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1. Introduction

The concept of generalized closed (briefly g-closed) sets in topological spaces was

introduced by Levine [20] in 1970. These sets were also considered by Dunham [15]

and Dunham and Levine [16]. The notion of αg-closed [12] (resp. gs-closed [11],
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gp-closed [6], g b-closed or γg-closed [18], gsp-closed or gβ -closed [14]) sets is in-

troduced and investigated. In 1981, Munshy and Bassan [25] introduced the notion

of generalized continuous (briefly g-continuous) functions which are called in [7]

as g-irresolute functions. Furthermore, the notion of gs-irresolute [11] (resp. gp-

irresolute [6], αg-irresolute [12], g b-irresolute [3], gsp-irresolute [32]) functions is

introduced.

Recently, the present authors [29], [30] have introduced the notions of m-structures,

m-spaces and M -continuity. In [27], the first author introduced the notion of gener-

alized m-closed (briefly gm-closed) sets and tried to unify certain types of modifica-

tions of g-closed sets such as stated above. In this paper, by using gm-closed sets, we

obtain the unified definitions and properties for g-irresoluteness, gs-irresoluteness,

gp-irresoluteness, αg-irresoluteness, g b-irresoluteness and gsp-irresoluteness.

2. Preliminaries

Let (X ,τ) be a topological space and A a subset of X . The closure of A and the

interior of A are denoted by Cl(A) and Int(A), respectively. We recall some generalized

open sets in topological spaces.

Definition 1. Let (X ,τ) be a topological space. A subset A of X is said to be

(1) α-open [26] if A⊂ Int(Cl(Int(A))),

(2) semi-open [19] if A⊂ Cl(Int(A)),

(3) preopen [22] if A⊂ Int(Cl(A)),

(4) β -open [1] or semi-preopen [4] if A⊂ Cl(Int(Cl(A))),

(5) γ-open [18] or b-open [5] if A⊂ Int(Cl(A))∪Cl(Int(A)).

The family of all α-open (resp. semi-open, preopen, β -open, γ-open) sets in (X ,τ)

is denoted by α(X ) (resp. SO(X ), PO(X ), β(X ) or SPO(X ), γ(X ) or BO(X )).
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Definition 2. Let (X ,τ) be a topological space. A subset A of X is said to be α-

closed [23] (resp. semi-closed [10], preclosed [22], β -closed [1] or semi-preclosed [4],

γ-closed [18] or b-closed [5]) if the complement of A is α-open (resp. semi-open,

preopen, β -open, γ-open).

Definition 3. Let (X ,τ) be a topological space and A a subset of X . The intersection

of all α-closed (resp. semi-closed, preclosed, β -closed, γ-closed) sets of X containing

A is called the α-closure [23] (resp. semi-closure [10], preclosure [17], β -closure [2]

or semi-preclosure [4], γ-closure [18] or b-closure [5]) of A and is denoted by αCl(A)

(resp. sCl(A), pCl(A), βCl(A) or spCl(A)), Clγ(A) or bCl(A)).

Definition 4. Let (X ,τ) be a topological space and A a subset of X . The union of

all α-open (resp. semi-open, preopen, β -open, γ-open) sets of X contained in A is

called the α-interior [23] (resp. semi-interior [10], preinterior [17], β -interior [2] or

semi-preinterior [4], γ-interior [18] or b-interior [5]) of A and is denoted by αInt(A)

(resp. sInt(A), pInt(A), β Int(A) or spInt(A)), Intγ(A) or bInt(A)).

3. Minimal structures and m-continuity

Definition 5. Let X be a nonempty set and P (X ) the power set of X . A subfamily mX

of P (X ) is called a minimal structure (briefly m-structure) on X [29], [30] if ; ∈ mX

and X ∈ mX .

By (X , mX ), we denote a nonempty set X with an m-structure mX on X and call

it an m-space. Each member of mX is said to be mX -open and the complement of an

mX -open set is said to be mX -closed.

Remark 1. Let (X ,τ) be a topological space. Then the family α(X ) is a topology finer

than τ. The families SO(X ), PO(X ), β(X ), and γ(X ) are all m-structures on X .
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Definition 6. Let X be a nonempty set and mX an m-structure on X . For a subset A of

X , the mX -closure of A and the mX -interior of A are defined in [21] as follows:

(1) mCl(A) = ∩{F : A⊂ F, X − F ∈ mX},

(2) mInt(A) = ∪{U : U ⊂ A, U ∈ mX }.

Remark 2. Let (X ,τ) be a topological space and A a subset of X . If mX = τ (resp.

SO(X ), PO(X ), α(X ), β(X ), γ(X )), then we have

(1) mCl(A) = Cl(A) (resp. sCl(A), pCl(A), αCl(A), βCl(A), Clγ(A)),

(2) mInt(A) = Int(A) (resp. sInt(A), pInt(A), αInt(A), β Int(A), Intγ(A)).

Lemma 1. (Maki et al. [21]). Let X be a nonempty set and mX a minimal structure on

X. For subsets A and B of X, the following properties hold:

(1) mCl(X − A) = X −mInt(A) and mInt(X − A) = X −mCl(A),

(2) If (X − A) ∈ mX , then mCl(A) = A and if A∈ mX , then mInt(A) = A,

(3) mCl(;) = ;, mCl(X ) = X, mInt(;) = ; and mInt(X ) = X,

(4) If A⊂ B, then mCl(A) ⊂mCl(B) and mInt(A)⊂mInt(B),

(5) A⊂mCl(A) and mInt(A) ⊂ A,

(6) mCl(mCl(A)) =mCl(A) and mInt(mInt(A)) =mInt(A).

Lemma 2. (Popa and Noiri [29]). Let X be a nonempty set with a minimal structure

mX and A a subset of X. Then x ∈ mCl(A) if and only if U ∩ A 6= ; for every U ∈ mX

containing x.

Definition 7. An m-structure mX on a nonempty set X is said to have propertyB [21]

if the union of any family of subsets belong to mX belongs to mX .

Remark 3. If (X ,τ) is a topological space, then SO(X ), PO(X ), α(X ), β(X ) and γ(X )

have propertyB ,

Lemma 3. (Popa and Noiri [30]). Let X be a nonempty set and mX an m-structure on

X satisfying propertyB . For a subset A of X, the following properties hold:
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(1) A∈ mX if and only if mInt(A) = A,

(2) A is mX -closed if and only if mCl(A) = A,

(3) mInt(A) ∈ mX and mCl(A) is mX -closed.

Definition 8. A function f : (X , mX )→ (Y, mY ) is said to be M-continuous at a point

x ∈ X [30] if for each x ∈ X and each V ∈ mY containing f (x), there exists U ∈ mX

containing x such that f (U) ⊂ V . A function f : (X , mX ) → (Y, mY ) is said to be

M-continuous if it has this property at each point x ∈ X .

Theorem 1. For a function f : (X , mX )→ (Y, mY ), the following properties are equiva-

lent:

(1) f is M-continuous at x ∈ X;

(2) x ∈mInt( f −1(V )) for every V ∈ mY containing f(x);

(3) x ∈ f −1(mCl( f (A))) for every subset A of X with x ∈mCl(A);

(4) x ∈ f −1(mCl(B)) for every subset B of Y with x ∈mCl( f −1(B));

(5) x ∈mInt( f −1(B)) for every subset B of Y with x ∈ f −1(mInt(B));

(6) x ∈ f −1(K) for every mY -closed set K of Y such that x ∈mCl( f −1(K)).

Proof. (1) ⇒ (2): Let V ∈ mY containing f (x). Then, there exists U ∈ mX con-

taining x such that f (U) ⊂ V . Thus x ∈ U ⊂ f −1(V ). Since U ∈ mX , we have

x ∈mInt( f −1(V )).

(2) ⇒ (3): Let A be any subset of X . Let x ∈ mCl(A) and V ∈ mY containing

f (x). Then x ∈mInt( f −1(V )). There exists U ∈ mX such that x ∈ U ⊂ f −1(V ). Since

x ∈mCl(A), by Lemma 2, U ∩A 6= ; and ; 6= f (U ∩A) ⊂ f (U)∩ f (A)⊂ V ∩ f (A). Since

V ∈ mY containing f (x), f (x) ∈mCl( f (A)) and hence x ∈ f −1(mCl( f (A)).

(3) ⇒ (4): Let B be any subset of Y and x ∈ mCl( f −1(B)), then by (3) x ∈

f −1(mCl( f ( f −1(B)))) ⊂ f −1(mCl(B)). Hence, we have x ∈ f −1(mCl(B)).

(4) ⇒ (5): Let B be any subset of Y such that x /∈ mInt( f −1(B)). Then x ∈

X − mInt( f −1(B)) = mCl(X − f −1(B)) = mCl( f −1(Y − B)). By (4), we have x ∈
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f −1(mCl(Y −B)) = f −1(Y −mInt(B)) = X − f −1(mInt(B)). Hence, x /∈ f −1(mInt(B)).

(5) ⇒ (6): Let K be any mY -closed set of Y such that x /∈ f −1(K). Then x ∈

X − f −1(K) = f −1(Y −K) = f −1(mInt(Y −K)) because Y −K is mY -open. By (5), x ∈

mInt( f −1(Y −K)) =mInt(X − f −1(K)) = X −mCl( f −1(K)). Hence x /∈mCl( f −1(K)).

(6)⇒ (2): Let x ∈ X and V ∈ mY containing f (x). Suppose that x /∈mInt( f −1(V )).

Then x ∈ X −mInt( f −1(V )) = mCl(X − f −1(V )) = mCl( f −1(Y − V )). By (6), x ∈

f −1(Y − V ) = X − f −1(V ). Hence x /∈ f −1(V ). This contraries to the hypothesis.

(2) ⇒ (1): Let V ∈ mY containing f (x). By (2), x ∈ mInt( f −1(V )) and hence

there exists U ∈ mX containing x such that x ∈ U ⊂ f −1(V ). Therefore, f (U) ⊂ V

and f is M -continuous at x .

For a function f : (X , mX )→ (Y, mY ), we define DM( f ) as follows:

DM( f ) = {x ∈ X : f is not M -continuous at x}.

Theorem 2. For a function f : (X , mX )→ (Y, mY ), the following properties hold:

DM ( f ) =
⋃

G∈mY
{ f −1(G)−mInt( f −1(G))}

=

⋃
B∈P (Y ) { f

−1(Int(B))−mInt( f −1(B))}

=

⋃
B∈P (Y ) {mCl( f −1(B))− f −1(mCl(B))}

=

⋃
A∈P (X ) {mCl(A)− f −1(mCl( f (A)))}

=

⋃
K∈F {mCl( f −1(K))− f −1(K)},

where F is the family of mY -closed sets of Y .

Proof. We show only the first equality because the proofs of the others are similar

to the first one. Let x ∈ DM ( f ). By Theorem 1, there exists V ∈ mY such that

f (x) ∈ V and x /∈ mInt( f −1(V )). Therefore, we have x ∈ f −1(V )−mInt( f −1(V )) ⊂
⋃

G∈mY
{ f −1(G)−mInt( f −1(G))}. Conversely, let x ∈

⋃
G∈mY
{ f −1(G)−mInt( f −1(G))}.

There exists V ∈ mY such that x ∈ f −1(V )−mInt( f −1(V )). By Theorem 1, x ∈ DM( f ).

Theorem 3. (Popa and Noiri [29]). For a function f : (X , mX )→ (Y, mY ), the following

properties are equivalent:
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(1) f is M-continuous;

(2) f −1(V ) =mInt( f −1(V )) for every V ∈ mY ;

(3) f (mCl(A)) ⊂ Cl( f (A)) for every subset A of X;

(4) mCl( f −1(B)) ⊂ f −1(mCl(B)) for every subset B of Y;

(5) f −1(Int(B)) ⊂mInt( f −1(B)) for every subset B of Y;

(6) mCl( f −1(K)) = f −1(K) for every mY -closed set K of Y.

Corollary 1. (Popa and Noiri [29]). For a function f : (X , mX )→ (Y, mY ), where mX

has propertyB , the following properties are equivalent:

(1) f is M-continuous;

(2) f −1(V ) is mX -open for every V ∈ mY ;

(3) f −1(F) is mX -closed in X for every mY -closed set F of Y.

Definition 9. A function f : (X , mX ) → (Y, mY ) is said to be M ∗-continuous [24] if

f −1(V ) is mX -open for each mY -open set V of Y .

Remark 4. (1) If f : (X , mX ) → (Y, mY ) is M ∗-continuous, then it is M -continuous.

By Example 3.4 of [24], an M -continuous function may not be M ∗-continuous.

(2) If mX has propertyB , then M -continuity and M ∗-continuity are equivalent.

4. gm-closed sets and gM -continuity

Definition 10. Let (X ,τ) be a topological space. A subset A of X is said to be

(1) g-closed [20] if Cl(A) ⊂ U whenever A⊂ U and U ∈ τ,

(2) αg-closed [12] if αCl(A)⊂ U whenever A⊂ U and U ∈ τ,

(3) gs-closed [11] if sCl(A)⊂ U whenever A⊂ U and U ∈ τ,

(4) gp-closed [6] if pCl(A) ⊂ U whenever A⊂ U and U ∈ τ,

(5) gb-closed or γg-closed [18] if bCl(A) ⊂ U whenever A⊂ U and U ∈ τ,

(6) gsp-closed [14] or gβ -closed if spCl(A)⊂ U whenever A⊂ U and U ∈ τ,
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Definition 11. A subset A of a topological space is said to be g-open (resp. gs-open,

gp-open, αg-open, g b-open, gsp-open) if X − A is g-closed (resp. gs-closed, gp-

closed αg-closed, g b-closed, gsp-closed).

The family of all g-open (resp. gs-open, gp-open, αg-open, g b-open, gsp-open)

sets of X is denoted by GO(X ) (resp. GSO(X ), GPO(X ), αGO(X ), GBO(X ), GSPO(X )).

Definition 12. Let (X ,τ) be a topological space and A a subset of X . The intersection

of all g-closed (resp. αg-closed, gs-closed, gp-closed, gsp-closed, g b-closed) sets of

X containing A is called the g-closure [15] (resp. αg-closure, gs-closure, gp-closure,

gsp-closure, gb-closure) of A and is denoted by Clg(A) (resp. αClg(A), sClg(A), pClg(A),

spClg(A), bClg(A)).

Definition 13. Let (X ,τ) be a topological space and A a subset of X . The union of all

g-open (resp. αg-open, gs-open, gp-open, gsp-open, g b-open) sets of X contained in

A is called the g-interior [9] (resp. αg-interior, gs-interior, gp-interior, gsp-interior, gb-

interior) of A and is denoted by Intg(A) (resp. αIntg(A), sIntg(A), pIntg(A), spIntg(A),

bIntg(A)).

Remark 5. Let (X ,τ) be a topological space and A a subset of X .

(1) Then, GO(X ), GSO(X ), GPO(X ), αGO(X ) and GSPO(X ) are all m-structures

on X . Hence, if we put mX = GO(X ) (resp. αGO(X ), GSO(X ), GPO(X ), GSPO(X )),

then we have

(i) mCl(A) = Clg(A) (resp. αClg(A), sClg(A), pClg(A), spClg(A)),

(ii) mInt(A) = Intg(A) (resp. αIntg(A)), sIntg(A), pIntg(A), spIntg(A)).

(2) If mX = GO(X ), then by Lemma 1 we obtain the results established in Theorem

2.1 (4), (5) and Theorem 2.8 (2), (3), (5), (6) in [9]. By Lemma 2, we obtain the

result established in Theorem 2.1 (4) in [9].

(3) The m-structures GO(X ), GSO(X ), GPO(X ), αGO(X ), GSPO(X ) and GBO(X )

do not have propertyB , in general.
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Definition 14. Let (X ,τ) be a topological space and mX an m-structure on X . A

subset A of X is said to be generalized m-closed (briefly gm-closed) [27] if mCl(A)⊂ U

whenever A⊂ U and U ∈ τ.

The complement of a gm-closed set is said to be gm-open. The family of all gm-

open sets of a topological space (X ,τ) is denoted by GMO(X ). Obviously, GMO(X ) is

an m-structure on X and is called a gm-structure on X .

Remark 6. Let (X ,τ) be a topological space and mX an m-structure on X . We put

mX = τ (resp. SO(X ), PO(X ), α(X ), SPO(X ), BO(X )). Then, a gm-closed set is a

g-closed (resp. gs-closed, gp-closed, αg-closed, gsp-closed, g b-closed) set.

Definition 15. A function f : (X ,τ) → (Y,σ) is said to be g-irresolute [7] or g-

continuous [25] (resp. gs-irresolute [11], gp-irresolute [6], αg-irresolute [12], gsp-

irresolute [32], gb-irresolute [3]) if f −1(K) is a g-closed (resp. gs-closed, gp-closed,

αg-closed, gsp-closed, g b-closed) in X for every g-closed (resp. gs-closed, gp-closed,

αg-closed, gsp-closed, g b-closed) set K of Y .

Definition 16. A function f : (X ,τ)→ (Y,σ) is said to be

(1) gM-continuous at a point x ∈ X if f : (X , GMO(X )) → (Y, GMO(Y )) is M -

continuous at a point x ∈ X . The function f : (X ,τ) → (Y,σ) is said to be gM-

continuous if it is gM -continuous at each point x ∈ X .

(2) gM-irresolute if f : (X , GMO(X ))→ (Y, GMO(Y )) is M ∗-continuous.

Remark 7. (1) Every gM -irresolute function is gM -continuous.

(2)If mX = GO(X ) (resp. GSO(X ), GPO(X ), αGO(X ), GSPO(X ), BO(X )), mY

= GO(Y ) (resp. GSO(Y ), GPO(Y ), αGO(Y ), GSPO(Y ), BO(Y )) and f : (X ,τ) →

(Y,σ) is gM -irresolute, then f is g-irresolute (resp. gs-irresolute, gp-irresolute, αg-

irresolute, gsp-irresolute, g b-irresolute).
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Definition 17. Let (X ,τ) be a topological space and GMO(X ) a gm-structure on X .

For a subset A of X , the gm-closure of A and the gm-interior of A are defined as follows:

(1) mClg(A) = ∩{F : A⊂ F, X − F ∈ GMO(X )},

(2) mIntg(A) = ∪{U : U ⊂ A, U ∈ GMO(X )}.

By Definition 16 and Theorem 3, we obtain the following theorem and corollary.

Theorem 4. For a function f : (X ,τ)→ (Y,σ), the following properties are equivalent:

(1) f is gM-continuous;

(2) f −1(V ) =mIntg( f
−1(V )) for every gm-open set V of Y;

(3) mClg( f
−1(F)) = f −1(F) for every gm-closed set F of Y;

(4) mClg( f
−1(B)) ⊂ f −1(mClg(B)) for every subset B of Y;

(5) f (mClg(A)) ⊂mClg( f (A)) for every subset A of X;

(6) f −1(mIntg(B)) ⊂mIntg( f
−1(B)) for every subset B of Y.

Corollary 2. For a function f : (X ,τ) → (Y,σ), where GMO(X) has property B , the

following properties are equivalent:

(1) f is gM-continuous;

(2) f −1(V ) is gm-open for every gm-open set V of Y;

(3) f −1(F) is gm-closed for every gm-closed set F of Y.

Let (X ,τ) be a topological space and GMO(X ) a gm-structure on X . For a function

f : (X ,τ) → (Y,σ), we denote by DgM( f ) the set of all points of X at which the

function f is not gM -continuous. Then by Definition 16 and Theorem 4, we obtain

the following theorem.

Theorem 5. For a function f : (X ,τ)→ (Y,σ), the following properties hold:

DgM( f ) =
⋃

G∈GMO(Y ){ f
−1(G)−mIntg( f

−1(G))}

=

⋃
B∈P (Y ) { f

−1(mIntg(B))−mIntg( f
−1(B))}

=

⋃
B∈P (Y ) {mClg( f

−1(B))− f −1(mClg(B))}
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=

⋃
A∈P (X ) {mClg(A)− f −1(mClg( f (A)))}

=

⋃
K∈F g {mClg( f

−1(K))− f −1(K)},

where F g is the family of gm-closed sets of Y .

Definition 18. Let (X , mX ) be an m-space and A a subset of X . The mX -frontier of A,

mFr(A), [30] is defined by mFr(A) = mCl(A)∩mCl(X − A) =mCl(A)−mInt(A).

If (X ,τ) is a topological space and GMO(X ) is a gm-structure on X , then gmFr(A) =

mClg(A)∩mClg(X − A) =mClg(A)−mIntg(A).

Theorem 6. The set of all points of X at which a function f : (X , mX ) → (Y, mY ) is

not M-continuous is identical with the union of the m-frontiers of the inverse images of

mY -open sets containing f(x).

Proof. Suppose that f is not M -continuous at x ∈ X . There exists an mY -open

set V of Y containing f (x) such that U ∩ (X − f −1(V )) 6= ; for every mX -open set U

containing x . By Lemma 2, we have x ∈ mCl(X − f −1(V )). On the other hand, we

have x ∈ f −1(V ) and hence x ∈mFr( f −1(V )).

Conversely, suppose that f is M -continuous at x ∈ X . Then, for any mY -open set

V of Y containing f (x), there exists U ∈ mX containing x such that f (U) ⊂ V ; hence

U ⊂ f −1(V ). Therefore, we have x ∈ U ⊂ mInt( f −1(V )). This contradicts to the fact

that x ∈mFr( f −1(V )).

Corollary 3. Let (X ,τ) (resp. (Y,σ)) be a topological space and GOM(X) (resp. GOM(Y))

a gm-structure on X (resp. Y). Then, the set of all points at x ∈ X which a function

f : (X ,τ)→ (Y,σ) is not gM-continuous is identical with the union of the gm-frontiers

of the inverse images of gm-open sets containing f(x).

Proof. This follows immediately from Theorem 6.
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5. Some properties of gM -continuity

In this section, we use gm-open sets and gm-closed sets in order to obtain some

properties of gm-T2 spaces and the preservation theorems of gm-compact spaces and

gm-connected spaces. Furthermore, we investigate some properties of strongly m-

closed graphs.

Definition 19. An m-space (X , mX ) is said to be m-T2 [29] if for any distinct points

x , y, there exist U , V ∈ mX such that x ∈ U , y ∈ V , and U ∩ V = ;.

Remark 8. (1) Let (X ,τ) be a topological space, then (X ,τ) is said to be gm-T2 if the

m-space (X , GMO(X )) is m-T2.

(2) If GMO(X ) = GO(X ) (resp. GSO(X ), GPO(X ), αGO(X ) GBO(X ), GSPO(X ))

and (X ,τ) is mg-T2, then (X ,τ) is said to be g-T2 [8] (resp. gs-T2, gp-T2, αg-T2,

g b-T2, gsp-T2).

Lemma 4. (Popa and Noiri [29]). If f : (X , mX )→ (Y, mY ) is an M-continuous injec-

tion and (Y, mY ) is m-T2, then (X , mX ) is m-T2.

Theorem 7. If f : (X ,τ)→ (Y,σ) is a gM-continuous injection and (Y,σ) is a gm-T2-

space, then (X ,τ) is gm-T2.

Proof. The proof follows from Remark 8 and Lemma 4.

Corollary 4. If f : (X ,τ)→ (Y,σ) is a gM-irresolute injection and (Y,σ) is a gm-T2-

space, then (X ,τ) is gm-T2.

Definition 20. An m-space (X , mX ) is said to be m-compact [29] if every cover of X

by sets of mX has a finite subcover.

A subset K of an m-space (X , mX ) is said to be m-compact [29] if every cover of K

by subsets of mX has a finite subcover.
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Remark 9. (1) If (X ,τ) is a topological space and (X , GMO(X )) is m-compact, then

(X ,τ) is said to be gm-compact.

(2) If GMO(X ) = GO(X ) (resp. GSO(X ), GPO(X ), αGO(X )), then we obtain the

definition of GO-compactness [7] (resp. GSO-compactness [11], GPO-compactness

[6], αGO-compactness [12]).

Lemma 5. (Popa and Noiri [29]). If a function f : (X , mX )→ (Y, mY ) is M-continuous

and K is an m-compact set of X, then f(K) is m-compact.

Theorem 8. If f : (X ,τ)→ (Y,σ) is a gM-continuous function and K is a gm-compact

set of X, then f(K) is gm-compact.

Proof. The proof follows from Definition 20 and Lemma 5.

Corollary 5. If f : (X ,τ)→ (Y,σ) is a gM-irresolute function and K is a gm-compact

set of X, then f(K) is gm-compact.

Remark 10. If GMO(X ) = GO(X ) (resp. GSO(X ), GPO(X ), αGO(X )) and GMO(Y ) =

GO(Y ) (resp. GSO(Y ), GPO(Y ), αGO(Y )), then by Corollary 5 we obtain the result

established in Proposition 9(ii) of [7] (resp. Proposition 5.5(iii) of [11], Theorem

5.5(iii) of [6], Proposition 4.3(iii) [12]).

Definition 21. An m-space (X , mX ) is said to be m-connected [29] if X cannot be

written as the union of two nonempty disjoint mX -open sets.

Remark 11. Let (X ,τ) be a topological space and GMO(X ) a gm-structure on X , then

(1) (X ,τ) is said to be gm-connected if X cannot be written as the union of two

nonempty disjoint gm-open sets.

(2) If GMO(X ) = GO(X ) (resp. αGO(X )), then we obtain the definition of GO-

connected spaces [7] (resp. αGO-connected spaces [12]).
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Lemma 6. If f : (X , mX ) → (Y, mY ) is an M ∗-continuous surjection and (X , mX ) is

m-connected, then (Y, mY ) is m-connected.

Proof. Suppose that (Y, mY ) is not m-connected. Then there exist nonempty

mY -open sets V1 and V2 such that V1 ∩ V2 = ; and V1 ∪ V2 = Y . Hence we have

f −1(V1) ∩ f −1(V2) = ; and f −1(V1) ∪ f −1(V2) = X . Since f is an M ∗-continuous sur-

jection, f −1(V1) and f −1(V2) are nonempty mX -open sets. Therefore, (X , mX ) is not

m-connected. This is a contradiction and hence (Y, mY ) is m-connected.

Theorem 9. If f : (X ,τ) → (Y,σ) is a gM-irresolute surjection and (X ,τ) is gm-

connected, then (Y,σ) is gm-connected.

Proof. The proof follows from Definition 21, Remark 11 and Lemma 6.

Remark 12. If GMO(X )= GO(X ), then we obtain the result established in Proposition

13 of [7].

Definition 22. A function f : (X , mX ) → (Y, mY ) is said to have a strongly m-closed

graph (resp. m-closed graph) [29] if for each (x , y) ∈ (X × Y ) − G( f ), there exist

U ∈ mX containing x and V ∈ mY containing y such that [U ×mCl(V )] ∩ G( f ) = ;

(resp. [U × V ]∩G( f ) = ;).

Remark 13. Let (X ,τ) (resp. (Y,σ)) be a topological space and GMO(X ) (resp.

GMO(Y )) a gm-structure on X (resp. Y ). A function f : (X ,τ) → (Y,σ) is said to

have a strongly gm-closed graph (resp. gm-closed graph) if for each (x , y) ∈ (X × Y )−

G( f ), there exist U ∈ GMO(X ) containing x and V ∈ GMO(Y ) containing y such that

[U ×mClg(V )]∩G( f ) = ; (resp. [U × V ]∩G( f ) = ;).

Lemma 7. (Popa and Noiri [29]). A function f : (X , mX )→ (Y, mY ) is M-continuous

and (Y, mY ) is m-T2, then f has a strongly m-closed graph.
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Theorem 10. Let (X ,τ) (resp. (Y,σ)) be a topological space and GMO(X) (resp.

GMO(Y )) a gm-structure on X (resp. Y ). If a function f : (X ,τ) → (Y,σ) is gM-

continuous and (Y,σ) is gm-T2, then f has a strongly gm-closed graph.

Proof. The proof follows from Definition 22, Remark 13 and Lemma 7.

Corollary 6. If a function f : (X ,τ)→ (Y,σ) is gM-irresolute and (Y,σ) is gm-T2, then

f has a strongly gm-closed graph.

Remark 14. If (Y,σ) is g-T2 (resp. gs-T2, gp-T2, αg-T2, g b-T2, gsp-T2) and f :

(X ,τ) → (Y,σ) is a g-irresolute (resp. gs-irresolute, gp-irresolute, αg-irresolute,

g b-irresolute, gsp-irresolute) function, then G( f ) is strongly g-closed (resp. strongly

gs-closed, strongly gp-closed, strongly αg-closed, strongly g b-closed, strongly gsp-

closed).

Lemma 8. (Popa and Noiri [29]). If f : (X , mX )→ (Y, mY ) is a surjective function with

a strongly m-closed graph, then (Y, mY ) is m-T2.

Theorem 11. Let (X ,τ) (resp. (Y,σ)) be a topological space and GMO(X) (resp.

GMO(Y )) a gm-structure on X (resp. Y ). If f : (X ,τ)→ (Y,σ) is a surjective function

with a strongly gm-closed graph, then (Y,σ) is gm-T2.

Proof. The proof follows from Definition 22 and Lemma 8.

Remark 15. If f : (X ,τ) → (Y,σ) is a surjective function with a strongly g-closed

(resp. strongly gs-closed, strongly gp-closed, strongly αg-closed, strongly g b-closed,

strongly gsp-closed), then Y is g-T2 (resp. gs-T2, gp-T2, αg-T2, g b-T2, gsp-T2).

Lemma 9. (Popa and Noiri [29]). Let f : (X , mX )→ (Y, mY ) be a function, where mX

has propertyB . If f is an M-continuous surjection with an m-closed graph, then (X , mX )

is m-T2.
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Theorem 12. Let (X ,τ) (resp. (Y,σ)) be a topological space and GMO(X) (resp.

GMO(Y )) a gm-structure on X (resp. Y ) and GMO(X ) a gm-structure satisfying prop-

erty B . If f : (X ,τ) → (Y,σ) is a gM-continuous surjection with a gm-closed graph,

then X is gm-T2.

Proof. The proof follows from Definition 22 and Lemma 9.

Corollary 7. If a function f : (X ,τ) → (Y,σ) is a gM-irresolute surjection with a gm-

closed graph and GMO(X ) has propertyB , then (X ,τ) is gm-T2.

Definition 23. Let A a subset of an m-space (X , mX ). A point x ∈ X is called an

mθ -adherent point of A [31] if mCl(U) ∩ A 6= ; for every mX -open set U containing

x . The set of all mθ -adherent points of A is called the mθ -closure of A and is denoted

by mClθ (A). If A = mClθ (A), then A is said to be mθ -closed. The complement of a

mθ -closed set is said to be mθ -open. The union of all mθ -open sets contained in A is

called the mθ -interior of A and is denoted by mIntθ (A).

Remark 16. Let A be a subset of a topological space (X ,τ) and mX an m-structure on

X . If mX = τ (resp. SO(X ), PO(X )), then mClθ(A) = Clθ (A) [33] (resp. sClθ(A) [13],

pClθ (A) [28]).

Lemma 10. (Popa and Noiri [31]). Let A be a subset of an m-space (X , mX ). Then the

following properties hold:

(1) If A is mX -open in X, then mClθ (A) =mCl(A),

(2) If mX has propertyB , then mClθ(A) is mX -closed in X for every subset A of X.

Definition 24. An m-space (X , mX ) is said to be m-regular [31] if for each mX -closed

set F of X and each point x /∈ F , there exist disjoint mX -open sets U and V such that

x ∈ U and F ⊂ V .

Lemma 11. (Popa and Noiri [31]). Let (X , mX ) be an m-regular m-space. Then the

following properties hold:
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(1) mClθ (A) =mCl(A) for every subset A of X,

(2) Every mX -open set is mθ -open.

Theorem 13. Let (Y, mY ) be an m-regular m-space and mY have property B . For a

function f : (X , mX )→ (Y, mY ), the following properties are equivalent:

(1) f is M-continuous;

(2) f −1(mClθ(B)) =mCl( f −1(mClθ (B))) for every subset B of Y;

(3) f −1(K) =mCl( f −1(K)) for every mθ -closed set K of Y;

(4) f −1(V ) =mInt( f −1(V )) for every mθ -open set V of Y.

Proof. (1) ⇒ (2): Let B be any subset of Y . Then, by Lemma 10 mClθ(B) is mY -

closed in Y . By Theorem 3, we obtain f −1(mClθ (B)) =mCl( f −1(mClθ(B))).

(2) ⇒ (3): Let K be an mθ -closed set of Y . Then mClθ (K) = K . Then by (2) we

obtain f −1(K) =mCl( f −1(K)).

(3) ⇒ (4): Let V be an mθ -open set of Y . Then Y − V is mθ -closed and f −1(Y −

V ) =mCl( f −1(Y −V )). Therefore, X − f −1(V ) = X −mInt( f −1(V )). Hence we obtain

f −1(V ) =mInt( f −1(V )).

(4) ⇒ (1): Let V be any mY -open set of Y . Since Y is m-regular, by Lemma

11 V is mθ -open and by (4) we have f −1(V ) = mInt( f −1(V )). By Theorem 1, f is

M -continuous.

Theorem 14. Let (Y, mY ) be m-regular and let mX and mY have property B . For a

function f : (X , mX )→ (Y, mY ), the following properties are equivalent:

(1) f is M-continuous;

(2) f −1(mClθ(B)) is mX -closed for every subset B of Y;

(3) f −1(K) is mX -closed for every mθ -closed set K of Y;

(4) f −1(V ) is mX -open for every mθ -open set V of Y.

Proof. The proof follows from Theorem 13 and Lemma 3.
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Let (X ,τ) be a topological space and GMO(X ) a gm-structure on X . For a sub-

set A of X , we denote the gm-θ -closure of A by gmClθ(A). If A = gmClθ(A), then A

is said to be gmθ -closed. The complement of a gmθ -closed set is said to be gmθ -open.

By Theorems 13 and 14, we obtain the following theorems:

Theorem 15. Let (X ,τ) (resp. (Y,σ)) be a topological space and GMO(X) (resp.

GMO(Y )) a gm-structure on X (resp. Y ) and let GMO(Y ) be gm-regular and have

propertyB . For a function f : (X ,τ)→ (Y,σ), the following properties are equivalent:

(1) f is gM-continuous;

(2) f −1(gmClθ(B)) =mClg( f
−1(gmClθ(B))) for every subset B of Y;

(3) f −1(K) =mClg( f
−1(K)) for every gmθ -closed set K of Y;

(4) f −1(V ) =mIntg( f
−1(V )) for every gmθ -open set V of Y.

Theorem 16. Let (X ,τ) (resp. (Y,σ)) be a topological space and GMO(X) (resp.

GMO(Y )) a gm-structure on X (resp. Y ), where GMO(X) and GMO(Y) have property

B , and let GMO(Y ) be gm-regular. For a function f : (X ,τ) → (Y,σ), the following

properties are equivalent:

(1) f is gM-continuous;

(2) f −1(gmClθ(B)) is gm-closed for every subset B of Y;

(3) f −1(K) is gm-closed for every gmθ -closed set K of Y;

(4) f −1(V ) is gm-open for every gmθ -open set V of Y.
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