}$ is singular. $K + M \cap K' + T = K + K'$ and by the modular law $(K + K') \cap M + T = V$. Following this, $V \cap M + T = V$ is obtained. It can be easily seen written that $\frac{V \cap M}{K} + \frac{T+K}{K} = \frac{V}{K}$, additionally, $\frac{V}{T+K}$ is singular since,

$$\frac{V}{T+K} = \frac{K+K'}{T+K} = \frac{K+(K'+T)}{T+K} = \frac{(T+K)+K'}{T+K} \cong \frac{K'}{(T+K)\cap K'} = \frac{K'}{T+(K\cap K')} \le \frac{K'}{T+K} = \frac{K'$$

and $\frac{M}{K} \cap \frac{V}{K} \ll_{\delta} \frac{V}{K}$. So $\frac{T+K}{K} = \frac{V}{K}$ and of course T + K = V. $(T+K) \cap K' = K'$ can be seen and by the modular lae, $T + (K \cap K') = K'$ is obtained. This provides T = K' since $K \cap K' \ll_{\delta} K'$ and $\frac{K'}{T}$ is singular. Moreover, suppose that the sequence splits, Then K and L have the property $(\delta - E)$ by corollary 2.

Corollary 3. Let M_i (i = 1, 2, ..., n) be any finite collection of modules and $M = M_1 \oplus M_2 \oplus ... \oplus M_n$. Then M has the property $(\delta - E)$ if and only if M_i has the property $(\delta - E)$ for each i = 1, 2, ..., n.

Proof. It can be proved easily for n = 2 by using the previous theorem and can be generalized on n.

We give the following known lemma for the completeness.

E. Ö. Sözen, Ş. Eren / Eur. J. Pure Appl. Math, 10 (4) (2017), 730-738

Lemma 6. Every simple submodule S of a module M is either a direct summand of M or small in M (see in [10])

Proposition 6. Every simple module has the property $(\delta - E)$.

Proof. Let S be a simple module and N be any extension of S. Then by Lemma 4, $S \ll N$ and so $S \ll_{\delta} N$ or $S \oplus S' = N$ for a submodule $S' \leq N$. If $S \ll_{\delta} N$, then N is a δ -supplement of S in N or if S is a direct summand of N then S' is a δ -supplement of S in N. So in each case S has a δ -supplement in N. This means that S has the property $(\delta$ -E).

Theorem 7. Every module with composition series has the property $(\delta - E)$.

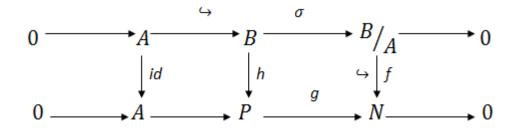
Proof. Let $0 = M_0 \leq M_1 \leq M_2 \leq ... \leq M_{n-1} \leq M_n = M$ be any composition series of a module M. We shall prove the theorem by induction on $n \in \mathbb{N}$. If n = 1, then $M = M_1$ is simple, and so M has the property $(\delta - E)$ by Proposition 6. Assume that this is true for each $k \leq n - 1$. Then M_{n-1} has the property $(\delta - E)$. Since $\frac{M_n}{M_{n-1}}$ has the property $(\delta - E)$ as a simple module, M has the property $(\delta - E)$ by Proposition 4.

Corollary 4. A finitely generated semisimple module has the property $(\delta - E)$.

In the following proposition we will prove that modules with the property $(\delta - E)$ are closed onder factor modules, under a special condition.

Proposition 7. Let $A \leq B \leq C$ with $\frac{C}{A}$ injective. If B has the property $(\delta - E)$, so does $\frac{B}{A}$.

Proof. Let N be any extension of $\frac{B}{A}$. So we have the following commutative diagram with exact rows since $\frac{C}{A}$ is injective, (see in [10]).



Since h is monic and B has the property $(\delta - E)$, $B \cong h(B)$ has a δ -supplement V in P, that is, h(B) + V = P and $h(B) \cap V \ll_{\delta} V$. We claim that g(V) is a δ -supplement of $\frac{B}{A}$ in N.

$$\frac{B}{A} + g(V) = (f\sigma)(B) + g(V) = g(h(B)) + g(V) = g(P) = N, \text{ and}$$
$$\frac{B}{A} \cap g(V) = f(\sigma(B)) \cap g(V) = g[h(B) \cap V] \ll_{\delta} g(V)$$

since $h(B) \cap V \ll_{\delta} V$ and g is a homomorphism.

A ring R is left perfect if and only if every left R-module has the property (E) (see [16]). Now we show only one side of this fact is valid for δ -perfect rings.

Proposition 8. If R is a δ -perfect ring, then every left R-module has the property (δ -E). Proof. Suppose that a ring R is δ -perfect. Let M be an R-module and N be any extension of M. N is δ -supplemented since R is δ -perfect. So M has a δ -supplemented in N as a submodule of N. Hence, M has the property (δ -E).

Proposition 9. Let R be a ring. If every left R-module has the property $(\delta - E)$, then R is a δ -semiperfect ring.

Proof. Since every left R-module has the property $(\delta - E)$, every ideal of R also has the property $(\delta - E)$ as a submodule of _RR. So every ideal of R has a δ -supplement in _RR. Hence R is δ -semiperfect by [6, Theorem 3.3].

Example 1. Let F be a field,

 $I = \begin{pmatrix} F & F \\ 0 & F \end{pmatrix}, R = \{(x_1, ..., x_n, x, x, ...) \mid n \in \mathbb{N}, x_i \in M_2(F), x \in I\}$

with component-wise operations, R is a ring. By Example 4.3 in [15], R is a δ -perfect ring that is not perfect. And so _RR is an example of a module that has the property (δ -E) but not have the property (E).

Acknowledgements

The authors sincerely thank the reviewers for the valuable suggestions and comments.

References

- F.W. Anderson and K.R. Fuller. Rings and Categories of Modules. vol. 13 of Graduate Texts in Mathematics, Springer, New York, NY, USA, 1974.
- [2] E. Büyükaşık and C. Lomp. When δ-semiperfect rings are semiperfect. Turkish J. Math. 34, 317-324, 2010.
- [3] J. Clark, C. Lomp, N. Vanaja and R. Wisbauer. Lifting Modules. Supplements and projectivity in module theory, ser. Frontiers in Mathematics. Basel: Birkhauser, 2006.
- [4] H. Çalışıcı and E. Türkmen. Modules that have supplement in every cofinite extension. Georgian Math. J., vol. 19, no. 2, pp. 209-216, 2012.
- [5] F. Eryılmaz. Modules That Have a δ-Supplement in Every Torsion Extension. Turkish Journal of Science & Technology, Vol. 11 Issue 2, p35-38. 4p, 2016.

- [6] K. R. Gooderal. Ring Theory: Nonsingular Rings and Modules. Dekker, New York, 1976.
- [7] M. T. Koşan, δ-lifting and δ-supplemented modules. Algebra Colloquium, 14 (1), 53-60, 2007.
- [8] M. J. Nematollahi. On δ-supplemented modules. Tarbiat Moallem University, 20 th seminar on Algebra, (Apr. 22-23), pp. 155-158, 2009.
- [9] E. Onal, H.Çalışıcı and E. Türkmen. Modules That Have a Weak Supplement in Every Extension. *Miskolc Mathematical Notes*, Vol. 17, No. 1, pp. 471–481, 2016.
- [10] S. Özdemir. Rad-supplementing Modules. J. Korean Math. Soc., Vol. 53, No. 2, pp. 403-414, 2016.
- [11] J. J. Rotman. An introduction to Homological Algebra. Universitext, New York: Springer, 2009.
- [12] D.W. Sharpe and P. Vamos. Injective Modules. ser. Cambridge Tracts in Mathematicsand mathematical Physics. Cambridge: At the University Press, vol. 62, 1962.
- [13] B. Ungor, S. Halıcıoğlu and A. Harmancı. On a class of δ-supplemented modules. Bull. Malays. Math. Sci. Soc., (2), 37(3), 703-717, 2014.
- [14] R. Wisbauer. Foundations of Module Theory and Ring Theory, vol. 3 of Algebra, Logic and Applications, Gordon and Breach Science, Philadelphia, Pa, USA, German edition, 1991.Y.
- [15] Zhou, Generalizations of Perfect, Semiperfect and Semiregular Rings, Algebra Colloquium, 7(3), 305-318, 2000.
- [16] H. Zöschinger. Komplementierte Moduln, die in jeder Erweiterung ein Komplement haben, Math. Scand., vol. 35, pp. 267-287, 1975.