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__________________________________________________________________________ 
 
Abstract:  Logic regression, as developed by Ruczinski, Kooperberg, and LeBlanc [1], is a 
multivariable regression methodology that constructs logical relationships among Boolean 
predictor variables that best predicts a Boolean dependent variable.  More specifically, it 
finds a regression model of the form 0 1 1 2 2[ | ] m mg E Y b b L b L b L= + + +  where both the 
coefficients 0 1, ,..., mb b b  and the logical expressions , 1,...,jL j m=  are determined, whereby 
a logical expression one means logical relationships among the predictor variables, such as 

1 2" ,X X  are true but not 5 "X  , or 3 5 7" , ,X X X are true but not 1X  or 2 "X    In paper [1] 
the authors investigate the use a simulated annealing algorithm.  In this paper. the Group 
Method of Data Handling (GMDH) is used. 
 
2000 Mathematics Subject Classifications:  62 
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1.   Introduction 

     In this paper we study the possibility of using Ivakhenko’s Group Method of Data 
Handling (GMDH) algorithm for finding the best logical expressions jL  among Boolean 

predictor variables 1 2, , , mX X X  which best predicts a dependent Boolean variable Y . By 
logical expressions jL , we mean Boolean expressions such as 1 2" ,X X  are true but not 5 "X  

, or 3 5 7" , ,X X X are true but not 1X  or 2 "X   or " if 1X and 2X  are true then 5X is true.     
Before showing how this algorithm is performed, since the GMDH algorithm is not well-
known, we summarize Ivakhnenko’s basic algorithm for ordinary regression.    
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2.   Basic Group Method of Data Handling (GMDH) Algorithm 
 
2.1   Basic GMDH Method 
     If one were to anthropomorphize, one might say the GMDH algorithm builds a 
mathematical model similar to the way biological organisms are created through evolution.  
That is, starting with a few basic primeval forms (i.e. equations); one grows a new 
generation of more complex off-springs (equations) and then allows for a survival-of-the-
fittest principle to determine which new off-springs survive and which do not.  The idea is 
that new generations of off-springs (equations) are better suited to model the real world than 
earlier ones. Continuing this process for more generations, one finds a collection of models 
that hopefully describes the problem at hand.  The process is stopped once the model begins 
to “over-fit” the real world, thus stopping when the model reaches some level of optimal 
complexity. 
 
     In 1966, Ukrainian cyberneticist, A.G. Ivakhnenko, discouraged by the fact that many 
mathematical models require the modeler to know things about the real world that are 
difficult or impossible to know, produced a heuristic self-organizing model, called the Group 
Method of Data Handling algorithm.  For more information see Farlow, [1]  or view one of 
the many websites which discuss applications of the technique.  Ivakhnenko’s website at 
http://www.gmdh.net/ will give the reader a complete history of the method. 
 
The basic GMDH algorithm can be broken into a few distinct steps. 
 
Step 1 (constructing new variables 1 2 ( ,2), ,..., C mz z z )  
      The basic GMDH algorithm begins with regression-type data points of the form                                                    

1 2 1 2, , ,..., , , ,...,i i i imy x x x i n= , where the n  observations are subdivided into two groups, 
the first nt  observations are called the training observations and the remaining nc n nt= −  
observations are called the checking observations.  See the data in Figure 1.  Normally, about 
half the observations are chosen to be in each group.   

 

 Y X  

Training set  

Y 
1x  2x    mx  

1y  11x  12x    1mx  

2y  21x  22x    2mx  
          

nty  ,1ntx  ,2ntx    ,nt mx  

Checking set 
1nty +  1,1ntx +  1,2ntx +    1,nt mx +  

            
ny  ,1nx  ,2nx    nmx  

 
       Figure 1:  Regression-Type Data for the GMDH Algorithm 

http://www.gmdh.net/�
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Now, for each ( , 2) ( 1) / 2C m m m= −  pair of distinct variables ,i jx x one finds the least-
squares regression polynomial for y of the form  

 

                              
2 2

i j i j i jy A Bx Cx Dx Ex Fx x= + + + + +                          (1) 
 
(i.e. find , , , , ,A B C D E F ) from the observations in the training set  These ( 1) / 2m m −  
regression surfaces are illustrated in Figure 2. 
 

    
                           

Figure 2:  Computed Quadratic Regression Surfaces 
                                               
      Now evaluate each of the ( 1) / 2m m −  regression polynomials at all n data points and 
store these values (new generation of variables) in the respective columns of a new array, say 
Z.   The evaluation of the first regression polynomial and its values in the first column of Z is 
illustrated in Figure 3. 
 

   
 

Figure 3: Evaluating the Quadratic Regression Polynomials 
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The object is to keep only the best of these new variables and this is where the observations 
in the checking set come into play. 
 
Step 2 (screening out the least effective variables)   
     This step replaces the original variables (columns of X) by those columns of Z that best 
predict y, based on the checking set observations.  That is, for each column j of Z we 
compute the root mean square (or some measure of association) jr  given by Eq. (2). 
 

                               

2

2 1

2

1

( )
, 1, 2,..., ( , 2)

n

i ij
i nt

j n

i
i nt

y z
r j C m

y

= +

= +

−
= =
∑

∑
          

               (2) 

 
and then select those columns of Z that satisfy jr R< , where R is some prescribed number.  
The number of columns of Z that replace columns of X may be larger or smaller than the 
number of columns of X, although often one keeps the number of columns of X constant at 
m.   Note that the test of goodness of fit jr was summed over the observation in the checking 
set.    
 
Step 3 (test for optimality)  
     From Step 2 we find the smallest of the 'jr s  and call it RMIN.  Then, each time one 
completes a generation or iteration, one plots the value of RMIN on a graph as shown in 
Figure 4.   
 

     
                                   

 Figure 4: Determining the Optimal Polynomial 
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     Experiments have shown that RMIN decreases for a few generations (the author’s 
experience is maybe 3-5 iterations) and then begins to increase, the reason being the model 
gets better and better but eventually starts to over-fit the data. Hence, the rule is to stop the 
algorithm when the RMIN curve reaches its minimum, and then select the column with the 
minimum jr  value of the final array Z as the best predictor.  When the GMDH algorithm 

stops, the columns of Z (in particular the column of Z that has the smallest jr  value) contains 
the computed values of a high-order polynomial of the form in Eq (3) 
 

    
1

1 1 1 1 1 1

m m m m m m

i i ij j j ijk i j k
i i j i j k

y a b x c x x d x x x
= = = = = =

= + + + +∑ ∑∑ ∑∑∑ 

                  
(3)   

 
known as the Ivakhnenko polynomial. At each iteration the degree of the Ivakhnenko 
doubles, and for a p-th order regression polynomial the number of terms in the polynomial 
will be ( 1)( 2) ( ) / !m m m p m+ + + .   For example, if one starts with 10m =  input 
variables 1 2 10, ,...,x x x  and the algorithm is continued for 8 generations, the Ivakhnenko 

polynomial would be a polynomial in 1 2, ,..., mx x x  of degree 82 256=  .  A sample term 

might involve the variables 2 4 9 11 9 3
1 3 4 6 7 10x x x x x x  .     

 
Step 4 (Applying the results of the GMDH Algorithm) 
     One doesn’t actually compute the coefficients in the Ivakhenko polynomial, but saves the 
regression coefficients A,B,C,D,E,F at each generation.  Hence, to evaluate the Ivakhnenko 
polynomial one simply carries out repeated compositions of these quadratic expressions.  
Figure 5 illustrates this process.  

 

   
 

Figure 5: Evaluation of the Ivankhenko Polynomial 
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3.  GMDH Algorithm Applied to Logic Regression 
Step 1:  (Divide Observations into Training and Checking Sets) 
      Starting with n observations of m Boolean predictor variables 1 2, ,..., mX X X and a 
dependent Boolean variable Y, we subdivide the observations into nt training set 
observations and nc n nt= −  checking set observations.  For each of the 
 

                                                                    
( 1)

2 2
m m m  −

= 
 

  

distinct pairs  

            { }, : 1,.. 1, 1,i jX X i m j i m= − = +
 

 
of predictor variables, we find the logical function that best predicts the dependent variable 
Y from among the 16 binary functions in Table 1. 

 
           Table 1:  Sixteen Boolean Functions 

 
0(0000) FFFF never true    ----- 
1(0001) FFFT not ( 1X  or 2X ) 1 2X X∧  
2(0010) FFTF 

2X but not 1X  1 2X X∧  
3(0011) FFTT not 1X       1X  
4(0100) FTFF 

1X  but not 2X  1 2X X∧  
5(0101) FTFT not 2X      2X  
6(0110) FTTF 

1X  or 2X  but not both 1 2X X∨  
7(0111) FTTT not ( 1X and 2X ) 1 2X X∨  
8(1000) TFFF 

1X  and 2X  1 2X X∧  
9(1001) TFFT 

1X  is 2X   1 2X X≡  
10(1010) TFTF 

2X     2X  
11(1011) TFTT If 1X  then 2X  1 2X X⇒  
12(1100) TTFF 

1X       1X  
13(1101) TTFT if 2X then 1X  1 2X X⇐  
14(1110) TTTF 

1X  or 2X  1 2X X∨  
16(1111) TTTT always true    ----- 

                
 
     We illustrate the process with the data set in Table 2, which has 7n =  total observations, 

4nt = training observations, 7 4 3nc n nt= − = − = , and 4m = variables  
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Table 2:  Sample Data 
 

 
 
Training 
   Set 
 
---------- 
 
Checking 
    Set 

Y   
1X  2X  3X  4X  

1  0 0 1 0 
0  1 0 0 1 
0  0 1 1 1 
1  1 1 0 1 
      
1  0 1 0 1 
0  1 0 0 1 
0  0 0 1 1 

 
Note that the dependent variable 1X  did not predict Y  in the first- and second observations 
(1s and 0s do not match), but do predict Y  in the 3rd and 4th observations (1s and 0s match).  
Note, too that the logical relation 1 2X X∧   correctly predicts  Y in the 1st, 2nd, and 3rd 
observations, but not the 4th, hence the recorded values 1, 1, 1, and 0 in the respective 
column, and a 3 in the bottom row illustrating the number of correct predictions.    If one 
carries out this analysis for all 16 logical expressions of 1 2,X X , one arrives at the results in 
Table 3.   

            Table 3:   Correct and Incorrect Predictions of Y from 1 2,X X . 
 

0 (0000) 
false 

1 (0001) 

1 2X X∧  
2 (0010) 

1 2X X∧  
3 (0011) 

1X  
4 (0100) 

1 2X X∧  
5 (0101) 

2X  
6 (0110) 

1 2X X∨  
7 (0111)       

1 2X X∨  
0 1 0 1 0 1 0 1 
1 1 1 1 0 0 0 0 
1 1 0 0 1 1 0 0 
0 0 0 0 0 0 0 0 
2 3 1 2 1 2 0 1 
 

8(1000) 
1 2X X∧  

9(1001) 
1 2X X≡  

10(1010) 
2X  

11(1011) 
1 2X X⇒  

12(1100) 
1X  

13(1101) 
1 2X X⇐  

14(1110) 
1 2X X∨  

15(1111) 
tautology 

0 1 0 1 0 1 0 1 
1 1 1 1 0 0 0 0 
1 1 0 0 1 1 0 0 
1 1 1 1 1 1 1 1 
3 4 2 3 2 3 1 2 

                               
Note the best logical predictor is 9(1001), which represents the logical function 1 2X X≡ .    
 
     Table 3 is then computed for each of the ( 1) / 2 6m m − =  pairs of dependent variables, 
recording only the last row of totals which represent the number of correct predictions of a 
given logical expression.  Doing this we arrive at Table 4, where the second row in the table 
lists the best logical predictor of Y from among the 16 logical functions of the given pair of 
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variables, and the bottom row 3 gives the fraction (and percentage) of times the given logical 
function accurately predicted Y . 
 
 

   Table 4:  Results for the first iteration. 
 

Variable 
pairs 1 2,X X  1 3,X X  1 4,X X  2 3,X X  2 4,X X  3 4,X X  

Function 1 2X X≡  1 3X X∧  1 4X X∨  2 3X X⇐  2 4X X⇒  3 4X X∨  
# correct 4/4(100%) 3/4(75%) 4/4(100%) 2/4(50%) 3/4(75%) 2/4 (50%) 

                               
     The next step is to select the best m  functions from Table 4 (4 in this example) that 
predicts Y .     

 
Step 2:   (Replace the Original Data with the Best Logical Estimates)   
     We now evaluate the best m  logical functions in Table 4, which represent the best logical 
predictors of Y based on the observations in the training set.  In this example they are 

1 2X X≡ , 1 3X X∧ , 1 4X X∨ , 2 4X X⇒  which yields 4, 3, 4, and 3 correct predictions.   
Evaluating these functions at the n observations, we arrive at the 4 4n m× = ×  array in 
Table 5, which we call XNEW and are the evaluated best predictors of Y .  Note that in the 
column under 2 4X X⇒  for the observations in the checking set, the values are 1, 1, and 1, 
which are the logical evaluations of the corresponding observations in the original data 
matrix X in Table 2.  We now replace the data matrix X of independent variables with the 
newly computed matrix XNEW. 

 
           Table 5:  New Computed Data XNEW Replaces X . 

 
 
 
 
Training Set 
 
-------------- 
 
Checking Set 

1 2X X≡  1 3X X∧  1 4X X∨  2 4X X⇒  
     1      0      1       0 
     0      0      0       1 
     0      1      1       1 
     1      1      0       1 
    

1 0 0 1 
0 0 1 1 
0 0 0 1 

                                                          
Step 3:  (When to Stop: Goodness of Fit)   
     Steps 1 and 2 define the algorithm.   To determine when the process is stopped, we 
compute the number of correct predictions RMAX of Y at the end of Step 2 for those 
observations in the checking set.  This is an easy thing to do since best predictions reside in 
the first column of XNEW (and also the first column of X ).   Experiments have shown that 
RMAX increases for a few generations and then begins to decrease as the model begins to 
over-fit the data. Hence, the rule is to stop the algorithm when the RMAX curve reaches its 
maximum and select the first column of XNEW as the best predictor.    When the algorithm 
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stops, the columns of XNEW contain the computed values of the best m logical predictors of 
Y .  This defines the algorithm.     
 
 

4.   Computations 
     We tested the algorithm’s ability to find best logical relations of several independent 
variables from among 50m =  independent variables with 250n =  observations 
( 150nt = , 100nc = ).  All independent variables were binary 0 and 1 variables, each having 
probability 0.5.  The dependent variable Y was generated as a logical expression of the 
dependent variables for some observations, and random 0s and 1s for other observations. In 
this way we could determine how well the GMDH algorithm works.   
 
     To carry out the generation of the dependent variable Y , we first select a number 
0 1q≤ ≤ ,  then generate a uniform random number r  between 0 and 1, and then the 
observations , 1,...,iy i n=  computed by the rule         
                                                 

               
specified logical function when  
random 0 or 1 when i

r q
y

r q
≥

=  <
 

 
Note that when 0q =  the dependent observations iy  are the values of specified logical 
function of the dependent variables, and when 1q =  the computed values of Y are random 
0s and 1s and have no relation to the independent variables.  The goal was to determine how 
well the algorithm could pick out the chosen logical relation when 0 1q< < .  
 
Experiment 1:   The value 1q = was chosen with logical function 15 35X X⇒ .  It was not 
surprising that at the first iteration the maximum logical function was 15 35X X⇒  and that it 
predicted the dependent variable 150 out of 150 times in the training set and 100 out of 100 
times in the checking set.  The second through fifth place logical relations were (2) 

15 42X X⇒ , (3) 15 49not both  and X X , (4) 15 16not both  and X X , and (5) 16 35X X⇒  which 

is not surprising since the chosen logical relation 15 35 15 35X X X X⇒ ≡ ∪  so the variables 

15 35 and  X X would naturally come into play.   The following Table 6 shows the results for 
the same logical function for different values of q after 1 iteration. 

  
Table 6:  Correct predictions of Y after 1 iteration for different values of q .    
                                             

Value of q 1 0.9 0.8 0.7 0.6 
Best logical 
functions 15 35X X⇒  15 35X X⇒  15 35X X⇒  15 35X X⇒  15 35X X⇒  

Fraction of correct 
predictions in the 
training set 

150/150 
(100%) 

143/150 
(95%) 

134/150 
(89%) 

132/150 
(88%) 

124/150 
(83%) 
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Fraction of correct 
predictions in the 
checking set 

100/100 
(100%) 

97/100 
(97%) 

89/100 
(89%) 

84/100 
(84%) 

79/100 
(79%) 

 
 
Experiment 2:    Using the same data and values of q  as in Experiment 1, but with the new 

logical function ( ) ( )5 10 15 20y X X X X= ∪ ∩ ∪ , we arrived at the results in Table 7 after 
two iterations.  In these cases the algorithm reached its maximum predictions after only two  
iterations.   Note that when 0.5q = the maximum logical function was close to the entered 
logical function but not exact.  This is not surprising since only 50% of the dependent 
variables were computed from ( ) ( )5 10 15 20iy X X X X= ∪ ∩ ∪ . 

 
Table 7:  Results after 2 Iterations 

 

Value of q 
 
1 
 

0.8 

Best logical function 
 

( ) ( )5 10 15 20X X X X∪ ∩ ∪
 

( ) ( )5 10 15 20X X X X∪ ∩ ∪
 

Fraction of correct predictions 
in the training set 

150/150 
(100%) 

140/150 
(93%) 

Fraction of correct predictions 
in the checking set 

100/100 
(100%) 

87/100 
(87%) 

Value of q 0.6 0.5 

Best logical function 
 

( ) ( )5 10 15 20X X X X∪ ∩ ∪
  

( ) ( )10 20 10 15X X X X∪ ∩ ∪
 

Fraction of correct predictions 
in the training set 

120/150 
(80%) 

110/150  
(73%) 

Fraction of correct predictions 
in the checking set 

74/100 
(74%) 

 71/100 
(71%) 

        
 
 
  
 

5. Conclusions 
      From the experiments performed we conclude that the GMDH algorithm is an effective 
tool in finding logical relations among predictor variables.  
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