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Abstract. We prove some existence results for nonlinear degenerate elliptic problems of the form
Au+ g(x,u) = f — divF,
where A(u) = —diva(x,u, Vu) is a Leray-Lions, operator defined form the weighted Sobolev space

N
Wol’p(ﬂ,w) into its dual. The right hand side, f € L'(Q) and F € l_[LP/(Q, w}). Note that the
i=1
Carathéodory function a(x,s, &) satisfies only the large monotonicity instead of the monotonicity strict
condition. We overcome this difficulty by using the L!-version of Minty’s lemma.
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1. Introduction

On a bounded open domain Q of RY N > 2 we consider the Dirichlet problem for the
quasilinear degenerated elliptic equation,

Au+g(x,u)=u in Q
{ u=20 on 99, (.1
where Au = —div(a(x,u, Vu)) is a Leray-Lions operators defined from the weighted Sobolev

space Wol’p(ﬂ,w) into its dual WP (Q,w*) where w = fw;, 0 <i < N} is collection of

weight functions on 2, 1 < p < oo and w* = {Wl.l_p/, 0<i<N}.
Here a(x,s, &) is a Carathéodory function defined on  x R x RN and g(x,u) is a nonlinear
term which satisfy some suitable conditions (H;) — (H,) below. The second member u is a
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measure which belongs in L1(Q) + WP (Q, w*).
The feature of this paper, is to treat a class of problems for which the classical monotone
operator methods (developed by Visik [12], Minty [11], Browder [6], Brézis [5] and Lions
[10] in non weighted case and by Akdim-Azroul [2] in weighted case and others) do not apply.
The reason for this, is that a(.) does not need to satisfy the strict monotonicity condition that
is,

(a(x,s, &) —a(x,s,m),E—n) >0 for all £#neR", (1.2)

of a typical Leray-Lions operator but only a large monotonicity that is
(a(x,s,&) —alx,s,m),& —n) 20 for all (§,n)€R" xR, (1.3)

where (,) denotes the usual inner product in RN .
The tool we use to overcome the difficulty of the not strict monotonicity (which can not guar-
antees the almost every where convergence of the gradient of approximation solution) is to
investigate some techniques induced by Minty’s lemma. The approach of pseudo-monotonicity
can not be used due to the fact that f € L1(£2). In order to prove the a.e. convergence of the
gradient of the approximate solution u,, the authors in [4] have show that u,, is bounded in
the Marcinkiewicz space. While in our present work we prove the locally converge in measure
of u, (seestep 2).
Thus our aim of this paper, is then to prove an existence of solution for the following problem,
—diva(x,u, Vu) + g(x,u) =u in Q

() u=0 on 99
where u = f — divF with f € L}(Q) and F € T, LP' (2, w}).In the sense of entropy solution
(see definition 2.1 below)
Note that, the existence of such entropy solution is proved by using only the large monotonic-
ity (1.3).
This paper is organized as follows, section 2 contains some preliminaries and basic assump-

tions. In section 3 we give our main general result which is proved in section 4. Section 5 is
devoted to an example which illustrated our abstract hypotheses.

2. Basic assumptions

Let Q be a bounded open set of RN, p be a real number such that 1 < p < oo and
w = {w;(x), 0 < i < N} be a vector of weight functions, i.e. every component w;(x) is a
measurable function which is positive a.e. in Q. Further, we suppose in all our considerations
that

w; €Ly (), 2.1)
and .,
wl™ el (), (2.2)

forany 0 <i <N.
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We denote by W1P(Q,w) the space of all real-valued functions u € LP(2,w,) such that
the derivatives in the sense of distributions fulfil

u
e LP(Q,w;) forall i=1,...,N,
8xi

which is a Banach space under the norm

v :
el e = U uCPwo() dx+ Y f | ;E:_C)Ipwi(x)dx} . 23)
Q i=1J0 L

The condition (2.1) implies that CJ°(£2) is a subspace of WLP(Q,w) and consequently, we can
introduce the subspace WO1 P(Q,w) of WHP(Q, w) as the closure of Cy° () with respect to the

norm (2.3). Moreover, the condition (2.2) implies that W P(Q, w) as well as WO1 P(Q,w) are
reflexive Banach spaces.
We recall that the dual space of weighted Sobolev spaces WO1 P(Q,w) is equivalent to

W_l’p/(ﬂ,w*), where w* = {w] = Wl.l_p/, i =1,..,N} and p’ is the conjugate of p i.e.
p'= p%l (for more details we refer to [8]).

Assumption(Al)
We assume that the norm :

Ko 5
|||u|||=(2 f |a;‘,|Pwi(x)dx) : 2.4
i=1J90 t

is equivalent to the usual norm (2.3), and there exists a weight function o(x) on £ and a
parameter q, 1 < g < oo such that the Hardy inequality,

L :
(J [u(x)|%o(x) dx) <c (ZJ Iﬁlpwi(x) dx)
Q o 9%

holds for every u € WO1 P(Q,w) with a constant ¢ > 0 independent of u. Moreover, the imbed-
ding,
Wy P (2, w) = LUQ, 0), (2.5)

is compact. Let A be a nonlinear operator from WO1 P(Q,w) into its dual W‘LP/(Q, w*) defined

as
A(u) = —div(a(x,u, Vu))

where a(x,s,£) : @ x R x RY — RY is a Caradhéodory vector-valued function satisfies the
following assumption.
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Assumption(A2)
Fori=1,...,N

1 1 g N o1
la;(x,s, E) < Bw/ (x) [k(x)+ o |s|¥’ +2ij (OIE; P71, (2.6)
j=1

forae., x€Q,all(s,£) € RxRY, some function k(x) € Lp/(ﬂ)(ll) —I—I% =1)and 8 > 0. Here
o and q are as in (Al).

(a(x,s, &) —a(x,s,m),E—n) >0 for all (§,n)€RY xRV, 2.7
N

(a(x,s,£),8) = @) wil&l, 2.8)
i=1

where «a is strictly positive constant.
Moreover, the function g(x,s) is a Carathéodory function satisfying

g(x,s)s > 0. (2.9)
sup |g(x,s)| = h,(x) € L}(£) (2.10)

[s|<n
We recall that, for k > 1 and s in R, the truncation is defined as

_ s if |s|<k
Ti(s) = kS sl > k.

Lemma 2.1. (¢f. [1]) Assume that (A1) holds. Let (u,) be a sequence of Wol’p(Q,W) such that
u, — u weakly in Wol’p(ﬂ,w). Then Ti(u,) — Ti(u) weakly in Wol’p(Q,w).

3. Main Existence Theorem

Consider the following problem:

—diva(x,u, Vu) + g(x,u) = f — div(F) in Q
(&) { u=0 on 90

N
where f € L}(Q) and F € l_[Lp/(Q, w).
i=1
Definition 3.1. .
An entropy solution of (2 ) is a measurable function u such that Ty (u) belongs to WO1 PQ,w)
for every k > 0 and such that

J (a(x,u, Vu), VT [u—¢]) dx—i—J gl )T [u—pldx = f [T [u—¢] dx+f (F,VTi[u—p]) dx
Q Q Q

Q

for every v € Wol’p(Q,w) N L>®(Q).
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Theorem 3.1. Under the assumptions (Al) and (A2) there exist an entropy solution u of the
problem (). i.e. u is a solution of (%) in the following sense.

J (a(x,u, Vu), VTi [u—p]) dx+j
Q

glx, )Ty [u—p]dx = J f Tilu—¢] dX+J (F,VTi[u—¢]) dx
Q Q Q

for every ¢ € WOLP(Q,W) N L*(Q), for every k > 0.

Remark 3.1. The statement of Theorem 3.1 generalizes in weighted case the analogous in [4]

and [3](with g =0).

4. Proof of Existence Theorem

4.1. Main Lemma

Lemma 4.1. Let u be a measurable function such that Ti(u) belongs to WO1 P(Q,w) for every
k > 0. Then

J (a(x,u, V), VTi[u—¢])dx < J T [u—¢]ldx +J (F,VTi[u—¢])dx. 4.1)
Q Q Q

is equivalent to

J (a(x,u, Vu), VT [u—¢p]) dx—l—j
Q

gle, )Ty [u—pl dx = J f T [u—¢] dx+J (F,VTi[u—p]) dx.
Q Q Q

4.2)
for every ¢ in Wol’p(ﬂ,w) N L*(Q), and for every k > 0.

Proof
In fact (4.2) implies (4.1) is easily proved adding and subtracting

f (a(x,u, V), VTi[u—¢]) dx
0

and then using assumption (2.7). Thus, it remains to prove that (4.1) implies (4.2). Let h and
k be positive real numbers,let A€ ]—1,1[ and ¢ € Wol’p(Q,W) NL®(Q).
Choose, ¢ = Ty(u — AT (u —yY)) € Wol’p(ﬂ,w) N L*() as test function in (4.1), we have:

Inge < Jnke 4.3)
with
Iy = f (a(x,u, VT(u — AT (u — ), VTi(u — Tp(u — ATi (u —)))) dx
Q

+J glx, )T (u— Ty(u — AT (u— 1)) dx = I}'lk + Ii/llk
Q
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and
Jne = f fT(u—Tp(u— AT (u—1p))) dx + J (F,VTi(u— Typ(u— ATi(u—1)))) dx.
Q Q
Put
Ay ={x €Q, [u—Ty(u— AT (u—y))| <k}
and

By ={x€Q, |u—AT(u—vy)| <h}.
Then, we obtain

I}’lk = f (a(x,u, VT(u— AT (u— ), VTi(u — Ty(u — AT (u —)))) dx
AgpMBpk

+J (a(x,u, VT(u — ATy (u — ), VTi(u — Tp(u — ATy (u — 2p)))) dx
AnNBE,

+f (a(x,u, VT(u — ATy (u — ), VTi(u — Tp(u — AT (u — p)))) dx.
Ay

Since VT (u — Ty(u — AT (u — ))) is different to zero only on Ay, we have

J (a(x,u, VT (u — AT (u — ), VTi(u — Tp(u — AT (u —4p)))) dx = 0. 4.4)
A

C
kh

Moreover, if x € B}fk, we have VT (u — AT, (u — 4)) = 0 and using (2.8), we deduce that,

f (alx,u, VTi(u — AT (u — ), VTi(u — Tp(u — AT (u —2p)))) dx
ANB,

= J (a(x,u,0),VTi(u— Tp(u — ATi(u—1)))) dx =0. (4.5)
ANB,
From (4.4) and (4.5), we obtain
I,ik = J (a(x,u, VTy(u — AT (u —Y))), VTi(u — Tp(u — ATy (u —p)))) dx.
AgnMBp

Letting h — +00, and |A| < 1, we have
A = 1% A T(w —¢)| <k} =Q, (4.6)

Bhk -0 Wthh lmphes Akh n Bhk — Q. (47)
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Which and using Lebesgue theorem, we conclude that

hEToof (alx,u, VTi(u — ATy(u — ), VT (u — Tp(u — ATy (u — ¢)))) dx
AgnMBhi

(4.8)
= AJ {a(x,u, V(u— AT (u—1)), VTi(u—1p)) dx.
Q

ie.,

lim Ii/1k = AJ (a(x,u, V(u— AT (u— ), VTi(u— 1)) dx. 4.9)
Q

h—+00

moreover it is easy to see that,

lim J g0, )T (u— Tp(u — AT (u—))) dx = AJ glx, )T [u—]dx
h—+o00 Q Q

thus implies that,

lim Iy = AJ (a(x,u, Vu—ATi(u—2)), VTi(u—1)) dx+lf g(x, )T [u—y] dx (4.10)
Q

h—+o00 Q

On the other hand, we have,

Jhie = f fTi(u—Tp(u — AT (u —))) dx + J (F,VTi(u— Ty(u — AT (u —)))) dx.
Q Q
Then

hEToof fT(u— Ty(u— ATy (u —4p))) dx + J (F, VTi(u — Tp(u — ATy (u — ¢)))) dx
Q Q

ZAJ fTi[u—] dx+7tf (F,VTi[u—1]) dx
Q

Q

ie.,
lim Jhk:AJ‘ ka[ll—’(,b] dX+7Lf <F,VTk[u—’ll)]> dx. (411)
h—+co Q Q

Together (4.10), (4.11) and passing to the limit in (4.3), we obtain,

A (J (a(x,u, V(u— AT (u—), VT (u—)) dx + f
Q

Q

80, )Ty [u—] dx)

<2 U FTu—] dx+f (F, VT, [u—1]) dx)
Q Q
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for every ¢ € Wol’p(ﬂ,w) N L*(Q), and for k > 0. Choosing A > 0 dividing by A, and then
letting A tend to zero , we obtain

J (a(x,u, Vu), VTi [u—¢]) dx—l—j
Q

g, )T [u—y]dx < J f T [u—] dx+J (F,VTi[u—¢]) dx.
Q Q

Q
(4.12)
For A < 0, dividing by A, and then letting A tend to zero , we obtain

J (a(x,u, Vu), VT [u—¢p]) dx—i-J
Q

gle, )Ty [u—y] dx > J f T [u—¢] dx—|—J (F,VTi[u—¢]) dx.
Q Q

(4.13)
Combining (4.12) and (4.13), we conclude the following equality :

J {a(x,u, Vu), VT [u—p]) dx+J
Q

g(x, )Ty [u—y] dx =f f T [u—¢] dx+f (F,VTi[u—p])dx.
Q Q

Q
(4.14)
This completes the proof of Lemma 4.1.

4.2. Proof of Theorem 3.1

1. Approximate problem and a priori estimate
Let f, be a sequence function of L*°(Q) which is strongly convergent to f in L!(£2) such
that ||f,ll;1 < ||fll;1, and let u, be a solution in Wol’p(Q,w) of the problem

—diva(x, u,, Vu,) + gn(x,u,) = f, — div(F) in Q
{ u,=0 on 990 (4.15)
where
g(x,s)
gn(x,8) = mQ L(x) and 6,(x)= Tl(U"(X))
g\xX

which exists thanks to [7].
Choosing T (u,,) as test function in (4.15), we have

J (a(x,u,, Vu,), VTi(u,)) dx—I—J
Q

Q

gn(x:un)Tk(un) dx = J fnTk(un) dx+f (F’VTk(un)) dx
Q

Q

using VTi(u,) = Vu, xju, <k} and thanks to assumption (2.8), we obtain

J (a(x,up, Vu,), VTi(u,)) dx > aZJ aTk( n)lp dx
Q

then since g,(x,u,)Ti(u,) > 0 we have,

aZJ ol “)|Pd <k||f||L1+ZfF| "(“")|
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g AT ()
<k||f||L1+ZJ wl (5)7 "i”)| G dx

1

by Young’s inequality, we obtain

Tl aT fl
aZJ k( )|Pd <Klfl+ 2 )IFllanmW*ﬁ Zf "( )|

Then,
( ) c(a)
—Zf T dx < k(lf I + 22 pr Ll PO

for k > 1, which implies that

1
S 0 Tr(uy,) P 1
Z |8—X|pWi(X)dX <ckr Vk>1. (4.16)
i=1J0Q i

2: Locally convergence of 1, in measure

We prove that u, converges to some function u locally in measure (and therefore, we can
always assume that the convergence is a.e. after passing to a suitable subsequence), we shall
show that u,, is a Cauchy sequence in measure in any ball B.
Let k > 0 large enough, by using (2.5), we have

f |Tk(un)|dx < f |Tk(un)| dx
{lun|>k}nBg By

(J | Ty (up)Pwo dx) } . (J W(l)_p, dx) q
By

k meas({|u,| > k} N Bg)

<
< U Ziam“") wilx )dx)p
< clkp

which implies
meas({|u,| >k} NBg) <

Vk > 1. (4.17)
kK »
We have, for every 6 > 0,

meas({|lu, —up,| >6}NBg) < meas({|lu,| >k} N Bg)+ meas({|u,,| > k}NBg) 4.18)
+meas{| T, (u,) — Tr(u,)| > 6}. ’
Since Ty (u,) is bounded in WO1 P(Q,w), there exists some v, € WO1 P(Q,w), such that

Ti(u,) — vy~ weakly in Wol’p(ﬂ,w)
Ti(u,) = v, stronglyin LI(Q,0) and a.e. in Q.
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Consequently, we can assume that Ty (u,,) is a Cauchy sequence in measure in .

Let £ > 0, then by (4.17) and (4.18), there exists some k(&) > 0 such that meas({|u,, — u,,| >
6}NBg) < e forall n,m > ny(k(e),5,R). This proves that (u,) is a Cauchy sequence in
measure in By, thus converges almost everywhere to some measurable function u. Then

T (u,) — Tr(u) weakly in Wol’p(Q, w),

1
Ty (u,) — Ti(u)  strongly in LY(Q,0) and a.ein €. (4.19)
3. Equi-integrability of nonlinearities
we need to prove that
g.(x,u,) — g(x,u) stronglyin L(Q) (4.20)

in particular it is enough to prove the equi-integrable of g,(x,u,) to this purpose. We take
Ty41(u,) — Ty (uy,) as test function in (4.15), we obtain

J (a(x, uy, Vuy), V(T4 (u,) — Ty(w,))) dX+J 8n (6, up (T4 (uy) — Ti(uy,)) dx
Q
f f(Tl+1(un) Tl(un)) dx
+ZJ FV(TH-l(un) Tl(un)) dx

which implies that,

J {a(x,up, Vu,), Vu,) dx +J |8 (2, up)| dx
{I<lu, <141} {Jun|>1+1}
N

Scf |f|dx—|—2f FW ( ) IVunl( )de
{lun =1} i=1 J{I<|u,|<I+1}

by Young’s inequality, we obtain

f {alx,up, Vu,), V) dx +J |gn (o, un)| dx
{<luy|<1+13 llunl21413

( ) ’ _p/
SCJ If| dx +—Z IFP'w! ™" dx
tlunf213 P i3 =t

—l—%ZJ |Vu,|Pw; dx
i=1 J{I<|u,|<I+1}

thus by (2.8), we have

c(a) &

1
f |gn(x,un>|dx5cf ful dx+ = J IFlP w7 dx.
{luy | >1+1} {Juy =1} P = S, =0
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Let € > 0, then there exist [(¢) > 1 such that

f |gn (o, up)l dx <
{luy[>1(e)}

For any measurable subset E C €2, we have

(4.21)

N ™

f |gn (o, up) dx < J |gn(x, u)| dx +J |gn(x, up)| dx
E EN{luy|<I(e)}

En{lu,|>1(e)}

< | Ihyey(oldx + g (o, up)l dx.
E Enflu,|>1(e)}

In view to (2.10) there exist n(g) > 0 such that

f [hy(ey ()| dx < (4.22)
E

N ™

for all E such that meas(E) < n(e).
Finally, by combining (4.21) and (4.22) one easily has J |g.(x,u,)| dx < g, for all E such
E

that meas(E) < n(e).
4. An intermediate Inequality
In this step, we shall prove that for ¢ € WO1 P(Q,w)NL®(Q), we have

J (a(x,un, V), VT [u, — ¢]) dx +f gn (o, ) Tie[u, — @] dx
Q Q

< J fuTilu, — ¢l dx —I—J (F,VTi[u, — ¢]) dx. (4.23)
Q Q

We choose now T;(u,, — ) as test function in (4.15), with
¢ in Wol’p(ﬂ,w) N L*®(), we obtain

f (a(x:unavun)JVTk [un - 90]) dx +J gn(xaun)Tk[un - (P] dx
Q Q

:f fnTk[un _90] dx+J <F:VTk[un_ (PD dx.
Q Q

Adding and subtracting the term f (a(x,u,, V), VTi[u, — ¢]) dx ie.,
Q

f <a(x:un7vun): vTk [un - SD:D dx +J (a(x) un,Vgo),VTk [un - SD]) dx
Q Q

—f (a(x,u,, V), VTi[u, — ¢]) dx +f gn(c,u )T [u, — ] dx (4.24)
Q

=f‘fnTk[un - 90] dx"’f <FJVTk[un - @]) dx
Q

Q



Y. Akdim, E. Azroul, and M. Rhoudaf / Eur. J. Pure Appl. Math, 1 (2008), (56-71) 67

Thanks to assumption (2.7) and the definition of truncation function, we have

J ([a(x,uy, Vuy,) —alx,u,, V)], VTi[u, —¢l) dx >0 (4.25)
0

Combining (4.24) and (4.25), we obtain (4.23).
5. Passing to the limit
We shall prove that for ¢ € Wol’p(ﬂ, w) N L*®(Q), we have

J {a(x,u, V), VT [u—p]) dx+j
Q

g, )T [u—pldx < J f T [u—¢] dx+f (F,VTi[u—p]) dx.
Q Q

Q

Firstly, we claim that
f (a(x’ un,V(p),VTk[un - (10:|> dx — f (a(x, u, V(p),VTk [u - Q10]) dx as n — +o0.
Q Q

Since Ty (u,) — Ty (u) weakly in Wol’p(ﬂ,w),with M =k +||¢]||lw, then by Lemma 2.1, we
have
Tiluy — ) — Tl — ) in Wy P(Q,w), (4.26)

which gives

aTy

Tx ¢) weaklyin LP(Q,w;) Vi=1,.,N. (4.27)

Show that
a; (X, TM(un)J VQP) - ai(xz TM(U), V(p) Strongly in LP (Q, W;k)

Thanks to assumption (2.6), we obtain

—p’ 1 N

laCx, T (), VP w,” < BIKG) + [T ()l o Z

/

w;l, (4.28)

i

N
/ 8(‘0
< ylk(x)? +1T, 1o + P
S K Tl + 15
with 8 and y are positive constants. Since Ty;(u,) — T, (u) weakly in Wo1 P,w)
and Wol’p(Q,w) —— L1(Q,0), then Ty (u,) — Ty (u) strongly in LI(Q,0) and a.e. in €,

hence
a,(x, Ty (1), V)P wF = a(x, Ty (), V)P w} a.e.in .

and

N N
, ol , 0
v k(x)? +|Ty(u,)l%o + E Iawlpwi -y | k() +|Ty W) + E |a¢ Pw; | a.e.in Q.
=1

i j=1 i
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Then, By Vitali’s theorem, we deduce that
a;(x, Ty (uy), Vo) — a;(x, Ty (w), Vo) strongly in Lp/(Q, w)), as n — +oo. (4.29)

Combining (4.27) and (4.29), we obtain
f (a(x,uy, V), VTi[u, — ¢]) dx — f (alx,u, V), VTi[u—¢]) dx, asn — +o0. (4.30)
Q Q
Secondly, we show that

f fnTk[un - LP] dx _>J ka[u_ (P] dx. (431)
Q Q

We have f, Ty [u, — 9] = fTi[u— @] a.e. in Qand |f, Ty [u, — ¢]| < k|f,| and k|f,,| — k|f|
in LY(£2), then by using Vitali’s theorem, we obtain (4.31).
Similarly thanks to (4.20) we can show that

J 2,00, u) T [u, — pldx — J glx, )T [u— ¢l dx as n— oo. (4.32)
Q Q

Show that:
J (F:VTk[Un—LP]>dX—>J (F,VTi[u—])dx. (4.33)
Q Q

N
In view of (4.27) and since F € l_[Lp/(Q, w}), we obtain (4.33).

i=1
Thanks to (4.30) , (4.31) and (4.33) allow to pass to the limit in the inequality (4.23), so
that Yo € W,P(Q, w) N L®(R), we deduce

f (a(x,u, V), VTi[u—p])dx < f fTi[u— ] dx +J (F,VTi[u—¢]) dx.
Q Q Q

In view of Main Lemma, we can deduce that u is an entropy solution of the problem ().
This completes the proof of Theorem 3.1.

Remark 4.1. In the case where F = 0, if we suppose that the second member are nonnegative,
then we obtain a nonnegative solution.

Indeed, If we take v = T,(u™) in (P), we have
J (a(x,u, Vu), VT (u— T,(u™))) dx
Q
+f g (o, u)Tye(u — Ty(u™)) dx

S f ka(ll - Th(u+)) dX.
Q
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Since g(x,u)Ti(u — Tp(u™)) > 0, we deduce

J (a(x,u, Vu), VT, (u — Ty(u™))) dx < J fT(u— Ty(u™)) dx,
Q Q

we remark also, by using f >0

f fTi(u = Tp(w™)) dx < f f Ti(u— Tp(w)) dx.
Q

{u=>h}

On the other hand, thanks to (2.8), we conclude

N _

OTi(u
af ZlLP’wi dx < f fTi(u— Ty(u)) dx.
Qs ﬁxi >

i=1 {u=h}

Letting h tend to infinity, we can easily deduce
Tk(u_) =0, VYk>0,
which implies that
u=0.
5. Example
Let us consider the following special case:
a;(x,m,8) = w;(x)|g; [P 'sgn(g;) i=1,..,N,

g(x,s) = psls|” p>0and r>0

with w;(x) is a weight function (i = 1,...,N).
For simplicity, we shall suppose that:

wi(x)=w(x) for i=1,.,N—1,wy(x)=0

it is easy to show that a;(x,s, &) are Caracthéodory function satisfying the growth condition
(2.6) and the coercivity (2.8). On the other hand, the monotonicity condition is verified. In
fact,

N N-1
D (ai(x,5,8) = a;(x,5,8))(E; — &) = w(x) D (IE: P sgn(E) — 1€ sgn(EN)(E — €)= 0
i=1 i=1

for almost all x € 2 and for all £,& € RN. This last inequality can not be strict, since for & # &
with Ey #Ey and §; =&;, i =1,...,N — 1. The corresponding expression is zero.



REFERENCES 70

In particular, let us use special weight functions w and o expressed in terms of the distance
to the bounded 9. Denote d(x) = dist(x,d) and set

w(x) =d*(x), o(x)=d"(x).

In this case, the Hardy inequality reads

( J Iu(x)lqd“(X)dx) <c( f

The corresponding imbedding is compact if:
(i) For, 1 <p <q < o0,

N N u A N N
A<p-1, ———+4+1>20, ———+———+1>0. (5.1)
q p a9 p q p
(i) For 1 <qg <p < o0,
u A 1 1
A<p—1, ———+-———+1>0. (5.2)
qQ p qg p

Remark 5.1. 1.Condition (5.1) or (5.2) are sufficient for the compact imbedding (2.5) to hold;
for example [ [7], Example 1, [8] Example 1.5], and [9], Theorems 19.17, 19.22].
Finally, the hypotheses of Theorem 3.1 are satisfied. Therefor the following problem

Tk(u) e Wl’p(Q w)
du 9T (u— Lp)

f I x; dx;

( )
+J uexp(w)Ti.(u — @) dx:J T (u—) dx+f FVTi(u—¢)dx
Q

Q Q

ferLl@), Fe[ [r”(@w}) and Vo € Wy P(Q,w)NL2(Q)

i=1

has at last one solution.
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