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Abstract. The best-known and widely used model in diffusion research is the Bass model. Estimation
of its parameters has been approached in the literature by various methods, among which a very
popular one is the nonlinear least squares (NLS) method proposed by Srinivasan and Mason. In this
paper, we consider the ls-norm (1≤ s <∞) generalization of the NLS method for the Bass model.
Our focus is on the existence of the corresponding best ls-norm estimate. We show that it is possible
for the best ls-norm estimate not to exist. As a main result, two theorems on the existence of the best
ls-norm estimate are obtained. One of them gives necessary and sufficient conditions which guarantee
the existence of the best ls-norm estimate.
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1. Introduction

The Bass model, introduced in 1969 (see Bass [4]), is the most popular first-purchase
(adoption) diffusion model in marketing research. The main reason for this is that it finds
its origin in a formal theory of product diffusion (see e.g. [30]), and that model parameters
have an easy interpretation in terms of innovation and imitation effects. The model is in
some respects similar to models of infectious diseases or contagion models which describe the
spread of a disease through the population due to contact with infected persons (see [2, 3]).
For general information on new product diffusion models we refer to Mahajan et al. [20].

In practice, the unknown parameters of the Bass model are not known in advance and
must be estimated from the actual adoption data. There is no unique way to estimate the
unknown parameters and many different methods have been proposed in the literature. Ma-
hajan et al. [21] used real diffusion data for seven products to compare the performance of
four estimation procedures: ordinary least squares estimation (OLS) proposed by Bass [4],
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maximum likelihood estimation (MLE) proposed by Schmittlein and Mahajan [32], nonlinear
least squares estimation (NLS) suggested by Srinivasan and Mason [35], and algebraic esti-
mation (AE) proposed by Mahajan and Sharma [22]. They concluded that, for the seven data
sets considered in their study, the NLS procedure provides better predictions as well as more
valid estimates of standard errors for the parameter estimates than the other three estimation
procedures (see also [29, 36]). But, since each of these procedures has some advantages and
disadvantages (see e.g. [21, 35, 36]), several other methods are proposed to estimate the
unknown parameters in the Bass model. For example, Boswijk and Franses [7] have proposed
an alternative to the Bass OLS regression.

The NLS estimation approach as proposed by Srinivasan and Mason has generally become
the standard in diffusion research (see e.g. [20, 26, 27, 29]). In this paper, we consider the ls-
norm (1≤ s <∞) generalization of the NLS approach for the Bass model. Our focus is on the
existence of the corresponding best ls-norm estimate. The structure of the paper is as follows.
In Section 2, we briefly review the Bass model. In Section 3, both the NLS estimation approach
and its generalization in the ls-norm are described. We show that it is possible that the best
ls-norm estimate does not exist (Proposition 1). As our main results, two theorems on the
existence of the best ls-norm estimate are obtained in Section 4. One of them gives necessary
and sufficient conditions which guarantee the existence of the best ls-norm estimate. To the
best of our knowledge, there is no previous paper that has focused on this existence problem.

2. Mathematical Formulation of the Bass Model

Bass [4] divided adopters (first-time buyers) of a new durable product into innovators and
imitators. Imitators, unlike innovators, are those buyers who are influenced in their adoption
by the number of previous buyers. The Bass diffusion model has three parameters: the co-
efficient of innovation or external influence (p > 0), the coefficient of imitation or internal
influence (q ≥ 0), and the total market potential (m > 0), i.e. the maximum cumulative
number of adopters that diffusion is expected to reach. According to the model, if N(t) is
the cumulative number of adopters at time t, then the adoption rate dN(t)

d t
is described by the

following differential equation:

dN(t)

d t
= p[m− N(t)] +

q

m
N(t)[m− N(t)], N(0) = 0, t ≥ 0. (1)

In Equation (1), the first term p[m− N(t)] represents adoptions due to innovators, whereas
the second term, q

m
N(t)[m− N(t)], represents adoptions due to imitators.

The closed form solution of (1) is given by

N(t; m, p,q) = m
1− e−(p+q)t

1+ q

p
e−(p+q)t

, t ≥ 0.

The graph of the function N , known as the Bass cumulative adoption curve, is an “S-shaped”
curve. If q > p, for this curve the point of inflection occurs at t I := 1

p+q
ln(q/p) with
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Figure 1: A Typical S-shaped Bass Cumulative Adoption Curve.

N(t I ; m, p,q) = m
(q−p)

2q
(see Fig. 1). For q ≤ p, the graph is still S-shaped, but the point

of inflection occurs at a negative value of t.
The Bass model has been extensively used by marketing researchers primarily for the

purpose of modelling diffusion processes and forecasting the sales of products, but it has
also been used for various types of diffusion analysis in applied research, such as industrial
technology, biology, medicine, engineering, computing, agriculture, social sciences, etc. For a
review of the Bass model and its applications, see e.g. [20, 28].

The problem of nonlinear weighted least squares and total least squares fitting of the
Bass cumulative adoption curve is considered by Jukić in [15] and [14], respectively. The
nonlinear weighted least squares fitting of the Bass adoption curve is considered in [23].

3. ls-norm Generalization of the NLS Method for the Bass Model

In practice, the unknown parameters of the Bass model are not known in advance and
they must be estimated from the actual adoption data. Suppose we are given the data (t i , X i),
i = 1, . . . , n, n> 3, where

0< t1 < t2 < . . .< tn (2)

denotes the times at which incremental sales of the product are observed, and

X i > 0, i = 1, . . . n, (3)

is the observed number of new adopters in the time interval (t i−1, t i]. Here, by definition,
t0 = 0. Note that conditions (2) and (3) are natural.

The formulation of the NLS approach for the Bass model is as follows: The observed
number of new adopters X i in the time interval (t i−1, t i] is modeled as

X i = N(t i; m, p,q)− N(t i−1; m, p,q) + εi, i = 1, . . . , n,

where εi is an additive error term. Here, by definition, t0 = 0. Based on these equations,
Srinivasan and Mason [35] proposed to estimate the unknown parameters p,q and m in the
sense of least squares (LS) by minimizing functional

S(m, p,q) =
n
∑

i=1

[N(t i; m, p,q)− N(t i−1; m, p,q)− X i]
2
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on the set
P := {(m, p,q) : m, p > 0, q ≥ 0}.

This problem is a nonlinear l2-norm problem. During the last few decades, an increased
interest in the alternative ls-norm has become apparent (see e.g. [1, 12, 33]). For example,
l1-norm criteria are more suitable if there are wild points (outliers) in the data. Therefore,
instead of minimizing functional S, sometimes a more adequate criterion for estimation of
unknown parameters m, p and q of the Bass model is to use some weighted ls-norm, i.e. to
minimize on the set P the following functional:

Fs(m, p,q) =
n
∑

i=1

wi |N(t i; m, p,q)− N(t i−1; m, p,q)− X i |
s. (4)

where wi > 0 are some weights, and where s (1 ≤ s < ∞) is an arbitrary fixed number. A
point (m?, p?,q?) ∈ P such that

Fs(m
?, p?,q?) = inf

(m,p,q)∈P
Fs(m, p,q)

is called the best ls-norm estimate, if it exists. For s = 2, the best l2-norm estimate is the
familiar weighted LS estimate.

The above weighted ls-norm minimization problem is a nonlinear problem which can only
be solved in an iterative way. Before starting an iterative procedure, it is still necessary to
question whether the best ls-norm estimate exists. Even in the case of nonlinear LS problems
(s = 2), it is still extremely difficult to answer this question (see [5, 6, 8–11, 13, 15–19, 24,
25, 31, 34]).

The following proposition shows that there exist data such that the best ls-norm estimate
does not exist.

Proposition 1. Let (wi, i, X i), i = 1, . . . , n, n> 3, be the data. If the data are such that

i) the points (i, X i), i = 1, . . . , n all lie on some exponential curve y(t) = bec t , b, c > 0, or

ii) 0< X1 = X2 = . . .= Xn =: k,

then the best ls-norm estimate does not exist.

Proof. (i) Since Fs(m, p,q)≥ 0 for all (m, p,q) ∈ P , and

lim
x→∞

Fs

� x b

1− e−c
,

c

x + 1
,

cx

x + 1

�

= lim
x→∞

n
∑

i=1

wi

�

�

�

x b

1− e−c

1− e−ci

1+ x e−ci
−

x b

1− e−c

1− e−c(i−1)

1+ x e−c(i−1)
− X i

�

�

�

s

=

n
∑

i=1

wi |beci − X i |
s = 0 ,
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this means that inf
(m,p,q)∈P

Fs(m, p,q) = 0. Furthermore, since the graph of any function of the

form

t 7→ N(t; m, p,q)− N(t − 1; m, p,q) =
m(1+ q

p
)(ep+q−1)e−(p+q)t

(1+ q

p
e−(p+q)t)(1+ q

p
ep+q e−(p+q)t)

, t ≥ 1, (5)

where (m, p,q) ∈ P , intersects the graph of function y(t) = bec t in three points at most, and
n> 3, it follows that Fs(m, p,q) > 0 for all (m, p,q) ∈ P , and hence the best ls-norm estimate
does not exist.
(ii) Consider the following class of Bass functions

t 7→ N
�

t;
2

x
,

kx

2
,

kx

2

�

= 2
1−e−kt x

x

1+ e−kt x
, x > 0.

Using L’Hospital rule, it is easy to show that

lim
x→0+

Fs

�2

x
,

kx

2
,

kx

2

�

= lim
x→0+

n
∑

i=1

wi

�

�

�2
1−e−kx i

x

1+ e−kx i
− 2

1−e−kx(i−1)

x

1+ e−kx(i−1)
− X i

�

�

�

s

=

n
∑

i=1

wi |k− Ni |
s = 0.

This means that inf
(m,p,q)∈P

Fs(m, p,q) = 0. Furthermore, since the graph of any function of type

(5) intersects the line y = k in two points at most, and n > 3, it follows that Fs(m, p,q) > 0
for all (m, p,q) ∈ P , and hence the best ls-norm estimate does not exist.

4. The Existence Theorems

The following theorem, which is our main result, gives a necessary and sufficient condi-
tion which guarantees the existence of the best ls-norm estimate. First, let us introduce the
following notation:

E?s := inf
b,c>0

n
∑

i=1

wi |b ec t i −b ecti−1 −X i |
s. (6)

By carefully examining the proof of Theorem 1 one can see that E?s is a so-called existence
level for functional Fs (see e.g. [8]).

Theorem 1 (Necessary and sufficient condition). Suppose that the data (wi, t i , X i), i = 1, . . . , n,

n > 3, satisfy conditions (2) and (3). Then functional Fs defined by (4) attains its infimum on

P (i.e. the best ls-norm estimate exists) if and only if there is a point (m0, p0,q0) ∈ P such that

Fs(m0, p0,q0)≤ E?s .
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In practice, we usually have observations of a diffusion process at certain equispaced time
intervals (say yearly, quarterly, or monthly), so that t i = iδ, i = 1, . . . , n, where δ denotes
the calendar time between two successive observations. In this case, by using substitutions
α := b(1−e−cδ) and β := cδ in (6), it is easy to show that E?s = infα,β>0

∑n

i=1 wi |αeβ t i −X i |
s.

Therefore, under the assumptions of the theorem, the best ls-norm estimate exists if and only
if there is at least one function of type (5) which is in an ls-norm fitting sense as good as or
better than the best exponential curve of type t 7→ αeβ t , where α,β > 0.

It is clear that, regardless of how much effort is put into marketing, there is a certain upper
bound, say M , for the market potential m (i.e., the maximum number of adopters). In most
cases management has a judgment, a strong intuitive feel, about the upper bound M , but if
not, the upper bound M can be the size of the relevant population. The following theorem
tells us that if parameter m is bounded above, then the ls-norm estimate will exist. First, let
us introduce the following notation: Given any real number M > 0, let

PM := {(m, p,q) : 0< m≤ M , p > 0, q ≥ 0}.

Theorem 2. Suppose that the data (wi , t i , X i), i = 1, . . . , n, n > 3, satisfy conditions (2) and

(3). Then functional Fs defined by (4) attains its infimum on PM , i.e. there exists a point

(m?, p?,q?) ∈ PM such that Fs(m
?, p?,q?) = inf(m,p,q)∈PM

Fs(m, p,q).

The proof of this theorem is omitted; it is the same for respective parts of the proof of
Theorem 1, with the exception that we do not have to prove that m? <∞.

The following lemma will be used in the proof of Theorem 1.

Lemma 1. Suppose that the data (wi, t i , X i), i = 1, . . . , n, n> 3, satisfy conditions (2) and (3).

Then given any i0 ∈ {2, . . . , n} there exists a point in P at which functional Fs defined by (4)
attains a value less than

∑n
i=1

i 6=i0−1,i0
wi |X i |

s.

Proof. In order to simplify the notation in the proof, we denote

(τi,ξi) := (t i0−2+i , X i0−2+i), i = 0,1,2.

Let x0 ∈ (0,∞) be any point such that

ξ2(e
−xτ0−e−xτ1)− ξ1(e

−xτ1−e−xτ2)

ξ1(e−xτ1−e−xτ2)e−xτ0−ξ2(e−xτ0−e−xτ1)e−xτ2
> 0

for all x ∈ (x0,∞). Since both the numerator and the denominator of the above expression
are positive for all sufficiently large values of x , such x0 exists. Now define functions
α, m, p,q : (x0,∞)→ (0,∞) by

α(x) :=
ξ2(e

−xτ0−e−xτ1)− ξ1(e
−xτ1−e−xτ2)

ξ1(e−xτ1−e−xτ2)e−xτ0−ξ2(e−xτ0−e−xτ1)e−xτ2
,

m(x) :=
ξ2(1+α(x)e

−xτ1)(1+α(x)e−xτ2)

(1+α(x))(e−xτ1−e−xτ2)
,
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p(x) :=
x

1+α(x)
,

q(x) :=
xα(x)

1+α(x)
.

By a straightforward but tedious calculation, one can verify that for all x ∈ (x0,∞),

ξ2(1+α(x)e
−xτ2)

e−xτ1−e−xτ2
=
ξ1(1+α(x)e

−xτ0)

e−xτ0−e−xτ1
(7)

and

lim
x→∞

α(x)e−x t =







0 , if t > τ1
ξ2

ξ1
, if t = τ1

∞ , if t < τ1.

(8)

Note that (m(x), p(x),q(x)) ∈ P for all x ∈ (x0,∞). It is easy to verify that

N(t; m(x), p(x),q(x)) =
ξ2(1+α(x)e

−xτ1)(1+α(x)e−xτ2)

(1+α(x))(e−xτ1−e−xτ2)

1− e−x t

1+α(x)e−x t

and

∆N(t; x) :=N(t; m(x), p(x),q(x))− N(τ1; m(x), p(x),q(x))

=
ξ2(1+α(x)e

−xτ2)

e−xτ1−e−xτ2

e−xτ1−e−x t

1+α(x)e−x t
. (9)

Note that

N(t i; m(x), p(x),q(x))− N(t i−1; m(x), p(x),q(x)) = ∆(t i; x)−∆(t i−1; x),

i = 1, . . . , n.

Also note that due to (7) equation (9) can be rewritten in the form

∆N(t; x) =
ξ1(1+α(x)e

−xτ0)

e−xτ0−e−xτ1

e−xτ1−e−x t

1+α(x)e−x t
. (10)

It follows immediately from (9) and (10) that

∆N(τ2; x) = ξ2, ∆N(τ1; x) = 0 and ∆N(τ0; x) =−ξ1. (11)

Now we are going to show that

lim
x→∞

∆N(t; x) =

(

−ξ1 , if t < τ1

ξ2 , if t > τ1.
(12)

To do this, first note that ∆N(t; x) can be rewritten in the following two equivalent forms:

∆N(t; x) =
ξ2(1+α(x)e

−xτ2)

1− e−x(τ2−τ1)

e−x(τ1−t)−1

e−x(τ1−t)+α(x)e−xτ1
(13)
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or

∆N(t; x) =
ξ2(1+α(x)e

−xτ2)

1− e−x(τ2−τ1)

1− e−x(t−τ1)

1+α(x)e−x t
. (14)

If t < τ1, then taking the limit as x → ∞ in (13) and using (8) it is easy to show that
limx→∞∆N(t; x) = −ξ1, whereas, if t > τ1, it follows immediately from (14) and (8) that
limx→∞∆N(t; x) = ξ2.

Let x > x0 be sufficiently large, so that

0<∆N(t i; x)−∆N(t i−1; x)≤ X i , i = 1, . . . , n

whereby the equality holds only if i = i0 or i = i0 − 1. Due to (11) and (12), such x exists.
Then

Fs(m(x), p(x),q(x)) =
n
∑

i=1

wi |∆N(t i; x)−∆N(t i−1; x)− X i |
s

=

n
∑

i=1
i 6=i0−1,i0

wi |∆N(t i; x)−∆N(t i−1; x)− X i |
s

<

n
∑

i=1
i 6=i0−1,i0

wi |X i |
s.

Proof of Theorem 1. Assume first that (m?, p?,q?) ∈ P is the best ls-norm estimate, and then
show that Fs(m

?, p?,q?)≤ E?s . In order to do this, first note that for all b, c, x > 0,

Fs(m
?, p?,q?)≤Fs

�

x b,
c

x + 1
,

cx

x + 1

�

=

n
∑

i=1

wi

�

�x b
1− e−c t i

1+ x e−c t i
− x b

1− e−c t i−1

1+ x e−c t i−1
− X i

�

�

s
,

from where taking the limit as x →∞ it follows that

Fs(m
?, p?,q?)≤

n
∑

i=1

wi |b ec t i −b ec t i−1−X i |
s.

From the last inequality and the definition of E?s we obtain that Fs(m
?, p?,q?)≤ E?s .

Let us show the converse of the theorem. Suppose that there is a point
(m0, p0,q0) ∈ P such that Fs(m0, p0,q0)≤ E?s . Since functional Fs is nonnegative, there exists
F?s := inf(m,p,q)∈P Fs(m, p,q). It should be shown that the best ls-norm estimate exists, i.e. that
there exists a point (m?, p?,q?) ∈ P such that Fs(m

?, p?,q?) = F?s . To do this, first note that

F?s ≤ Fs(m0, p0,q0)≤ E?s .
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If F?s = Fs(m0, p0,q0), to complete the proof it is enough to set (m?, p?,q?) = (m0, p0,q0).
Hence, we can further assume that

F?s < Fs(m0, p0,q0)≤ E?s . (15)

Let (mk, pk,qk) be a sequence in P , such that

F?s = lim
k→∞

Fs(mk, pk,qk)

= lim
k→∞

n
∑

i=1

wi |N(t i; mk, pk,qk)− N(t i−1; mk, pk,qk)− X i |
s. (16)

Without loss of generality, in further consideration we may assume that sequences (mk), (pk)

and (qk) are monotone. This is possible because the sequence (mk, pk,qk) has a subsequence
(mlk

, plk
,qlk
), such that all its component sequences (mlk

), (plk
) and (qlk

) are monotone; and
since limk→∞ Fs(mlk

, plk
,qlk
) = limk→∞ Fs(mk, pk,qk) = F?s .

Since each monotone sequence of real numbers converges in the extended real number
system R, define

m? := lim
k→∞

mk, p? := lim
k→∞

pk, q? := lim
k→∞

qk.

Note that 0≤ m?, p?,q? ≤∞, because (mk, pk,qk) ∈ P .
To complete the proof it is enough to show that (m?, p?,q?) ∈ P , i.e. that 0 < m? <∞,

0< p? <∞ and 0≤ q? <∞. The continuity of functional Fs will then imply that
F?s = limk→∞ Fs(mk, pk,qk) = Fs(m

?, p?,q?).
It remains to show that (m?, p?,q?) ∈ P . The proof will be done in three steps. In step 1

we will show that 0< m? <∞. It is also the most difficult part of the proof. In step 2 we will
show that 0 < p? + q? <∞, which will imply that 0 ≤ p?,q? <∞. The proof that p? > 0 will
be done in step 3.

Before continuing the proof, note that all sequences

(N(t i; mk, pk,qk)− N(t i−1; mk, pk,qk)), i = 1, . . . , n,

must converge to a finite number because otherwise, if

lim
k→∞
[N(t i0

; mk, pk,qk)− N(t i0−1; mk, pk,qk)] =∞

for some i0, then it would follow from (16) that

F?s ≥ lim
k→∞

wi |N(t i0
; mk, pk,qk)− N(t i0−1; mk, pk,qk)|

s =∞,

which is impossible. Now, since N(t0; mk, pk,qk) = 0, it follows readily that all limits

lim
k→∞

N(t i; mk, pk,qk), i = 1, . . . , n

are finite.
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Step 1. Let us first show that m? < ∞. We prove this by contradiction. Suppose on the
contrary that m? = ∞. Without loss of generality, by taking appropriate subse-
quences if necessary, we may assume that the sequence ( qk

pkmk
) is monotone. Let

l? := limk→∞
qk

pkmk
. Then only one of the following three cases can occur:

(i) l? =∞,

(ii) 0< l? <∞, or

(iii) l? = 0.

Now, we are going to show that functional Fs cannot attain its infimum in either of
these three cases, which will prove that m? <∞. Before continuing the proof, let us
note that

N(t i; mk, pk,qk) =
1− e−(pk+qk)t i

1
mk
+

qk

pkmk

e−(pk+qk)t i

, i = 1, . . . , n. (17)

Case (i): l? =∞. First note that 0≤ p?+ q? ≤∞. If 0≤ p?+ q? <∞, then from (17)
it easily follows that

lim
k→∞

N(t i; mk, pk,qk) = 0, i = 1, . . . , n

and hence from (16) it would follow that F?s =
∑n

i=1 wi |X i |
s. Since according to

Lemma 1 there exists a point in P at which functional Fs attains a value smaller than
∑n

i=1 wi |X i |
s, this means that in this way functional Fs cannot attain its infimum.

It remains to consider the case when p?+q? =∞. If limk→∞
qk

pkmk

e−(pk+qk)tn = 0, then

it would follow from (17) that limk→∞ N(tn; mk, pk,qk) = ∞, which is impossible
because, as we know, all these limits must be finite. If limk→∞

qk

pkmk

e−(pk+qk)tn > 0,
regardless of whether this limit is finite or infinite, then from the equalities

qk

pkmk

e−(pk+qk)t i =
qk

pkmk

e−(pk+qk)tn ·e−(pk+qk)(t i−tn), i = 1, . . . , n

it follows readily that

lim
k→∞

qk

pkmk

e−(pk+qk)t i =∞, i = 1, . . . , n− 1.

Due to this, now it is easy to show that from (17) it follows that

lim
k→∞

N(t i; mk, pk,qk) = 0, i = 1, . . . , n− 1,

and therefore from (16) it would follow that F?s ≥
∑n−1

i=1 wi |X i |
s. Again, according to

Lemma 1, there exists a point in P at which functional Fs attains a value smaller than
∑n−1

i=1 wi |X i |
s. This means that in this way functional Fs cannot attain its infimum.
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Case (ii): 0< l? <∞.If p? + q? = 0, then from (17) it easily follows that

lim
k→∞

N(t i; mk, pk,qk) = 0, i = 1, . . . , n

and therefore we would obtain that F?s =
∑n

i=1 wi |X i |
s. As already shown in case

(i), there exists a point in P at which functional Fs attains a value smaller than
∑n

i=1 wi |X i |
s. Therefore, in this way functional Fs cannot attain its infimum.

If p?+ q? =∞, then from (17) it follows that limk→∞ N(t i; mk, pk,qk) =∞,
i = 1, . . . , n, which is impossible because, as we know, all these limits must be finite.

Finally, if 0< p? + q? <∞, then

lim
k→∞

N(t i; mk, pk,qk) =
1

l?
(e(p

?+q?)t i −1), i = 1, . . . , n.

In this case we would have

F?s = lim
k→∞

Fs(mk, pk,qk) =

n
∑

i=1

wi

�

�

1

l?
e(p

?+q?)t i −
1

l?
e(p

?+q?)t i−1−X i

�

�

s
≥ E?s ,

which contradicts assumption (15). This means that in this way functional Fs cannot
attain its infimum.

Case (iii): l? = 0. If 0< p? + q? ≤∞, then

lim
k→∞

N(t i; mk, pk,qk) =∞, i = 1, . . . , n.

As concluded in case (ii), in this way functional Fs cannot attain its infimum.

Let us now suppose that p?+ q? = 0. By the Lagrange mean value theorem, for every
k ∈ N there exist real numbers ϑi,k ∈ (0,1), i = 1, . . . , n, such that

N(t i; mk, pk,qk) =
mk(pk + qk)t i e−ϑi,k(pk+qk)t i

1+ qk

pk

e−(pk+qk)t i
(18)

= mkpk t i e−ϑi,k(pk+qk)t i

� 1+ qk

pk

1+ qk

pk

e−(pk+qk)t i

�

.

Since e−(pk+qk)t i < 1 for every k ∈ N, it is easy to check that

1<
1+ qk

pk

1+ qk

pk

e−(pk+qk)t i
< e(pk+qk)t i , i = 1, . . . , n

from where passing to the limit as k→∞ we obtain

lim
k→∞

1+ qk

pk

1+ qk

pk

e−(pk+qk)t i
= 1, i = 1, . . . , n.
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Now, by using (18) we obtain

lim
k→∞

N(t i; mk, pk,qk) = k0 t i , i = 1, . . . , n, (19)

where k0 := limk→∞(mkpk) is finite or infinite.

If k0 = 0, from (16) and (19) it follows that F?s =
∑n

i=1 wi |X i |
s. If k0 =∞, then we

would have limk→∞ N(t i; mk, pk,qk) =∞, i = 1, . . . , n. As already shown in case (i),
in these two ways (k0 = 0 and k0 =∞) functional Fs cannot attain its infimum. Now
suppose that 0< k0 <∞. Then by using (16) and (19) we would obtain

F?s =

n
∑

i=1

wi |k0(t i − t i−1)− X i |
s. (20)

Furthermore, since by the definition of E?s ,

n
∑

i=1

wi

�

�

1

c
eck0 t i −

1

c
eck0 t i−1−X i

�

�

s
≥ E?s for every c > 0,

taking the limit as c → 0+ it follows that
∑n

i=1wi |k0(t i − t i−1)−X i |
s ≥ E?s . Due to

this and (20) we would have that F?s ≥ E?s , which contradicts assumption (15). This
means that in this way functional Fs cannot attain its infimum.

Thus, we have proved that m? <∞. It is easy to show that m? > 0. We prove this by
contradiction. If mk→ 0, then from the inequalities

0≤ mk

1− e−(pk+qk)t i

1+ qk

pk

e−(pk+qk)t i
< mk, i = 1, . . . , n

we would have
lim

k→∞
N(t i; mk, pk,qk) = 0, i = 1, . . . , n.

As shown in case (i), in this way functional Fs cannot attain its infimum.

We completed the proof that 0< m? <∞.

Step 2. Let us first show that p?+ q? <∞. Suppose on the contrary that p? + q? =∞.

If limk→∞
qk

pk

e−(pk+qk)t i =∞ for all i = 1, . . . , n, then

N(t i; mk, pk,qk)→ 0, i = 1, . . . , n

As already shown in case (i) from step 1, in this way functional Fs cannot attain its
infimum.

It remains to consider the case when 0 ≤ limk→∞
qk

pk

e−(pk+qk)t i < ∞ for at least one
index i ≥ 1. Let i0 be the minimal index with this property. By using equalities

qk

pk

e−(pk+qk)t i =
qk

pk

e−(pk+qk)t i0 ·e−(pk+qk)(t i−t i0
), i = 1, . . . , n
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it is easy to show that

lim
k→∞

N(t i; mk, pk,qk) =

(

0 , if i < i0

m? , if i > i0.

Due to this and (16), now it is easy to show that if i0 < n, we would have
F?s ≥
∑n

i=1
i 6=i0,i0+1

wi|X i |
s, whereas, if i0 = n, we would have F?s ≥

∑n−1
i=1 wi |X i |

s. Since

according to Lemma 1 in both subcases (i0 < n and i0 = n) there exists a point in P
at which functional Fs attains a smaller value, this means that in this way functional
Fs cannot attain its infimum. In this way we completed the proof that p? + q? <∞.

Now, we are going to show that 0< p?+ q?. We prove this by contradiction. Suppose
on the contrary that p?+ q? = 0. Then from the inequalities

0≤ mk

1− e−(pk+qk)t i

1+ qk

pk

e−(pk+qk)t i
< mk(1− e−(pk+qk)t i ), i = 1, . . . , n

we would have
lim

k→∞
N(t i; mk, pk,qk) = 0, i = 1, . . . , n.

As shown in case (i) from step 1, in this way functional Fs cannot attain its infimum.

So far,we have shown that 0 < m? <∞ and 0 < p? + q? <∞. By using this, in the
next step we will show that p? > 0.

Step 3. Let us show that p? > 0. We prove this by contradiction. Suppose on the contrary
that p? = 0. Then from the inequalities 0 < p? + q? <∞ it follows that q? > 0. Now
it is easy to conclude that

lim
k→∞

qk

pk

e−(pk+qk)t i =∞, i = 1, . . . , n

and therefore
lim

k→∞
N(t i; mk, pk,qk) = 0, i = 1, . . . , n.

As shown in case (i) from step 1, in this way functional Fs cannot attain its infimum.
Thus, we proved that p? > 0 and herewith we completed the proof.
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[14] D. Jukić. Total least squares fitting Bass diffusion model. Mathematical and Computer

Modelling, 53:1756-1770, 2011.
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