EUROPEAN JOURNAL OF PURE AND APPLIED MATHEMATICS

Vol. 2, No. 4, 2009, (473-493)

ISSN 1307-5543 - www.ejpam.com

A Generalization of Some Forms of *g*-Irresolute

Functions

Takashi Noiri 1* and Valeriu Popa 2

Abstract. In this paper, by using gm-closed sets [27], we obtain the unified definitions and properties for g-continuity, gg-continuity, gg-continuity, gg-continuity, gg-continuity, gg-continuity.

2000 Mathematics Subject Classifications: 54A05, 54C08, 54C10.

Key Words and Phrases: *m*-structure, *g*-closed, *gm*-closed, *gm*-continuous.

1. Introduction

The concept of generalized closed (briefly g-closed) sets in topological spaces was introduced by Levine [20] in 1970. These sets were also considered by Dunham [15] and Dunham and Levine [16]. The notion of αg -closed [12] (resp. gs-closed [11],

Email addresses: t.noiri@nifty.com (T. Noiri), vpopa@ub.ro (V. Popa)

¹ 2949-1 Shiokita-Cho, Hinagu, Yatsushiro-Shi, Kumamoto-Ken, 869-5142 Japan

² Department Of Mathematics, University Of Bacău, 600 114 Bacău, Romania

^{*}Corresponding author.

gp-closed [6], gb-closed or γg -closed [18], gsp-closed or $g\beta$ -closed [14]) sets is introduced and investigated. In 1981, Munshy and Bassan [25] introduced the notion of generalized continuous (briefly g-continuous) functions which are called in [7] as g-irresolute functions. Furthermore, the notion of gs-irresolute [11] (resp. gp-irresolute [6], αg -irresolute [12], gb-irresolute [3], gsp-irresolute [32]) functions is introduced.

Recently, the present authors [29], [30] have introduced the notions of m-structures, m-spaces and M-continuity. In [27], the first author introduced the notion of generalized m-closed (briefly gm-closed) sets and tried to unify certain types of modifications of g-closed sets such as stated above. In this paper, by using gm-closed sets, we obtain the unified definitions and properties for g-irresoluteness, gg-irresoluteness, gg-irresoluteness, gg-irresoluteness.

2. Preliminaries

Let (X, τ) be a topological space and A a subset of X. The closure of A and the interior of A are denoted by Cl(A) and Int(A), respectively. We recall some generalized open sets in topological spaces.

Definition 1. Let (X, τ) be a topological space. A subset A of X is said to be

- (1) α -open [26] if $A \subset Int(Cl(Int(A)))$,
- (2) semi-open [19] if $A \subset Cl(Int(A))$,
- (3) preopen [22] if $A \subset Int(Cl(A))$,
- (4) β -open [1] or semi-preopen [4] if $A \subset Cl(Int(Cl(A)))$,
- (5) γ -open [18] or b-open [5] if $A \subset Int(Cl(A)) \cup Cl(Int(A))$.

The family of all α -open (resp. semi-open, preopen, β -open, γ -open) sets in (X, τ) is denoted by $\alpha(X)$ (resp. SO(X), PO(X), $\beta(X)$ or SPO(X), $\gamma(X)$ or BO(X)).

Definition 2. Let (X, τ) be a topological space. A subset A of X is said to be α -closed [23] (resp. semi-closed [10], preclosed [22], β -closed [1] or semi-preclosed [4], γ -closed [18] or b-closed [5]) if the complement of A is α -open (resp. semi-open, preopen, β -open, γ -open).

Definition 3. Let (X, τ) be a topological space and A a subset of X. The intersection of all α -closed (resp. semi-closed, preclosed, β -closed, γ -closed) sets of X containing A is called the α -closure [23] (resp. semi-closure [10], preclosure [17], β -closure [2] or semi-preclosure [4], γ -closure [18] or b-closure [5]) of A and is denoted by α Cl(A) (resp. sCl(A), pCl(A), β Cl(A) or spCl(A)), Cl γ (A) or bCl(A)).

Definition 4. Let (X, τ) be a topological space and A a subset of X. The union of all α -open (resp. semi-open, preopen, β -open, γ -open) sets of X contained in A is called the α -interior [23] (resp. semi-interior [10], preinterior [17], β -interior [2] or semi-preinterior [4], γ -interior [18] or b-interior [5]) of A and is denoted by α Int(A) (resp. sInt(A), pInt(A), β Int(A) or spInt(A)), Int γ (A) or bInt(A)).

3. Minimal structures and *m*-continuity

Definition 5. Let X be a nonempty set and $\mathscr{P}(X)$ the power set of X. A subfamily m_X of $\mathscr{P}(X)$ is called a *minimal structure* (briefly *m-structure*) on X [29], [30] if $\emptyset \in m_X$ and $X \in m_X$.

By (X, m_X) , we denote a nonempty set X with an m-structure m_X on X and call it an m-space. Each member of m_X is said to be m_X -open and the complement of an m_X -open set is said to be m_X -closed.

Remark 1. Let (X, τ) be a topological space. Then the family $\alpha(X)$ is a topology finer than τ . The families SO(X), PO(X), $\beta(X)$, and $\gamma(X)$ are all m-structures on X.

Definition 6. Let X be a nonempty set and m_X an m-structure on X. For a subset A of X, the m_X -closure of A and the m_X -interior of A are defined in [21] as follows:

- $(1) \ \mathrm{mCl}(A) = \bigcap \{F : A \subset F, X F \in m_X\},\$
- $(2) \, \mathrm{mInt}(A) = \cup \{U : U \subset A, U \in m_X\}.$

Remark 2. Let (X, τ) be a topological space and A a subset of X. If $m_X = \tau$ (resp. SO(X), PO(X), $\alpha(X)$, $\beta(X)$, $\gamma(X)$), then we have

- (1) mCl(A) = Cl(A) (resp. sCl(A), pCl(A), $\alpha Cl(A)$, $\alpha Cl($
- (2) mInt(A) = Int(A) (resp. sInt(A), pInt(A), $\alpha Int(A)$, $\beta Int(A)$, $Int_{\gamma}(A)$).

Lemma 1. (Maki et al. [21]). Let X be a nonempty set and m_X a minimal structure on X. For subsets A and B of X, the following properties hold:

- (1) mCl(X A) = X mInt(A) and mInt(X A) = X mCl(A),
- (2) If $(X A) \in m_X$, then mCl(A) = A and if $A \in m_X$, then mInt(A) = A,
- (3) $mCl(\emptyset) = \emptyset$, mCl(X) = X, $mInt(\emptyset) = \emptyset$ and mInt(X) = X,
- (4) If $A \subset B$, then $mCl(A) \subset mCl(B)$ and $mInt(A) \subset mInt(B)$,
- (5) *A* ⊂ mCl(*A*) and mInt(*A*) ⊂ *A*,
- (6) mCl(mCl(A)) = mCl(A) and mInt(mInt(A)) = mInt(A).

Lemma 2. (Popa and Noiri [29]). Let X be a nonempty set with a minimal structure m_X and A a subset of X. Then $x \in \mathrm{mCl}(A)$ if and only if $U \cap A \neq \emptyset$ for every $U \in m_X$ containing x.

Definition 7. An m-structure m_X on a nonempty set X is said to have *property* \mathcal{B} [21] if the union of any family of subsets belong to m_X belongs to m_X .

Remark 3. If (X, τ) is a topological space, then SO(X), PO(X), $\alpha(X)$, $\beta(X)$ and $\gamma(X)$ have property \mathcal{B} ,

Lemma 3. (Popa and Noiri [30]). Let X be a nonempty set and m_X an m-structure on X satisfying property \mathcal{B} . For a subset A of X, the following properties hold:

- (1) $A \in m_X$ if and only if mInt(A) = A,
- (2) A is m_X -closed if and only if mCl(A) = A,
- (3) $mInt(A) \in m_X$ and mCl(A) is m_X -closed.

Definition 8. A function $f:(X,m_X)\to (Y,m_Y)$ is said to be *M-continuous* at a point $x\in X$ [30] if for each $x\in X$ and each $V\in m_Y$ containing f(x), there exists $U\in m_X$ containing x such that $f(U)\subset V$. A function $f:(X,m_X)\to (Y,m_Y)$ is said to be *M-continuous* if it has this property at each point $x\in X$.

Theorem 1. For a function $f:(X,m_X)\to (Y,m_Y)$, the following properties are equivalent:

- (1) f is M-continuous at $x \in X$;
- (2) $x \in mInt(f^{-1}(V))$ for every $V \in m_V$ containing f(x);
- (3) $x \in f^{-1}(\mathrm{mCl}(f(A)))$ for every subset A of X with $x \in \mathrm{mCl}(A)$;
- (4) $x \in f^{-1}(mCl(B))$ for every subset B of Y with $x \in mCl(f^{-1}(B))$;
- (5) $x \in mInt(f^{-1}(B))$ for every subset B of Y with $x \in f^{-1}(mInt(B))$;
- (6) $x \in f^{-1}(K)$ for every m_Y -closed set K of Y such that $x \in \mathrm{mCl}(f^{-1}(K))$.
- *Proof.* (1) \Rightarrow (2): Let $V \in m_Y$ containing f(x). Then, there exists $U \in m_X$ containing x such that $f(U) \subset V$. Thus $x \in U \subset f^{-1}(V)$. Since $U \in m_X$, we have $x \in \mathrm{mInt}(f^{-1}(V))$.
- (2) \Rightarrow (3): Let A be any subset of X. Let $x \in \mathrm{mCl}(A)$ and $V \in m_Y$ containing f(x). Then $x \in \mathrm{mInt}(f^{-1}(V))$. There exists $U \in m_X$ such that $x \in U \subset f^{-1}(V)$. Since $x \in \mathrm{mCl}(A)$, by Lemma 2, $U \cap A \neq \emptyset$ and $\emptyset \neq f(U \cap A) \subset f(U) \cap f(A) \subset V \cap f(A)$. Since $V \in m_Y$ containing f(x), $f(x) \in \mathrm{mCl}(f(A))$ and hence $x \in f^{-1}(\mathrm{mCl}(f(A)))$.
- (3) \Rightarrow (4): Let *B* be any subset of *Y* and $x \in \text{mCl}(f^{-1}(B))$, then by (3) $x \in f^{-1}(\text{mCl}(f(f^{-1}(B)))) \subset f^{-1}(\text{mCl}(B))$. Hence, we have $x \in f^{-1}(\text{mCl}(B))$.
- (4) \Rightarrow (5): Let *B* be any subset of *Y* such that $x \notin mInt(f^{-1}(B))$. Then $x \in X mInt(f^{-1}(B)) = mCl(X f^{-1}(B)) = mCl(f^{-1}(Y B))$. By (4), we have $x \in X mInt(f^{-1}(B)) = mCl(X f^{-1}(B)) = mCl(X f^{-1}(B))$

- $f^{-1}(\text{mCl}(Y B)) = f^{-1}(Y \text{mInt}(B)) = X f^{-1}(\text{mInt}(B))$. Hence, $x \notin f^{-1}(\text{mInt}(B))$.
- (5) ⇒ (6): Let *K* be any m_Y -closed set of *Y* such that $x \notin f^{-1}(K)$. Then $x \in X f^{-1}(K) = f^{-1}(Y K) = f^{-1}(\min(Y K))$ because Y K is m_Y -open. By (5), $x \in \min(f^{-1}(Y K)) = \min(X f^{-1}(K)) = X \min(f^{-1}(K))$. Hence $x \notin \min(f^{-1}(K))$.
- (6) \Rightarrow (2): Let $x \in X$ and $V \in m_Y$ containing f(x). Suppose that $x \notin mInt(f^{-1}(V))$. Then $x \in X - mInt(f^{-1}(V)) = mCl(X - f^{-1}(V)) = mCl(f^{-1}(Y - V))$. By (6), $x \in f^{-1}(Y - V) = X - f^{-1}(V)$. Hence $x \notin f^{-1}(V)$. This contraries to the hypothesis.
- (2) \Rightarrow (1): Let $V \in m_Y$ containing f(x). By (2), $x \in \text{mInt}(f^{-1}(V))$ and hence there exists $U \in m_X$ containing x such that $x \in U \subset f^{-1}(V)$. Therefore, $f(U) \subset V$ and f is M-continuous at x.

For a function $f:(X,m_X)\to (Y,m_Y)$, we define $D_M(f)$ as follows:

$$D_M(f) = \{x \in X : f \text{ is not } M \text{-continuous at } x\}.$$

Theorem 2. For a function $f:(X,m_X)\to (Y,m_Y)$, the following properties hold:

$$\begin{split} D_{M}(f) &= \bigcup_{G \in m_{Y}} \{f^{-1}(G) - \mathrm{mInt}(f^{-1}(G))\} \\ &= \bigcup_{B \in \mathscr{P}(Y)} \{f^{-1}(\mathrm{Int}(B)) - \mathrm{mInt}(f^{-1}(B))\} \\ &= \bigcup_{B \in \mathscr{P}(Y)} \{\mathrm{mCl}(f^{-1}(B)) - f^{-1}(\mathrm{mCl}(B))\} \\ &= \bigcup_{A \in \mathscr{P}(X)} \{\mathrm{mCl}(A) - f^{-1}(\mathrm{mCl}(f(A)))\} \\ &= \bigcup_{K \in \mathscr{F}} \{\mathrm{mCl}(f^{-1}(K)) - f^{-1}(K)\}, \end{split}$$

where \mathcal{F} is the family of m_V -closed sets of Y.

Proof. We show only the first equality because the proofs of the others are similar to the first one. Let $x \in D_M(f)$. By Theorem 1, there exists $V \in m_Y$ such that $f(x) \in V$ and $x \notin \text{mInt}(f^{-1}(V))$. Therefore, we have $x \in f^{-1}(V) - \text{mInt}(f^{-1}(V)) \subset \bigcup_{G \in m_Y} \{f^{-1}(G) - \text{mInt}(f^{-1}(G))\}$. Conversely, let $x \in \bigcup_{G \in m_Y} \{f^{-1}(G) - \text{mInt}(f^{-1}(G))\}$. There exists $V \in m_Y$ such that $x \in f^{-1}(V) - \text{mInt}(f^{-1}(V))$. By Theorem 1, $x \in D_M(f)$.

Theorem 3. (Popa and Noiri [29]). For a function $f:(X,m_X) \to (Y,m_Y)$, the following properties are equivalent:

- (1) f is M-continuous;
- (2) $f^{-1}(V) = mInt(f^{-1}(V))$ for every $V \in m_Y$;
- (3) $f(mCl(A)) \subset Cl(f(A))$ for every subset A of X;
- (4) $mCl(f^{-1}(B)) \subset f^{-1}(mCl(B))$ for every subset B of Y;
- (5) $f^{-1}(Int(B)) \subset mInt(f^{-1}(B))$ for every subset B of Y;
- (6) $mCl(f^{-1}(K)) = f^{-1}(K)$ for every m_Y -closed set K of Y.

Corollary 1. (Popa and Noiri [29]). For a function $f:(X,m_X) \to (Y,m_Y)$, where m_X has property \mathcal{B} , the following properties are equivalent:

- (1) f is M-continuous;
- (2) $f^{-1}(V)$ is m_X -open for every $V \in m_Y$;
- (3) $f^{-1}(F)$ is m_X -closed in X for every m_Y -closed set F of Y.

Definition 9. A function $f:(X,m_X) \to (Y,m_Y)$ is said to be M^* -continuous [24] if $f^{-1}(V)$ is m_X -open for each m_Y -open set V of Y.

Remark 4. (1) If $f:(X,m_X)\to (Y,m_Y)$ is M^* -continuous, then it is M-continuous. By Example 3.4 of [24], an M-continuous function may not be M^* -continuous.

(2) If m_X has property \mathcal{B} , then M-continuity and M^* -continuity are equivalent.

4. gm-closed sets and gM-continuity

Definition 10. Let (X, τ) be a topological space. A subset A of X is said to be

- (1) *g-closed* [20] if $Cl(A) \subset U$ whenever $A \subset U$ and $U \in \tau$,
- (2) αg -closed [12] if $\alpha Cl(A) \subset U$ whenever $A \subset U$ and $U \in \tau$,
- (3) gs-closed [11] if $sCl(A) \subset U$ whenever $A \subset U$ and $U \in \tau$,
- (4) gp-closed [6] if $pCl(A) \subset U$ whenever $A \subset U$ and $U \in \tau$,
- (5) *gb-closed* or γg -closed [18] if $bCl(A) \subset U$ whenever $A \subset U$ and $U \in \tau$,
- (6) gsp-closed [14] or $g\beta$ -closed if $spCl(A) \subset U$ whenever $A \subset U$ and $U \in \tau$,

Definition 11. A subset A of a topological space is said to be g-open (resp. gs-open, gp-open, ag-open, gb-open, gsp-open) if X - A is g-closed (resp. gs-closed, gp-closed, gp-closed, gp-closed, gp-closed).

The family of all g-open (resp. gs-open, gp-open, αg -open, gs-open, gsp-open) sets of X is denoted by GO(X) (resp. GSO(X), GPO(X), $\alpha GO(X)$, GBO(X), GSPO(X)).

Definition 12. Let (X, τ) be a topological space and A a subset of X. The intersection of all g-closed (resp. αg -closed, gs-closed, gs-closed, gs-closed, gs-closed) sets of X containing A is called the g-closure [15] (resp. αg -closure, gs-closure, gs-closure, gs-closure, gs-closure) of A and is denoted by $\operatorname{Cl}_g(A)$ (resp. $\alpha\operatorname{Cl}_g(A)$, $\operatorname{sCl}_g(A)$, $\operatorname{pCl}_g(A)$, $\operatorname{spCl}_g(A)$).

Definition 13. Let (X, τ) be a topological space and A a subset of X. The union of all g-open (resp. αg -open, gs-open, gs-open, gs-open, gs-open, gs-open) sets of X contained in A is called the g-interior [9] (resp. αg -interior, gs-interior, gs-interior, gs-interior, gs-interior) of A and is denoted by $\operatorname{Int}_g(A)$ (resp. $\alpha\operatorname{Int}_g(A)$, $\operatorname{SInt}_g(A)$, $\operatorname{pInt}_g(A)$, $\operatorname{spInt}_g(A)$, $\operatorname{bInt}_g(A)$).

Remark 5. Let (X, τ) be a topological space and A a subset of X.

- (1) Then, GO(X), GSO(X), GPO(X), $\alpha GO(X)$ and GSPO(X) are all m-structures on X. Hence, if we put $m_X = GO(X)$ (resp. $\alpha GO(X)$, GSO(X), GPO(X), GSPO(X)), then we have
 - (i) $mCl(A) = Cl_g(A)$ (resp. $\alpha Cl_g(A)$, $sCl_g(A)$, $pCl_g(A)$, $spCl_g(A)$),
 - (ii) $mInt(A) = Int_g(A)$ (resp. $\alpha Int_g(A)$), $sInt_g(A)$, $pInt_g(A)$, $spInt_g(A)$).
- (2) If $m_X = GO(X)$, then by Lemma 1 we obtain the results established in Theorem 2.1 (4), (5) and Theorem 2.8 (2), (3), (5), (6) in [9]. By Lemma 2, we obtain the result established in Theorem 2.1 (4) in [9].
- (3) The *m*-structures GO(X), GSO(X), GPO(X), $\alpha GO(X)$, $\alpha GO(X)$ and $\alpha GSO(X)$ do not have property \mathcal{B} , in general.

Definition 14. Let (X, τ) be a topological space and m_X an m-structure on X. A subset A of X is said to be *generalized m-closed* (briefly gm-closed) [27] if $mCl(A) \subset U$ whenever $A \subset U$ and $U \in \tau$.

The complement of a gm-closed set is said to be gm-open. The family of all gm-open sets of a topological space (X, τ) is denoted by GMO(X). Obviously, GMO(X) is an m-structure on X and is called a gm-structure on X.

Remark 6. Let (X, τ) be a topological space and m_X an m-structure on X. We put $m_X = \tau$ (resp. SO(X), PO(X), $\alpha(X)$, SPO(X), BO(X)). Then, a gm-closed set is a g-closed (resp. gs-closed, gp-closed, αg -closed, gsp-closed) set.

Definition 15. A function $f:(X,\tau)\to (Y,\sigma)$ is said to be *g-irresolute* [7] or *g-continuous* [25] (resp. *gs-irresolute* [11], *gp-irresolute* [6], αg -irresolute [12], *gsp-irresolute* [32], *gb-irresolute* [3]) if $f^{-1}(K)$ is a *g*-closed (resp. *gs*-closed, *gp*-closed, αg -closed, *gsp*-closed, *gb*-closed) in X for every *g*-closed (resp. *gs*-closed, *gp*-closed, αg -closed, *gsp*-closed, *gb*-closed) set K of Y.

Definition 16. A function $f:(X,\tau)\to (Y,\sigma)$ is said to be

- (1) gM-continuous at a point $x \in X$ if $f: (X, GMO(X)) \to (Y, GMO(Y))$ is M-continuous at a point $x \in X$. The function $f: (X, \tau) \to (Y, \sigma)$ is said to be gM-continuous if it is gM-continuous at each point $x \in X$.
 - (2) *gM-irresolute* if $f:(X, GMO(X)) \rightarrow (Y, GMO(Y))$ is M^* -continuous.

Remark 7. (1) Every gM-irresolute function is gM-continuous.

(2)If $m_X = GO(X)$ (resp. GSO(X), GPO(X), $\alpha GO(X)$, GSPO(X), BO(X)), $m_Y = GO(Y)$ (resp. GSO(Y), GPO(Y), $\alpha GO(Y)$, GSPO(Y), GSPO(Y) and $f:(X,\tau) \rightarrow (Y,\sigma)$ is gM-irresolute, then f is g-irresolute (resp. gs-irresolute, gs-irresolute, gs-irresolute, gs-irresolute, gs-irresolute).

Definition 17. Let (X, τ) be a topological space and GMO(X) a gm-structure on X. For a subset A of X, the gm-closure of A and the gm-interior of A are defined as follows:

- $(1) \ \mathrm{mCl}_{g}(A) = \bigcap \{F : A \subset F, X F \in \mathrm{GMO}(X)\},\$
- (2) $\operatorname{mInt}_{\sigma}(A) = \bigcup \{U : U \subset A, U \in \operatorname{GMO}(X)\}.$

By Definition 16 and Theorem 3, we obtain the following theorem and corollary.

Theorem 4. For a function $f:(X,\tau)\to (Y,\sigma)$, the following properties are equivalent:

- (1) f is gM-continuous;
- (2) $f^{-1}(V) = mInt_g(f^{-1}(V))$ for every gm-open set V of Y;
- (3) $\mathrm{mCl}_g(f^{-1}(F)) = f^{-1}(F)$ for every gm-closed set F of Y;
- (4) $\mathrm{mCl}_g(f^{-1}(B)) \subset f^{-1}(\mathrm{mCl}_g(B))$ for every subset B of Y;
- (5) $f(mCl_g(A)) \subset mCl_g(f(A))$ for every subset A of X;
- (6) $f^{-1}(\operatorname{mInt}_g(B)) \subset \operatorname{mInt}_g(f^{-1}(B))$ for every subset B of Y.

Corollary 2. For a function $f:(X,\tau)\to (Y,\sigma)$, where GMO(X) has property \mathscr{B} , the following properties are equivalent:

- (1) f is gM-continuous;
- (2) $f^{-1}(V)$ is gm-open for every gm-open set V of Y;
- (3) $f^{-1}(F)$ is gm-closed for every gm-closed set F of Y.

Let (X, τ) be a topological space and GMO(X) a gm-structure on X. For a function $f:(X,\tau)\to (Y,\sigma)$, we denote by $D_{gM}(f)$ the set of all points of X at which the function f is not gM-continuous. Then by Definition 16 and Theorem 4, we obtain the following theorem.

Theorem 5. For a function $f:(X,\tau)\to (Y,\sigma)$, the following properties hold:

$$\begin{split} D_{gM}(f) &= \bigcup_{G \in \mathsf{GMO}(Y)} \{ f^{-1}(G) - \mathsf{mInt}_g(f^{-1}(G)) \} \\ &= \bigcup_{B \in \mathscr{P}(Y)} \{ f^{-1}(\mathsf{mInt}_g(B)) - \mathsf{mInt}_g(f^{-1}(B)) \} \\ &= \bigcup_{B \in \mathscr{P}(Y)} \{ \mathsf{mCl}_g(f^{-1}(B)) - f^{-1}(\mathsf{mCl}_g(B)) \} \end{split}$$

$$\begin{split} &= \bigcup_{A \in \mathscr{P}(X)} \left\{ \mathrm{mCl}_g(A) - f^{-1}(\mathrm{mCl}_g(f(A))) \right\} \\ &= \bigcup_{K \in \mathscr{F}_g} \left\{ \mathrm{mCl}_g(f^{-1}(K)) - f^{-1}(K) \right\}, \end{split}$$

where \mathcal{F}_g is the family of gm-closed sets of Y.

Definition 18. Let (X, m_X) be an m-space and A a subset of X. The m_X -frontier of A, mFr(A), [30] is defined by mFr $(A) = \text{mCl}(A) \cap \text{mCl}(X - A) = \text{mCl}(A) - \text{mInt}(A)$.

If (X, τ) is a topological space and GMO(X) is a gm-structure on X, then $gmFr(A) = mCl_g(A) \cap mCl_g(X - A) = mCl_g(A) - mInt_g(A)$.

Theorem 6. The set of all points of X at which a function $f:(X,m_X) \to (Y,m_Y)$ is not M-continuous is identical with the union of the m-frontiers of the inverse images of m_Y -open sets containing f(x).

Proof. Suppose that f is not M-continuous at $x \in X$. There exists an m_Y -open set V of Y containing f(x) such that $U \cap (X - f^{-1}(V)) \neq \emptyset$ for every m_X -open set U containing x. By Lemma 2, we have $x \in \mathrm{mCl}(X - f^{-1}(V))$. On the other hand, we have $x \in f^{-1}(V)$ and hence $x \in \mathrm{mFr}(f^{-1}(V))$.

Conversely, suppose that f is M-continuous at $x \in X$. Then, for any m_Y -open set V of Y containing f(x), there exists $U \in m_X$ containing x such that $f(U) \subset V$; hence $U \subset f^{-1}(V)$. Therefore, we have $x \in U \subset \mathrm{mInt}(f^{-1}(V))$. This contradicts to the fact that $x \in \mathrm{mFr}(f^{-1}(V))$.

Corollary 3. Let (X, τ) (resp. (Y, σ)) be a topological space and GOM(X) (resp. GOM(Y)) a gm-structure on X (resp. Y). Then, the set of all points at $x \in X$ which a function $f: (X, \tau) \to (Y, \sigma)$ is not gM-continuous is identical with the union of the gm-frontiers of the inverse images of gm-open sets containing f(x).

Proof. This follows immediately from Theorem 6.

5. Some properties of gM-continuity

In this section, we use gm-open sets and gm-closed sets in order to obtain some properties of gm- T_2 spaces and the preservation theorems of gm-compact spaces and gm-connected spaces. Furthermore, we investigate some properties of strongly m-closed graphs.

Definition 19. An *m*-space (X, m_X) is said to be m- T_2 [29] if for any distinct points x, y, there exist $U, V \in m_X$ such that $x \in U, y \in V$, and $U \cap V = \emptyset$.

Remark 8. (1) Let (X, τ) be a topological space, then (X, τ) is said to be gm- T_2 if the m-space (X, GMO(X)) is m- T_2 .

(2) If GMO(X) = GO(X) (resp. GSO(X), GPO(X), $\alpha GO(X)$ GBO(X), GSPO(X)) and (X, τ) is $mg-T_2$, then (X, τ) is said to be $g-T_2$ [8] (resp. $gs-T_2$, $gp-T_2$, $\alpha g-T_2$, $gb-T_2$, $gsp-T_2$).

Lemma 4. (Popa and Noiri [29]). If $f:(X,m_X)\to (Y,m_Y)$ is an M-continuous injection and (Y,m_Y) is m- T_2 , then (X,m_X) is m- T_2 .

Theorem 7. If $f:(X,\tau)\to (Y,\sigma)$ is a gM-continuous injection and (Y,σ) is a gm- T_2 -space, then (X,τ) is gm- T_2 .

Proof. The proof follows from Remark 8 and Lemma 4.

Corollary 4. If $f:(X,\tau)\to (Y,\sigma)$ is a gM-irresolute injection and (Y,σ) is a gm- T_2 -space, then (X,τ) is gm- T_2 .

Definition 20. An *m*-space (X, m_X) is said to be *m*-compact [29] if every cover of X by sets of m_X has a finite subcover.

A subset K of an m-space (X, m_X) is said to be m-compact [29] if every cover of K by subsets of m_X has a finite subcover.

Remark 9. (1) If (X, τ) is a topological space and (X, GMO(X)) is m-compact, then (X, τ) is said to be gm-compact.

(2) If GMO(X) = GO(X) (resp. GSO(X), GPO(X), $\alpha GO(X)$), then we obtain the definition of GO-compactness [7] (resp. GSO-compactness [11], GPO-compactness [6], αGO -compactness [12]).

Lemma 5. (Popa and Noiri [29]). If a function $f:(X, m_X) \to (Y, m_Y)$ is M-continuous and K is an m-compact set of X, then f(K) is m-compact.

Theorem 8. If $f:(X,\tau)\to (Y,\sigma)$ is a gM-continuous function and K is a gm-compact set of X, then f(K) is gm-compact.

Proof. The proof follows from Definition 20 and Lemma 5.

Corollary 5. If $f:(X,\tau)\to (Y,\sigma)$ is a gM-irresolute function and K is a gm-compact set of X, then f(K) is gm-compact.

Remark 10. If GMO(X) = GO(X) (resp. GSO(X), GPO(X), $\alpha GO(X)$) and GMO(Y) = GO(Y) (resp. GSO(Y), GPO(Y), $\alpha GO(Y)$), then by Corollary 5 we obtain the result established in Proposition 9(ii) of [7] (resp. Proposition 5.5(iii) of [11], Theorem 5.5(iii) of [6], Proposition 4.3(iii) [12]).

Definition 21. An m-space (X, m_X) is said to be m-connected [29] if X cannot be written as the union of two nonempty disjoint m_X -open sets.

Remark 11. Let (X, τ) be a topological space and GMO(X) a gm-structure on X, then (1) (X, τ) is said to be gm-connected if X cannot be written as the union of two nonempty disjoint gm-open sets.

(2) If GMO(X) = GO(X) (resp. $\alpha GO(X)$), then we obtain the definition of GO-connected spaces [7] (resp. αGO -connected spaces [12]).

Lemma 6. If $f:(X,m_X) \to (Y,m_Y)$ is an M^* -continuous surjection and (X,m_X) is m-connected, then (Y,m_Y) is m-connected.

Proof. Suppose that (Y, m_Y) is not m-connected. Then there exist nonempty m_Y -open sets V_1 and V_2 such that $V_1 \cap V_2 = \emptyset$ and $V_1 \cup V_2 = Y$. Hence we have $f^{-1}(V_1) \cap f^{-1}(V_2) = \emptyset$ and $f^{-1}(V_1) \cup f^{-1}(V_2) = X$. Since f is an M^* -continuous surjection, $f^{-1}(V_1)$ and $f^{-1}(V_2)$ are nonempty m_X -open sets. Therefore, (X, m_X) is not m-connected. This is a contradiction and hence (Y, m_Y) is m-connected.

Theorem 9. If $f:(X,\tau)\to (Y,\sigma)$ is a gM-irresolute surjection and (X,τ) is gm-connected, then (Y,σ) is gm-connected.

Proof. The proof follows from Definition 21, Remark 11 and Lemma 6.

Remark 12. If GMO(X) = GO(X), then we obtain the result established in Proposition 13 of [7].

Definition 22. A function $f:(X,m_X) \to (Y,m_Y)$ is said to have a *strongly m-closed* graph (resp. *m-closed graph*) [29] if for each $(x,y) \in (X \times Y) - G(f)$, there exist $U \in m_X$ containing x and $V \in m_Y$ containing y such that $[U \times mCl(V)] \cap G(f) = \emptyset$ (resp. $[U \times V] \cap G(f) = \emptyset$).

Remark 13. Let (X, τ) (resp. (Y, σ)) be a topological space and GMO(X) (resp. GMO(Y)) a gm-structure on X (resp. Y). A function $f:(X,\tau)\to (Y,\sigma)$ is said to have a $strongly\ gm$ -closed graph (resp. gm-closed graph) if for each $(x,y)\in (X\times Y)-G(f)$, there exist $U\in GMO(X)$ containing x and $V\in GMO(Y)$ containing y such that $[U\times mCl_g(V)]\cap G(f)=\emptyset$ (resp. $[U\times V]\cap G(f)=\emptyset$).

Lemma 7. (Popa and Noiri [29]). A function $f:(X,m_X) \to (Y,m_Y)$ is M-continuous and (Y,m_Y) is m- T_2 , then f has a strongly m-closed graph.

Theorem 10. Let (X, τ) (resp. (Y, σ)) be a topological space and GMO(X) (resp. GMO(Y)) a gm-structure on X (resp. Y). If a function $f:(X, \tau) \to (Y, \sigma)$ is gM-continuous and (Y, σ) is gm- T_2 , then f has a strongly gm-closed graph.

Proof. The proof follows from Definition 22, Remark 13 and Lemma 7.

Corollary 6. If a function $f:(X,\tau)\to (Y,\sigma)$ is gM-irresolute and (Y,σ) is gm- T_2 , then f has a strongly gm-closed graph.

Remark 14. If (Y, σ) is g- T_2 (resp. gs- T_2 , gp- T_2 , gg- T_2 , gg- T_2 , gs- T_2 , gs- T_2) and f: $(X, \tau) \to (Y, \sigma)$ is a g-irresolute (resp. gs-irresolute, gg-irresolute, gg-irresolute, gg-irresolute, gg-irresolute, gg-irresolute, gg-closed (resp. strongly gg-closed, strongly gg-closed).

Lemma 8. (Popa and Noiri [29]). If $f:(X,m_X) \to (Y,m_Y)$ is a surjective function with a strongly m-closed graph, then (Y,m_Y) is m- T_2 .

Theorem 11. Let (X, τ) (resp. (Y, σ)) be a topological space and GMO(X) (resp. GMO(Y)) a gm-structure on X (resp. Y). If $f:(X, \tau) \to (Y, \sigma)$ is a surjective function with a strongly gm-closed graph, then (Y, σ) is gm- T_2 .

Proof. The proof follows from Definition 22 and Lemma 8.

Remark 15. If $f:(X,\tau)\to (Y,\sigma)$ is a surjective function with a strongly g-closed (resp. strongly gs-closed, strongly gp-closed, strongly gg-closed, strongly gg-clo

Lemma 9. (Popa and Noiri [29]). Let $f:(X,m_X) \to (Y,m_Y)$ be a function, where m_X has property \mathcal{B} . If f is an M-continuous surjection with an m-closed graph, then (X,m_X) is m- T_2 .

Theorem 12. Let (X, τ) (resp. (Y, σ)) be a topological space and GMO(X) (resp. GMO(Y)) a gm-structure on X (resp. Y) and GMO(X) a gm-structure satisfying property \mathcal{B} . If $f:(X,\tau)\to (Y,\sigma)$ is a gM-continuous surjection with a gm-closed graph, then X is gm- T_2 .

Proof. The proof follows from Definition 22 and Lemma 9.

Corollary 7. If a function $f:(X,\tau)\to (Y,\sigma)$ is a gM-irresolute surjection with a gm-closed graph and GMO(X) has property \mathscr{B} , then (X,τ) is gm- T_2 .

Definition 23. Let A a subset of an m-space (X, m_X) . A point $x \in X$ is called an m_{θ} -adherent point of A [31] if $\mathrm{mCl}(U) \cap A \neq \emptyset$ for every m_X -open set U containing x. The set of all m_{θ} -adherent points of A is called the m_{θ} -closure of A and is denoted by $\mathrm{mCl}_{\theta}(A)$. If $A = \mathrm{mCl}_{\theta}(A)$, then A is said to be m_{θ} -closed. The complement of a m_{θ} -closed set is said to be m_{θ} -open. The union of all m_{θ} -open sets contained in A is called the m_{θ} -interior of A and is denoted by $\mathrm{mInt}_{\theta}(A)$.

Remark 16. Let *A* be a subset of a topological space (X, τ) and m_X an *m*-structure on *X*. If $m_X = \tau$ (resp. SO(*X*), PO(*X*)), then $\mathrm{mCl}_{\theta}(A) = \mathrm{Cl}_{\theta}(A)$ [33] (resp. $\mathrm{sCl}_{\theta}(A)$ [13], $\mathrm{pCl}_{\theta}(A)$ [28]).

Lemma 10. (Popa and Noiri [31]). Let A be a subset of an m-space (X, m_X) . Then the following properties hold:

- (1) If A is m_X -open in X, then $\mathrm{mCl}_{\theta}(A) = \mathrm{mCl}(A)$,
- (2) If m_X has property \mathcal{B} , then $\mathrm{mCl}_{\theta}(A)$ is m_X -closed in X for every subset A of X.

Definition 24. An m-space (X, m_X) is said to be m-regular [31] if for each m_X -closed set F of X and each point $x \notin F$, there exist disjoint m_X -open sets U and V such that $x \in U$ and $F \subset V$.

Lemma 11. (Popa and Noiri [31]). Let (X, m_X) be an m-regular m-space. Then the following properties hold:

- (1) $mCl_{\theta}(A) = mCl(A)$ for every subset A of X,
- (2) Every m_X -open set is m_{θ} -open.

Theorem 13. Let (Y, m_Y) be an m-regular m-space and m_Y have property \mathcal{B} . For a function $f: (X, m_X) \to (Y, m_Y)$, the following properties are equivalent:

- (1) f is M-continuous;
- (2) $f^{-1}(\mathrm{mCl}_{\theta}(B)) = \mathrm{mCl}(f^{-1}(\mathrm{mCl}_{\theta}(B)))$ for every subset B of Y;
- (3) $f^{-1}(K) = \text{mCl}(f^{-1}(K))$ for every m_{θ} -closed set K of Y;
- (4) $f^{-1}(V) = mInt(f^{-1}(V))$ for every m_{θ} -open set V of Y.
- *Proof.* (1) \Rightarrow (2): Let *B* be any subset of *Y*. Then, by Lemma 10 $\mathrm{mCl}_{\theta}(B)$ is m_Y -closed in *Y*. By Theorem 3, we obtain $f^{-1}(\mathrm{mCl}_{\theta}(B)) = \mathrm{mCl}(f^{-1}(\mathrm{mCl}_{\theta}(B)))$.
- (2) \Rightarrow (3): Let K be an m_{θ} -closed set of Y. Then $\mathrm{mCl}_{\theta}(K) = K$. Then by (2) we obtain $f^{-1}(K) = \mathrm{mCl}(f^{-1}(K))$.
- (3) \Rightarrow (4): Let V be an m_{θ} -open set of Y. Then Y V is m_{θ} -closed and $f^{-1}(Y V) = \text{mCl}(f^{-1}(Y V))$. Therefore, $X f^{-1}(V) = X \text{mInt}(f^{-1}(V))$. Hence we obtain $f^{-1}(V) = \text{mInt}(f^{-1}(V))$.
- (4) \Rightarrow (1): Let V be any m_Y -open set of Y. Since Y is m-regular, by Lemma 11 V is m_θ -open and by (4) we have $f^{-1}(V) = \text{mInt}(f^{-1}(V))$. By Theorem 1, f is M-continuous.

Theorem 14. Let (Y, m_Y) be m-regular and let m_X and m_Y have property \mathcal{B} . For a function $f: (X, m_X) \to (Y, m_Y)$, the following properties are equivalent:

- (1) f is M-continuous;
- (2) $f^{-1}(\mathrm{mCl}_{\theta}(B))$ is m_X -closed for every subset B of Y;
- (3) $f^{-1}(K)$ is m_X -closed for every m_{θ} -closed set K of Y;
- (4) $f^{-1}(V)$ is m_X -open for every m_{θ} -open set V of Y.

Proof. The proof follows from Theorem 13 and Lemma 3.

Let (X, τ) be a topological space and GMO(X) a gm-structure on X. For a subset A of X, we denote the gm- θ -closure of A by $gmCl_{\theta}(A)$. If $A = gmCl_{\theta}(A)$, then A is said to be gm_{θ} -closed. The complement of a gm_{θ} -closed set is said to be gm_{θ} -open.

By Theorems 13 and 14, we obtain the following theorems:

Theorem 15. Let (X, τ) (resp. (Y, σ)) be a topological space and GMO(X) (resp. GMO(Y)) a gm-structure on X (resp. Y) and let GMO(Y) be gm-regular and have property \mathcal{B} . For a function $f:(X, \tau) \to (Y, \sigma)$, the following properties are equivalent:

- (1) f is gM-continuous;
- (2) $f^{-1}(\operatorname{gmCl}_{\theta}(B)) = \operatorname{mCl}_{\sigma}(f^{-1}(\operatorname{gmCl}_{\theta}(B)))$ for every subset B of Y;
- (3) $f^{-1}(K) = \mathrm{mCl}_{\mathfrak{g}}(f^{-1}(K))$ for every gm_{θ} -closed set K of Y;
- (4) $f^{-1}(V) = \min_{\sigma} (f^{-1}(V))$ for every gm_{θ} -open set V of Y.

Theorem 16. Let (X, τ) (resp. (Y, σ)) be a topological space and GMO(X) (resp. GMO(Y)) a gm-structure on X (resp. Y), where GMO(X) and GMO(Y) have property \mathcal{B} , and let GMO(Y) be gm-regular. For a function $f:(X, \tau) \to (Y, \sigma)$, the following properties are equivalent:

- (1) f is gM-continuous;
- (2) $f^{-1}(gmCl_{\theta}(B))$ is gm-closed for every subset B of Y;
- (3) $f^{-1}(K)$ is gm-closed for every gm_{θ} -closed set K of Y;
- (4) $f^{-1}(V)$ is gm-open for every gm_{θ} -open set V of Y.

References

- [1] M. E. Abd El-Monsef, S. N. El-Deeb and R. A. Mahmoud, β -open sets and β -continuous mappings, Bull. Fac. Sci. Assiut Univ., **12** (1983), 77–90.
- [2] M. E. Abd El-Monsef, R. A. Mahmoud and E. R. Lashin, β -closure and β -interior, J. Fac. Ed. Ain Shams Univ., **10** (1986), 235–245.

[3] A. Al-Omari and M. S. M. Naorami, *On generalized b-closed sets*, Bull. Malays. Math. Sci. Soc. (2), **32** (2009), 19–30.

- [4] D. Andrijević, Semi-preopen sets, Mat. Vesnik, 38 (1986), 24–32.
- [5] D. Andrijević, *On b-open sets*, Mat. Vesnik, **48** (1996), 59–64.
- [6] I. Arokiarani, K. Barachandran and J. Dontchev, Some characterization of gp-irresolute and gp-continuous maps between toopological spaces, Mem. Fac. Sci. Kochi Univ. Ser. A Math., 20 (1999), 93–104.
- [7] K. Balachandran, P. Sundarm and H. Maki, *On generalized continuous maps in topological spaces*, Mem. Fac. Sci. Kochi Univ. Ser. A Math., **12** (1991), 5–13.
- [8] C. Boonpok, *Preservation theorems concerning g-Hausdorff and rg-Hausdorff spaces*, Naresuan Univ. J. **11**(3) (2003), 75–77.
- [9] M. Caldas, S. Jafari and T. Noiri, *Notions via g-open sets*, Kochi J. Math., **2** (2007), 45–50.
- [10] S. G. Crossley and S. K. Hildebrand, Semi-closure, Texas J. Sci., 22 (1971), 99–112.
- [11] R. Devi, K. Balachandran and H. Maki, Semi-generalized homeomorphisms and generalized semi-homeomorphisms in topological spaces, Indian J. Pure Appl. Math., **26** (1995), 271–284.
- [12] R. Devi, K. Balachandran and H. Maki, On generalized α -continuous maps and α -generalized continuous maps, Far East J. Math. Sci., Special Volume (1997), Part I, 1–15...
- [13] G. Di Maio and T. Noiri, *On s-closed spaces*, Indian J. Pure Appl. Math., **18** (1987), 226–233.
- [14] J. Dontchev, *On generalizing semi-preopen sets*, Mem. Fac. Sci. Kochi Univ. Ser. A, Math., **16** (1995), 35–48.
- [15] W. Dunham, A new closure operator for non- T_1 topologies, Kyungpook Math. J., **22** (1982), 55–60.
- [16] W. Dunham and N. Levine, Further results of generalized closed sets in topology, Kyungpook Math. J., **20** (1980), 169–175.
- [17] S. N. El-Deeb, I. A. Hasanein, A. S. Mashhour and T. Noiri, On p-regular spaces, Bull.

- Math. Soc. Sci. Math. R. S. Roumanie, 27(75) (1983), 311-315.
- [18] T. Fukutake, A. A. Nasef and A. I. El-Maghrabi, Some topological concepts via γ -generalized closed sets, Bull. Fukuoka Univ. Ed. III, **52** (2003), 1–9.
- [19] N. Levine, *Semi-open sets and semi-continuity in topological spaces*, Amer. Math. Monthly, **70** (1963), 36–41.
- [20] N. Levine, *Generalized closed sets in topology*, Rend. Circ. Mat. Palermo (2), **19** (1970), 89–96.
- [21] H. Maki, K. C. Rao and A. Nagoor Gani, *On generalizing semi-open and preopen sets*, Pure Appl. Math. Sci., **49** (1999), 17–29.
- [22] A. S. Mashhour, M. E. Abd El-Monsef and S. N. El-Deep, *On precontinuous and weak precontinuous mappings*, Proc. Math. Phys. Soc. Egypt, **53** (1982), 47–53.
- [23] A. S. Mashhour, I. A. Hasanein and S. N. El-Deeb, α -continuous and α -open mappings, Acta Math. Hungar., **41** (1983), 213–218.
- [24] W. K. Min, M^* -continuity and product minimal structures on minimal structures (submitted).
- [25] B. M. Munshi and D. S. Bassan, *g-continuous mappings*, Vidya J. Gujarat Univ. B Sci., **24** (1981), 63–68.
- [26] O. Njåstad, On some classes of nearly open sets, Pacific J. Math., 15 (1965), 961-970.
- [27] T. Noiri, *A unified theory for certain modifications of generalized closed sets*, Internat. J. General Topology, **1** (2008), 87–99.
- [28] M. C. Pal and P. Bhattacharyya, *Feeble and strong forms of preirresolute functions*, Bull. Malays. Math. Sci. Soc. (2), **19** (1996), 63–75.
- [29] V. Popa and T. Noiri, *On M-continuous functions*, Anal. Univ. "Dunărea de Jos" Galaţi, Ser. Mat. Fiz. Mec. Teor. (2), **18**(**23**) (2000), 31–41.
- [30] V. Popa and T. Noiri, On the definitions of some generalized forms of continuity under minimal conditions, Mem. Fac. Sci. Kochi Univ. Ser. A Math., 22 (2001), 9–18.
- [31] V. Popa and T. Noiri, *A unified theory of weak continuity for functions*, Rend. Circ. Mat. Palermo (2), **51** (2002), 439–464.
- [32] M.K.R.S. Veera Kumar, Semi-pregeneralized closed sets, Mem. Fac. Sci. Kochi Univ. Ser. A

Math., 19 (1999), 33-46.

[33] N. V. Veličko, *H-closed topological spaces*, Amer. Math. Soc. Transl. (2), **78** (1968), 103–118.