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Exponential Stability of Almost Periodic Solution for
Shunting Inhibitory Cellular Neural Networks with
Time-Varying and Distributed Delays
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Abstract. In this paper, shunting inhibitory cellular neural networks (SICNNs) with time-
varying and distributed delays are considered. Without assuming the global Lipschitz condi-
tions of activation functions, some new sufficient conditions for the existence and exponential
stability of the almost periodic solutions are established. Finally, a numerical example is given
to demonstrate the effectiveness of the obtained result.
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1. Introduction

Recently, the dynamical behaviors of almost periodic solutions for shunting in-

hibitory cellular neural networks (SICNNs) have been extensively studied (see [1 —
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11]), due to SICNNs have been extensively applied in psychophysics, speech, per-
ception, robotics, adaptive pattern recognition, vision, and image processing. Many
important results have been established and successfully applied to signal process-
ing, pattern recognition, associative memories, and so on. However, in the existing
literatures (see [1 — 3,5 — 9]), almost all results on the stability of almost periodic
solutions for SICNNs are obtained under global Lipschitz neuron activations. When
neuron activation functions do not satisfy global Lipschitz conditions, people want to
know whether the SICNNs is stable. In practical engineering applications, people also
need to present new neural networks. Therefore, developing a new class of SICNNs
without global Lipschitz neuron activation functions and giving the conditions of the
stability of new SICNNSs are very interesting and valuable.
Consider the following SICNNs with time-varying and distributed delays:
X (0 =—a;(Oxg(O— > CHOF (et — (O)xy(0)

Cr €N, (i,))
o
- > Bf}(t)f K;;(w)g (e (t — w))dux;(6) + Ly(t), (1.1
Cr€N,(i,)) 0
where i =1,---,m, j=1,---,n, C; is the cell at the (i, j) position of the lattice, the
r-neighborhood N, (i, j) of C;; is

N,(i,j) = {Cy :max(k —i|,[l - j) <1<k <m1<l<n},

N,(i, j) is similarly specified. x;; is the activity of the cell C;;, L;;(t) is the external

j

input to Cj;,

a;;(t) > 0 is the passive decay rate of the cell activity, C l.’;.l(t) > 0 and
ijl(t) > 0 are the connections or coupling strengths of postsynaptic activity of the

cells in N,.(i, j) and N,(i, j) transmitted to the cell C;;, respectively. The activity func-

ij>
tions f (x;;) and g(x,;) are continuous functions representing the output or firing rate
of cell Cy;, and 7(t) > 0 is the transmission delay.

Throughout this paper, we will assume that 7(t) : R — R is an almost periodic

function, and 0 < 7(t) <7, where T > 0 is a constant.
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Set {x;;(0)} = (xpr(£), -+, x1(0), -+, Xa (£, -+, X)), for Vix = {x;5(0)} €
R™" we define the norm ||x|| = I?a)x{lxij(t)”.
l’)

Set B={¢ | ¢ = {05(0} = (001(t), -+, @1a(0), -+, 0ma(6), -, yun(1))}, where

@ is is an almost periodic function on R. For V¢ € B, we define the norm { cp” =
sup ||<p(t) , then B is a Banach space.
teR
The initial conditions associated with system (1.1) are of the form
xij(‘s) = (,01']'(5),5 € (_OO: O])l = 1: T m:j = 1) e, 1, (11)

where ¢ = {cpij(t)} € C((—o0,0],R™™M).

Definition 1.1. Let k € Z*. A continuous function u : R — R¥ is called almost periodic
if for each € > 0 there exists a constant [(¢) > 0 such that every interval of length [(¢g)

contains a number & with the property that

lu(t+6)—u(t)||<e foral te<R.

Definition 1.2. Let x € R" and Q(t) be a n X n continuous matrix defined on R. The

linear system
x'(t) = Q(t)x(t) (1.3)

is said to admit an exponential dichotomy on R if there exist positive constants k,a,

projection P and the fundamental solution matrix X(t) of (1.3) satisfying
||X(t)PX_1(s)|| <ke ™) for t>s,

[X(OT = P)X ()| ke ™0 for t<s.
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Lemma 1.1. [12]. If the linear system (1.3) admits an exponential dichotomy, then

almost periodic system
x'(1) =Q(t)x(t)+ g(t) (1.4)

has a unique almost periodic solution x(t), and

+00

x(t)= J X(6)PX1(s)g(s)ds — J X(6)IT - P)X1(s)g(s)ds.

—00 t

Lemma 1.2. [12]. Let c;(t) be an almost periodic function on R and

T—+00

1 t+T
M[c;] = lim ?J c;(s)ds>0, i=1,---,n.
t

Then the linear system x'(t) = diag(—c,(t),---,—c,(t))x(t) admits an exponential

dichotomy on R.

2. Existence of Almost Periodic Solutions

Theorem 2.1. Assume that
(Hy)Fori=1,---,m, j=1,---,n, thedelay kernels K;; : [0, 00) — R are continuous

CK BK I..€B;

and integrable, a;;, 5> Biis Lij

(H,) there exists a continuous function L : Rt — R™ such that for each r > 0,
[f@—fW)| <L u—vl, Jul, v <r;

|gw)— g <L) u—v], |ul,lv|<r

(H) there exists a constant r, > 0 such that

D[F(0)ro+ L(ro)ri1+L <r,, DF(0)+2DL(ry)r, <1,
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> C g > Bf]lf |Kl](u)|du

Cr €N (i,]) Ciy €N, (i,))

where D = max{ } >0,
(3)) a;;
F(0) = L= max 2T, = — supCH(t), By, =
( ) - max{ } r{la]l)xa— ij Sllp ij j Stlel}IQD ij (t)) ii =
sukal(t)
teR

a. 1nfal](t) > 0.

_1]

Then SICNNs (1.1) has a unique almost periodic solution in the region
E= {o B o], <}

Proof. For any given ¢ € B, we consider the following almost periodic differential
equation:

xi;(6) = —ay(t)x;(t) — Z Ckl(t)f(SDkl(t = T(0)))ey;(t)

Cu €N (i,7)

- Z Bkl(t)J Kl](u)g((pkl(t_u))du(pl](t)—'_l’l](t) (2.1)

Cri €N, (i,7)

Then, notice that M[a;;] > 0, from Lemma 1.2, the linear system
SN . .
Xl](t)__al)(t)xl)(t)z 1_1:"' M, J _1) , 1, (22)
admits an exponential dichotomy on R. Thus, by Lemma 1.1, we obtain that the
system (2.1) has exactly one almost periodic solution:

x¢(r)=J e-fﬁaif@d“(— DT ) (ks = T(6)))py(s)

Cr €N, (i,])
- Z Bkl(s)f Kl](u)g((lokl(s —u))dUQPU(S)“‘LU(S)) ds.
Crr€NG(i,])
Now, we define a nonlinear operator on B by T (¢)(t) = x,(t),V ¢ € B. Next, we will
prove T(E) C E. For any given ¢ € E, it suffices to prove that ||T(<p)||B <r, By (H,)

and (H;), we have

t

|7, = supmax e—f!“v@d“(— S CHM (puls — 7))oy (5)

Cu €N, (i,])
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- > B f Kl,(u)g(cpkz(s—u))du«pu(s)+Ll,(s))ds|}

Cri€NG(i,])

< sup max{| f (e ” > Thf (s — 1))y )ds
Ckz

ter (i.J) NG

Ly
+ Z J K;j(w)g(pi (s —u))duapu(s)ds) |} +T?3)Xa—

CkleN (l ]) _l]

< supmax{| J e “ > T+ L) | pials
Ckz

ter (1) NG

— 16 D]ey®|ds+ > B (|g(0)] +Lre) [prls — T()])
Cri€Ng(i,])
J |Ki(w)| du

—kl
< supmax{l J —ay(t= 5) Z Cij(lf(0)| + L(ry)ro)rods
Ckz

ter (@i.j) ..
€N, (i,))

%(S)IdS) F4L

+ > Bl](|g(0)|+L(ro)ro)roJ

Cri€NG(i,])

Kij(u)l duds) }+L

< D[F(0)r+ L(ro)ri]1 + L <r,.

Therefore, T(E) CE.
Taking ¢, € E, combining (H,) and (H;), we deduce that

I7Co) =T, =sup | 7))~ T

= sup max({| J e[ eyt Z —Cj () (f(SOkZ(S = 7(s)))epi(s)
—00 Cii

ter (1) N )

—f(wkz(s—r(s)))wij(s))ds|+|J e Sawa ST _pug),

Cr€Ng(i,])
f Ky () (g(gokl(s — W) (s) — gl u))duwﬁ(s)) ds |}
0

t

<supmax{| e ST Tl F(puls — 7)) Il 9i(s) — hyy(s) | ds}

ter (i.J) ..
—00 Cr €N (i,])
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+ sup max{ f D N T s — 7)) — f (s
CrEN: (lJ)

ter (i.J)

t

— T -1 9y() | ds} +supmaxt | e 37 B

ter (i) .
—00 Cri€NG(1,])

J | Kij(u)g(QOkl(s —u))du |- | %’j(s) - ¢ij(5) | ds}
0

+ sup max{ e_gff(t_s) J | Kij(w) (g(wkz(s —u))

ter (i.J)
Cri€ENg (l i)

g — u)))du 1 4iy(s) | ds)

ter (i.7)

< supmax{J =0 S T O] + Lrdrodst - o — v,
Cxi €Ny (lJ)

ter (i.J)

—kl
+supmax{f ~8;(t=s) C,;L(ro)rods} - ||g0 — 1/J||B
Cr EN; (lJ)
Kl >
+supmax{J —a;(t=s) Eij(lg(0)| + L(ro)rO)J IKij(u)| duds}
ter (i,)) CueNy (i) 0

'||<P—¢||

o
—kl
+supmax{ ~a;;(t=s) B, L(ryro
ter (0.5 c Y
Kk €Ny (lJ) 0

< D(F(0)+ L(ro)ro) - | = ||, + DL(ro)ro - |0 = |,

< [DF(0) +2DL(ro)ro] - | = |5 < [l — ¥,

Ky duds o v,

So T is a contraction from E to E. Since E is a closed subset of B, T has a unique fixed
point in E, which means system (1.1) has a unique almost periodic solution in E.
3. Exponential Stability of the Almost Periodic Solution

Theorem 3.1. Suppose (H;) — (H;) hold, let x*(t) = {xfj(t)} be the unique almost

periodic solution of SICNNs (1.1) in the region ||<p || 5 < T'o- Further we assume that
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(H,) there exists a constant r; > r, such that
1
F(0)+ L(ro)ro+ L(rr; < D’

g(0)|};

H.)Fori=1,---,m, j=1,---,n, there exists a constant A, > 0 such that
5 J 0

2

where F(0) = max { |f(0)

o0
J |Kl-j(s)| e’ ds < +oo0.
0

Then there exists a constant A > 0 such that for any solution x(t) = {xij(t)} of SICNNs

(1.1) with initial value sup ||<,0(t)|| <r,

te(—00,0]

lx(t) — x*(t)|| < Me™, Vt>0,

where M = sup ||g0(t) — x*(t)”.
te(—00,0]
Proof. Set

My@=a—g,+ 35 CHFO|+ Lo+ Lrne+ >0 By

CreN(i,)) Cr€Ng(i.])
[(|8(0)| +L("o)ro)J IKij(5)|d5+L(r1)r1J IKij(5)|easd5:|
0 0

wherei =1,---,m, j =1,---,n. It is easy to prove that I';; are continuous functions

on [0, A,]. Moreover, by (H,) and (Hg), we have

Fg@=—a,+ > Cu(|f©O)|+Llroro+L(r)r)

Cr €N (i,])

+ ) Efjl[|g(o)|+L(r0)r0+L(r1)rJJ
0

CreNg(i.))

<-ga;+ Z EZ.Z(F(O)+L(r0)r0+L(r1)r1)

Cr €N (i,1)

+ Z ESI [F(0)+ L(ro)ro + L(ry)r ] J |Kl.j(5)| ds < 0.
0

Cri€NG(i,])

Ki]-(s)| ds
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Thus, there exists a sufficiently small constant A > 0 such that
ry(A) <0, i=1,--,mj=1,---,n. (3.1)

Take £ > 0. Set Z;;(t) = |x;;(t) — x;.(t) e’ i=1,---,m,j=1,---,n. It follows that:

Zij(t)SM<M+eg,Vte(~00,0],i=1,---,m, j=1,---,n. In the following, we

will prove that
Zij(t)<M+¢eVt>0,i=1,---,mj=1,---,n. (3.2)
If this is not true, then there exist iy € {1,--- ,m} and j, € {1,---,n} such that
{t>O|Zi0j0(t)>M+8}75(D. (3.3)
Let

inf{t>0]2Z;(t)>M+e}, {t>0]Z;(t)>M+e}+#0,
+00, {t>O|Zij(t)>M+e}:0.

Then t;; > 0 and
Zl](t)SM“‘E,VtE(_OO,tU],l == ].,"' ,m,j: ].,"' ,Tl. (3.4)

We denote t,, = mint,
(@.5)
have 0 < t,, < +o0. It follows from (3.4), we have

i, where p € {1,---,m} and h € {1,---,n}. From (3.3), we

Zi(t)SM+e,Vte(—oo,tyl,i=1,---,mj=1,---,n (3.5)
In addition, noticing that ¢,, = inf{t >0[Z,(t)>M+ 8}, we obtain
Zyp(t,))=M+¢, and D¥Z,(t,,)>0. (3.6)

Since x(t) and x*(t) are solutions of Eq.(1.1), combining with (3.5)-(3.6), (H,) and

(H;), we have

0 < D* Z,y(tpn) = D [ xpn(t) — x5, (0)| €]

| f:tph
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=< Xph(tph)_x;h(tph) Aeltph _gph Xph(tph)_x;h(tph) ektph
—kl * *
+ Y T oo = TCEmdXpn(tpn) = £ O (Epn = TN (£ | -
Cr €N, (p,h)
i o0
—k
Mt > Bl J Ky ()8 G (£ — w))dux, (£,
Cri€Ng(p.h) 0

- J K (w)g (g, (ton — u))dux;h(tph) | Xt
0

<= @) Zuty)+ Y Co | FO (o — TCED |- | xpn(t)

Cu €N (p,h)
N —kl
—xn () L+ > Tl f Ot — T(t,)))
Cu €N (p,h)
—kl *
— F Ot — T |- [ xplt) [+ > B f |k (w)|-
0

Cii€Ny(p,h)

* " —kI
|G (tpn — w)| du | () — x5 (6p) [ ¥+ > B

Ckl ENq(P: l)
JOO
0

<Q-a )M+e)+ D Trllf0)]+Lrg)ro) - Zy(tyn)

Ky;(w)] - | Gea(tp, — 1)) — g (g (tpn — W) | dus | x,(t ) | €7

Cr €N, (p,h)
—kl
+ Z CpnL(r) |Xk1(fph — T(tpn)) — x5 (tpn — T(tph))l :
Cr €N, (p,h)
—kl
MDA eon) . ) Z Bph(lg(0)| + L(ro)ro)-
Cr1€Ny(p,h)

o o
—kl
f Ky|du-Zu(t)+ > BphL(rl)J Ky(w)| -
0 Cr1€N,(p,h) 0

kal(tph —u) = xp(ty, — u)| eMtn—Wetidy . p)

SQA-a )M+ + Y ol FO)] +Lro)re)- (M +¢)
Cr1€N,(p,h)

+ > Tl Mo+ > By (|g0)

Cw €N (p,h) Cr1€Ny(p,h)
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+ L(ro)ro) - J |Ki(w)| du - (M +¢)
0

o0
—kl
+ > BphL(rl)r1J0

Cr€Ng(p,h)

Kij(u)| eMdu- (M +¢)

SQ-a)M+e)+ D TrlFO0)+L(re)re)- (M +e)

Cu €N (p,h)

+ > Tl (M+e)+ > B (F(0)

Cw €N (p,h) Cr1€Ny(p,h)

K;j(w)|du- (M +¢)

+ L(ro)ro) J
0
+ Z E;;L(H)’HJ {Kij(u)| eMdu- (M +¢)
Cri€N,y(p,h) 0
It follows that:
—kl = —kl
A—a,+ Y. CuFO)+Lre+Lr)re™)+ Y. B

Cr €N (p.h) Cr €Ny (p,h)
o0

[(F(O)+L(r0)ro)J IKij(u)|du+L(r1)r1J |K;(w)| e*du] >0,
0 0

that is th(k) > 0. This contradicts with (3.1). Hence, (3.2) holds, i.e.,

Xl](t)_x:(t) elt :Zl](t)§M+€)Vt>O:l:1: :mzj:]-)“' )n'
Therefore,

[lx(t) — x*(£)]| = max
(i.))

xij(t) - x;(t) <(M+e)e MVt >0.

Let ¢ — 0, we get

Ix(t) = x*(O)|| < Me ™,V t > 0.
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4. Illustrative Example

Consider SICNNs (1.1) described by i,j = 1,2,3, 7(t) = cos?t, f(x) = g(x) =

5+ |sint]| 5+|sin«/§t| 9+ |sin t]|

x*+1
6 J

Kij(u)=e “sinu, a;;(t)=| 6+ |sint|] 6+]|sint| 7+ sint| |,

8+ |sint|] 8+ |[sint| 5+|sin\/§t|

1 3 1

10 10 2

— I P 1 1 1
Cyj()=By()=|sinv3e| | 1 L 1 |,

1 1 1

10 5 10

sint sin t cost

Ly(t)=| == Y2t cost  cost

CcoS t COs t+cos \/§[ Sll’l t

Obviously, let L(r) = %rg and ry =1, then we get D < 0.6,L = 0.2, so D[F(0)ry,+
L(rg)r21+L <0.7 <1 =ry,DF(0)+ 2DL(ry)ry < 0.81 < 1. From Theorem 2.1, the
system in example has a unique almost periodic solution in the region “ @ || s =1L

Take r; = ¢ %, then D[F(0) + L(ry)ro+ L(r;)r;] < 1. From Theorem 3.1, all the

solutions with initial value sup ||g0(t)|| < r, converge exponentially to the unique
te[—1,0]

almost periodic solution in the region || @ || g =1last— +oo.

5. Conclusion

In this paper, some new sufficient conditions are established to ensure the exis-
tence and exponential stability of almost periodic solutions for SICNNs with time-
varying and distributed delays. Since we do not need the neuron activations to satisfy
global Lipschitz conditions, the result in this paper is new, and it is also valuable in
the design of neural networks which is used to solve efficiently problems arising in

practical engineering applications.
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