EUROPEAN JOURNAL OF PURE AND APPLIED MATHEMATICS

Vol. 5, No. 2, 2012, 129-140
ISSN 1307-5543 - www.ejpam.com

On $\omega \beta$-Continuous Functions

Heyam Hussein Aljarrah*, Mohd Salmi Md Noorani

School of Mathematical Sciences, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, MALAYSIA

Abstract

A subset A of topological space (X, τ) is said to be $\omega \beta$-open [3] if for every $x \in A$ there exists an β-open set U containing x such that $U-A$ is a countable. In this paper, we introduce and study new class of function which is $\omega \beta$-continuous functions by using the notion of $\omega \beta$-open sets. This new class of function defines as a function $f:(X, \tau) \rightarrow(Y, \sigma)$ from a topological space (X, τ) into a topological space (Y, σ) is $\omega \beta$-Continuous function if and only if for each $x \in X$ and each open set V in (Y, σ) containing $f(x)$ there exists an $\omega \beta$-open set U containing x such that $f(U) \subseteq V$. We give some characterizations of $\omega \beta$-Continuous functions, define $\omega \beta$-irresolute and $\omega \beta$-open function. Finally, we find relationship between these type of function.

2010 Mathematics Subject Classifications: 54C05, 54C08, 54C10
Key Words and Phrases: $\omega \beta$-open set, $\omega \beta$-Continuous, $\omega \beta$-irresolute, $\omega \beta$-open functions, $\omega \beta$-cloesd functions.

1. Introduction

Throughout the present paper, a space mean topological space on which no separation axiom is assumed unless explicitly stated. Let A be a subset of a space (X, τ). The closure of A and interior of A in (X, τ) are denoted by $\operatorname{Int}(A)$ and $c l(A)$, respectively. A subset A of a space (X, τ) is said to be $b-$ open [4], (reps. β-open [7]) if $A \subseteq \operatorname{Int}(c l(A)) \cup \operatorname{cl}(\operatorname{Int}(A))$, (resp. $A \subseteq \operatorname{cl}(\operatorname{Int}(\operatorname{cl}(A))))$.

Recall that a subset A of a space (X, τ) is said to be $\omega \beta$-open [3] (resp. ωb-open [9], ω-open [2]) set if for every $x \in A$ there exists an β-open (resp. b-open, open) set U containing x such that $U-A$ is a countable. We write $\omega \beta O(X, \tau)$ (resp. $\omega b O(X, \tau)$, $\beta O(X, \tau), \omega O(X, \tau), b O(X, \tau))$ to denote the family of all $\omega \beta$-open (resp. ωb-open, β-open, ω-open, b-open) subsets of (X, τ).

[^0](c) 2012 EJPAM All rights reserved.

Definition 1. A function $f:(X, \tau) \rightarrow(Y, \sigma)$ is called ω-continuous [6] (resp. ωb-continuous [9]) if for every $x \in X$ and each open set V in (Y, σ) containing $f(x)$ there exists an $\omega O(X, \tau)$ (resp. $\omega b O(X, \tau)$) set U containing x such that $f(U) \subseteq V$.

Lemma 1. [3] Let (X, τ) be a topological space:
i. The union of any family of $\omega \beta O(X, \tau)$ sets is $\omega \beta O(X, \tau)$.
ii. The intersection of an $\omega \beta O(X, \tau)$ set and open set is $\omega \beta O(X, \tau)$.

Theorem 1. [3] Let $\left(Y, \tau_{Y}\right)$ be a subspace of $(X, \tau), A \subseteq Y$ and Y is $\beta O(X, \tau)$ sets. Then $A \in \omega \beta O(X, \tau)$ if and only if $A \in \omega \beta O\left(Y, \tau_{Y}\right)$.

Theorem 2. [3] Let A be a subset of a topological space (X, τ). Then $x \in \omega \beta c l(A)$ if and only if for every $\omega \beta O(X, \tau)$ set U containing $x, A \cap U \neq \phi$.

Theorem 3. [5] If $f:(X, \tau) \rightarrow(Y, \sigma)$ is an open continuous function, then $f^{-1}(c l(A))=c l\left(f^{-1}(A)\right)$.

2. $\omega \beta$-Continuous Functions

Definition 2. A function $f:(X, \tau) \rightarrow(Y, \sigma)$ is called $\omega \beta$-continuous at a point $x \in X$, if for every open set V in (Y, σ) containing $f(x)$ there exists an $\omega \beta O(X, \tau)$ set U containing x such that $f(U) \subseteq V$. If f is $\omega \beta$-continuous at each point of X then f is said to be $\omega \beta$-continuous on X.

Definition 3. Let (X, τ) be any space, a set $A \subseteq X$ is said to be $\omega \beta$-neighborhood of a point x in X if and only if there exists a $\omega \beta O(X, \tau)$ set U containing x such that $U \subseteq A$.

Theorem 4. Let $f:(X, \tau) \rightarrow(Y, \sigma)$ be a function, where X and Y are topological space. Then the following are equivalent:
i. The function f is $\omega \beta$-continuous.
ii. For each open set $V \subset Y, f^{-1}(V)$ is $\omega \beta O(X, \tau)$.
iii. For each $x \in X$, the inverse of every neighborhood of $f(x)$ is an $\omega \beta$-neighborhood of x.
$i v$. For each $x \in X$ and each neighborhood N_{x} of $f(x)$, there is an $\omega \beta$-neighborhood V of x such that $f(U) \subseteq N_{x}$.
v. For each closed set $M \subset Y, f^{-1}(M)$ is $\omega \beta$-closed in X.
$v i$. For each subset $A \subset X, f(\omega \beta c l(A)) \subset \operatorname{cl}(f(A))$.
vii. For each subset $B \subset Y, \omega \beta c l\left(f^{-1}(B)\right) \subseteq\left(f^{-1}(c l(B))\right)$.

Proof. (i \rightarrow ii) Let V be open in Y and $x \in f^{-1}(V)$ then $f(x) \in V$, by (i), there exists an $\omega \beta O(X, \tau)$ set U_{x} in X containing x and $f\left(U_{x}\right) \subseteq V$. Then $x \in U_{x} \subseteq f^{-1}(V)$ and hence $f^{-1}(V)=\operatorname{Unf}_{x \in f^{-1}(V)} U_{x}$. By Lemma 1(i), $f^{-1}(V) \in \omega \beta O(X, \tau)$, which implies that f is $\omega \beta$-continuous.
(ii \rightarrow iii) For $x \in X$, let V be the neighborhood of $f(x)$ then $f(x) \in W \subseteq V$, where W is open in Y. By (ii), $f^{-1}(W) \in \omega \beta O(X, \tau)$, and $x \in f^{-1}(W) \subseteq f^{-1}(V)$. Then by Definition 3, $f^{-1}(V)$ is $\omega \beta$-neighborhood of x.
(iii \rightarrow iv) For $x \in X$ and N_{x} be a neighborhood of $f(x)$. Then $V=f^{-1}\left(N_{x}\right)$ is an $\omega \beta$-neighborhood of x and $f(V)=f\left(f^{-1}\left(N_{x}\right)\right) \subset N_{x}$.
(iv $\rightarrow \mathrm{v}$) For any $x \in X-f^{-1}(M), f(x) \in Y-M$. Since M is closed, the set $Y-M$ is neighborhood of $f(x)$, hence there is a $\omega \beta$-neighborhood V of x such that $f(V) \subset Y-M$, there exists an $\omega \beta O(X, \tau)$ set U_{x} in X containing x and $U_{x} \subseteq V \subseteq X-f^{-1}(M)$, take $\left(X-f^{-1}(M)\right)=\underset{x \in f^{-1}(Y-M)}{\cup} U_{x}$. By Lemma 1(i), the set $\left(X-f^{-1}(M)\right) \in \omega \beta O(X, \tau)$, which implies $f^{-1}(M)$ is $\omega \beta C(X, \tau)$.
$(\mathrm{v} \rightarrow \mathrm{vi})$ Let $A \subseteq X$, since $c l(f(A))$ is a closed set in Y by (vi), $f^{-1}(c l(f(A)))$ is an $\omega \beta C(X, \tau)$ set containing A, then $f(\omega \beta c l(A)) \subset c l(f(A))$.
(vi \rightarrow vii) Let $B \subset Y$. By (vi), $f\left(\omega \beta c l\left(f^{-1}(B)\right) \subseteq c l(B)\right.$, so $\omega \beta c l\left(f^{-1}(B)\right) \subseteq f^{-1}(c l(B))$.
(vii \rightarrow i) Suppose on the contrary that f is not $\omega \beta$-continuous. So there exist $x \in X$ and $V \in \sigma$ with $f(x) \in V$ such that for all $\omega \beta O(X, \tau)$ sets U with $x \in U$ and $f(U) \not \subset(V)$ i.e. $f(U) \cap(Y-V) \neq \phi$. Therefore, by Theorem 2, $x \in \omega \beta c l\left(f^{-1}(Y-V)\right)$ and so by (vii), $f(x) \in \operatorname{cl}(Y-V)$, thus for all open sets V in (Y, σ) containing $f(x)$, the set $V \cap(Y-V) \neq \phi$, a contradiction. Therefore, f is $\omega \beta$-continuous.

Definition 4. For any subset A of a topological space (X, τ) the frontier of A, denoted by $\omega \beta F_{r}(A)$, is define as $\omega \beta c l(A) \cap \omega \beta c l(X-A)$.

Theorem 5. Let $(X, \tau),(Y, \sigma)$ be a topological space and $f:(X, \tau) \rightarrow(Y, \sigma)$ be a function. Then $X-\omega \beta c(f)=\cup\left\{\omega \beta F_{r}\left(f^{-1}(V)\right): V \in \sigma, f(x) \in V, x \in X\right\}$ where $\omega \beta c(f)$ denotes the set of points at which f is $\omega \beta$-continuous.

Proof. Let $x \in X-\omega \beta c(f)$. Then for every $\omega \beta O(X, \tau)$ set U containing x there exists open sets V in (Y, σ) containing $f(x)$ such $f(U) \not \subset V$, Hence $U \cap\left(X-f^{-1}(V)\right) \neq \phi$ for every $\omega \beta O(X, \tau)$ set U containing x. Therefore, by Theorem $2 x \in \omega \beta c l\left(X-f^{-1}(V)\right)$. Then $x \in f^{-1}(V) \cap \omega \beta c l\left(X-f^{-1}(V)\right) \subseteq \omega \beta F_{r}\left(f^{-1}(V)\right)$. Hence, $X-\omega \beta c(f) \subseteq \cup\left\{\omega \beta F_{r}\left(f^{-1}(V)\right), V \in \sigma, f(x) \in V, x \in X\right\}$. Conversely, let $x \notin X-\omega \beta c(f)$. Then for each open sets V in (Y, σ) containing $f(x), f^{-1}(V)$ is $\omega \beta O(X, \tau)$ containing x, thus for every $V \in \sigma$ containing $f(x), x \in \omega \beta \operatorname{Int}\left(f^{-1}(V)\right)$ and hence $x \notin \omega \beta F_{r}\left(f^{-1}(V)\right)$. So $\cup\left\{\omega \beta F_{r}\left(f^{-1}(V)\right): V \in \sigma, f(x) \in V, x \in X\right\} \subseteq X-\omega \beta c(f)$.

Corollary 1. A function $f:(X, \tau) \rightarrow(Y, \sigma)$ is $\omega \beta$-continuous if and only if $f^{-1}(\operatorname{int}(G)) \subseteq \omega \beta \operatorname{int}\left(f^{-1}(G)\right)$, for any subset $G \subseteq Y$.

Proof. NECESSITY. Let G be any subset of Y. Since f is $\omega \beta$-continuous, $f^{-1}(\operatorname{int}(G))$ is $\omega \beta O(X, \tau)$ set. As $f^{-1}(\operatorname{int}(G)) \subseteq f^{-1}(G)$, then $f^{-1}(\operatorname{int}(G)) \subseteq \omega \beta \operatorname{int}\left(f^{-1}(G)\right)$.

SUFFICIENCY. Let $x \in X$ and $V \in \sigma$ with $f(x) \in V$. Then $x \in f^{-1}(V)$ and so by assumption $x \in \omega \beta \operatorname{Int}\left(f^{-1}(V)\right)$. There exists an $\omega \beta O(X, \tau)$ such that $x \in U \subseteq f^{-1}(V)$. Hence $f(x) \in f(U) \subseteq V$ and the result follows.

Note that if X is a countable set then every function $f:(X, \tau) \rightarrow(Y, \sigma)$ is $\omega \beta$-continuous. The following diagram follows immediately from the definitions in which none of the implications is reversible.

Example 1. Let $X=R$ with the topology $\tau=\tau_{u}$ and $Y=\{0,1\}$ with the topology $\sigma=\{\phi, Y,\{0\}\}$. Let $f:(X, \tau) \rightarrow(Y, \sigma)$ be the function defined by

$$
f(x)= \begin{cases}1 & x \in \mathbb{R}-\mathbb{Q} \\ 0 & x \in \mathbb{Q}\end{cases}
$$

Then f is $\omega \beta$-continuous but it is neither continuous nor ω-continuous.
Example 2. Let $X=\{1,2,3\}$ with the topology $\tau=\{X, \phi,\{1\},\{2\},\{1,2\}\}$ and $Y=\{a, b\}$ with the topology $\sigma=\{\phi, Y,\{a\}\}$. Let $f:(X, \tau) \rightarrow(Y, \sigma)$ be the function defined by

$$
f(x)= \begin{cases}b & x=\{1,2\} \\ a & x=3\end{cases}
$$

Then f is not β-continuous, but it can be easily seen that f is $\omega \beta$-continuous.
Example 3. Let $X=R$ with the topology $\tau=\tau_{u}$ and $Y=\{a, b\}$ with the topology $\sigma=\{\phi, Y,\{a\}\}$. Let $f:(X, \tau) \rightarrow(Y, \sigma)$ be the function defined by

$$
f(x)= \begin{cases}a & x \in[0,2) \cap \mathbb{R}-\mathbb{Q} \\ b & x \in[0,2) \cap \mathbb{Q}\end{cases}
$$

Then f is $\omega \beta$-continuous, but it is not ωb-continuous.
Proposition 1. If $f:(X, \tau) \rightarrow(Y, \sigma)$ is an $\omega \beta$-continuous function and A is an open set in X, then the restriction $\left.f\right|_{A}:\left(A, \tau_{A}\right) \rightarrow(Y, \sigma)$ is $\omega \beta$-continuous.

Proof. Since f is an $\omega \beta$-continuous, for any open set V in $Y, f^{-1}(V)$ is a $\omega \beta O(X, \tau)$ set. Hence by Lemma 1(ii), $f^{-1}(V) \cap A$ is a $\omega \beta O(X, \tau)$ since A is an open set. Therefore, by Theorem $1,\left(\left.f\right|_{A}\right)^{-1}(V)=f^{-1}(V) \cap A$ is $\omega \beta O\left(A, \tau_{A}\right)$ sets, which implies that $\left.f\right|_{A}$ is $\omega \beta$-continuous function.

Observe that the above theorem is not true if A were taken to be $\beta O(X, \tau)$ sets or $\omega O(X, \tau)$, as it shown in the next examples.

Example 4. Let $X=R$ with the topology $\tau=\tau_{c o c}$ and $Y=\{0,1\}$ with the topology $\sigma=\{\phi, Y,\{1\}\}$. Let $f:(X, \tau) \rightarrow(Y, \sigma)$ be the function defined by

$$
f(x)= \begin{cases}1 & x \in(0,1] \\ 0 & x \notin(0,1]\end{cases}
$$

It can be easily seen that f is $\omega \beta$-continuous. We take $A=(0,1]$. Then $A \in \beta O(X, \tau)$ and $\left.f\right|_{A}$ is not $\omega \beta$-continuous since $\left(\left.f\right|_{A}\right)^{-1}(1)=\{1\} \notin \omega \beta O\left(A, \tau_{A}\right)$.

Example 5. Let $X=R$ with the topology $\tau=\tau_{u}$ and $Y=\{0,1\}$ with the topology $\sigma=\{\phi, Y,\{1\}\}$. Let $f:(X, \tau) \rightarrow(Y, \sigma)$ be the function defined by

$$
f(x)= \begin{cases}1 & x=\sqrt{2} \\ 0 & x \in \mathbb{Q}\end{cases}
$$

It can be easily seen that f is $\omega \beta$-continuous. We take $A=\mathbb{R}-\mathbb{Q}$. Then $A \in \omega O(X, \tau)$ and $\left.f\right|_{A}$ is not $\omega \beta$-continuous since $\left(\left.f\right|_{A}\right)^{-1}(Y)=\{\sqrt{2}\} \notin \omega \beta O\left(A, \tau_{A}\right)$.

Definition 5. [7] A cover $v=\left\{U_{\alpha}: \alpha \in \Delta\right\}$ of subset of X is called a $\beta O(X, \tau)$ cover if U_{α} is $\beta O(X, \tau)$ for each $\alpha \in \Delta$.

Now we prove the following proposition.
Proposition 2. Let $f:(X, \tau) \rightarrow(Y, \sigma)$ be any function and $\mathrm{A}=\left\{A_{\alpha}: \alpha \in \Delta\right\}$ be a $\beta O(X, \tau)$ cover of X. If the restriction, $\left.f\right|_{A_{\alpha}}:\left(A_{\alpha}, \tau_{A_{\alpha}}\right) \rightarrow(Y, \sigma)$ is $\omega \beta$-continuous for each $\alpha \in \Delta$, then f is $\omega \beta$-continuous.

Proof. Let V be any open set in Y. Since $\left.f\right|_{A_{\alpha}}$ is $\omega \beta$-continuous, then for each $\alpha \in \Delta$, we have $\left(\left.f\right|_{A}\right)^{-1}(V)=f^{-1}(V) \cap A_{\alpha} \in \omega \beta O\left(A_{\alpha}, \tau_{A_{\alpha}}\right)$. So by Theorem 1, $f^{-1}(V) \cap A_{\alpha} \in \omega \beta O(X, \tau)$ for each $\alpha \in \Delta$. Take $f^{-1}(V)=\underset{\alpha \in \Delta}{\cup}\left(f^{-1}(V) \cap A_{\alpha}\right)$. By Lemma 1(i) $f^{-1}(V) \in \omega \beta O(X, \tau)$.

Corollary 2. Let $f:(X, \tau) \rightarrow(Y, \sigma)$ be any function and $\mathrm{A}=\left\{A_{\alpha}: \alpha \in \Delta\right\}$ a open cover of X. If the restriction, $\left.f\right|_{A_{\alpha}}:\left(A_{\alpha}, \tau_{A_{\alpha}}\right) \rightarrow(Y, \sigma)$ is $\omega \beta$-continuous for each $\alpha \in \Delta$, then f is $\omega \beta$-continuous.

The composition $g \circ f:(X, \tau) \rightarrow(Z, \rho)$ of a continuous function $f:(X, \tau) \rightarrow(Y, \sigma)$ and an $\omega \beta$-continuous function $g:(Y, \sigma) \rightarrow(Z, \rho)$ is not necessarily $\omega \beta$-continuous function as the following example shows. Thus, the composition of $\omega \beta$-continuous functions need not be $\omega \beta$-continuous.

Example 6. Let $X=\mathbb{R}$ with the topology $\tau=\tau_{c o c}, Y=\{1,2\}$ with the topology $\sigma=\{\phi, Y,\{1\}\}$ and $Z=\{a, b\}$ with the topology $\rho=\{\phi, Z,\{a\}\}$. Let $f:(X, \tau) \rightarrow(Y, \sigma)$ be the function defined by

$$
f(x)= \begin{cases}1 & x \in \mathbb{R}-\mathbb{Q} \\ 2 & x \in \mathbb{Q}\end{cases}
$$

and $g:(X, \sigma) \rightarrow(Y, \rho)$ be the function defined by

$$
g(x)= \begin{cases}a & x=2 \\ b & x=1\end{cases}
$$

Then f is continuous (hence $\omega \beta$-continuous) and g is $\omega \beta$-continuous. However $g \circ f$ is not $\omega \beta$-continuous, because $(g \circ f)^{-1}(\{a\})=\mathbb{Q} \notin \omega \beta O(X, \tau)$.

Proposition 3. If $f:(X, \tau) \rightarrow(Y, \sigma)$ is $\omega \beta$-continuous and $g:(Y, \sigma) \rightarrow(Z, \rho)$ is continuous, then $g \circ f:(X, \tau) \rightarrow(Z, \rho)$ is $\omega \beta$-continuous.

Proof. Let $x \in X$ and $V \in \rho$ with $(g \circ f)(x) \in V$ and $f(x) \in Y$, since g is continuous, there exists open sets W in (Z, ρ) with $f(x) \in W$ and $g(W) \subseteq V$. Moreover f is $\omega \beta$-continuous there exists $\omega \beta O(X, \tau)$ say U containing x such that $f(U) \subseteq W$. Now $(g \circ f)(U) \subseteq g(W) \subseteq V$.

We note that Proposition 3 is not true if g is assumed to be only ω-continuous or β-continuous as it is shown in the next example.

Example 7. Consider $X=\mathbb{R}$ with the topology $\tau=\tau_{c o c}, Y=\{a, b, c\}$ with the topology $\sigma=\{\phi, Y,\{a\},\{b\},\{a, b\}\}$ and $Z=\{1,2,3,4\}$ with the topology $\rho=\{\phi, Z,\{1\},\{1,2\},\{1,2,3\}\}$. Let $f:(X, \tau) \rightarrow(Y, \sigma)$ be the function define by

$$
f(x)= \begin{cases}a & x \in \mathbb{R}-\mathbb{Q} \\ c & x \in \mathbb{Q}\end{cases}
$$

and $g:(Y, \sigma) \rightarrow(Z, \rho)$ be the function define by

$$
g(x)= \begin{cases}1 & x=a \\ 3 & x=b \\ 2 & x=c\end{cases}
$$

Then f is $\omega \beta$-continuous, g is ω-continuous and β-continuous function but $g \circ f$ is not $\omega \beta$-continuous since $(g \circ f)^{-1}(2)=\mathbb{Q} \notin \omega \beta O(X, \tau)$.

Corollary 3. If $f:(X, \tau) \rightarrow \prod_{\alpha \in \Delta} X_{\alpha}$ is an $\omega \beta$-continuous function from a space (X, τ) into a product space $\prod_{\alpha \in \Delta} X_{\alpha}$, then $P_{\alpha} \circ f$ is $\omega \beta$-continuous for each $\alpha \in \Delta$, where P_{α} is the projection function from the product space $\prod_{\alpha \in \Delta} X_{\alpha}$ onto the space X_{α} for each $\alpha \in \Delta$.

Theorem 6. Let X and Y be a topological spaces, let $f:(X, \tau) \rightarrow(Y, \sigma)$ be a function and $g:(X, \tau) \rightarrow(X \times Y, \tau \times \sigma)$ be the graph function of f given by $g(x)=(x, f(x))$ for every point $x \in X$. Then g is $\omega \beta$-continuous if and only if f is $\omega \beta$-continuous.

Proof. Assume that g is $\omega \beta$-continuous. Now $f=P_{Y} \circ g$ where $P_{Y}: X \times Y \rightarrow Y$, then f is $\omega \beta$-continuous by Corollary 3. Conversely, assume that f is $\omega \beta$-continuous. Let $x \in X$ and
W be any open set in $X \times Y$ containing $g(x)$. Then there exist open sets $U \subseteq X$ and $V \subseteq Y$ such that $g(x)=(x, f(x)) \in U \times V \subseteq W$. Since f is $\omega \beta$-continuous, there exists $\omega \beta O(X, \tau)$ sets U_{1} in containing x such that $f\left(U_{1}\right) \subseteq V$. Put $H=U \cap U_{1}$. Then $H \in \omega \beta O(X, \tau)$, by Lemma 1(ii), such that $x \in H$ and $f(H) \subseteq V$. Therefore we have $g(H) \subseteq U \times V \subseteq W$. Thus g is $\omega \beta$-continuous.

Definition 6. [8] A function $f:(X, \tau) \rightarrow(Y, \sigma)$ is called pre-semi-preopen if the image of each semi-preopen set in X is a semi-preopen set in Y.
Theorem 7. Let $f:(X, \tau) \rightarrow(Y, \sigma)$ be an pre-semi-preopen surjection and let $g:(Y, \sigma) \rightarrow(Z, \rho)$ such that $g \circ f:(X, \tau) \rightarrow(Z, \rho)$ is $\omega \beta$-containuous, then g is $\omega \beta$-containuous.

Proof. At first we show if $f:(X, \tau) \rightarrow(Y, \sigma)$ be an pre-semi-preopen function and $U \in \omega \beta O(X, \tau)$, then $f(U) \in \omega \beta O(Y, \sigma)$. So let $U \in \omega \beta O(X, \tau)$ then for all $x \in U$ there exists $\beta O(X, \tau)$ sets U_{1} in (X, τ) containing x and $U_{1}-U \subseteq C$ where C is a countable set. Thus $f\left(U_{1}\right)-f(U) \subseteq f(C)$ where $f(C)$ is a countable set. This implies $f(U) \in \omega \beta O(Y, \sigma)$. Now, Let $y \in Y$ and let $V \in \rho$ with $g(y) \in V$. Choose $x \in X$ such that $f(x)=y$. Since $g \circ f$ is $\omega \beta$-continuous there exists $U \in \omega \beta O(X, \tau)$ with $x \in U$ and $g(f(U)) \subseteq V$. But f is pre-semi-preopen function therefore, by assumption, $f(U) \in \omega \beta O(Y, \sigma)$ with $f(x) \in f(U)$. So we get the result.

Corollary 4. Let $f_{\alpha}:\left(X_{\alpha}, \tau_{\alpha}\right) \rightarrow\left(Y_{\alpha}, \tau_{\alpha}\right)$ be a function for each $\alpha \in \Delta$. If the product function $f=\prod_{\alpha \in \Delta} f_{\alpha}: \prod_{\alpha \in \Delta} X_{\alpha} \rightarrow \prod_{\alpha \in \Delta} Y_{\alpha}$ is $\omega \beta$-continuous, then f_{α} is $\omega \beta$-continuous.

Proof. At first we prove that any projection function is pre-semi-preopen function. Let $U \in \beta O(X, \tau)$ hence $f(U) \subseteq f(c l(\operatorname{int}(c l(U))))$, by using the assumption that f is open and continuous surjective, $f(U) \subseteq \operatorname{cl}(\operatorname{int}(c l(f(U))))$. Thus $f(U) \in \beta O(Y, \sigma)$. Now For each $\beta \in \Delta$, let $p_{\beta}: \prod_{\alpha \in \Delta} X_{\alpha} \rightarrow X_{\beta}$ and $q_{\beta}: \prod_{\alpha \in \Delta} Y_{\alpha} \rightarrow Y_{\beta}$ be the projections, then we have
$q_{\beta} \circ f=f_{\beta} \circ p_{\beta}$ for each $\beta \in \Delta$. Since f is $\omega \beta$-continuous and q_{β} is continuous, by Proposition $3 q_{\beta} \circ f$ is $\omega \beta$-continuous and hence $f_{\beta} \circ p_{\beta}$ is $\omega \beta$-continuous function. Since p_{β} is pre-semi-preopen function it follows from Theorem 7 that f_{β} is $\omega \beta$-continuous function.

Theorem 8. [3] For any space X, the following properties are equivalent:
i. X is β-Lindelöf.
ii. Every $\omega \beta O(X, \tau)$ cover of X has a countable subcover.

Proposition 4. Let $f:(X, \tau) \rightarrow(Y, \sigma)$ be an $\omega \beta$-continuous surjective function. If X is β-Lindelőf, then Y is Lindelőf.

Proof. Let $\left\{V_{\alpha}: \alpha \in \Delta\right\}$ be an open cover of Y. Then $\left\{f^{-1}\left(V_{\alpha}\right): \alpha \in \Delta\right\}$ is $\omega \beta O(X, \tau)$ cover of X (since f is $\omega \beta$ - continuous). Since X is β-Lindelőf, by Theorem $8, X$ has a countable subcover, say $f^{-1}\left(V_{\alpha_{1}}\right), f^{-1}\left(V_{\alpha_{2}}\right), \ldots, f^{-1}\left(V_{\alpha_{n}}\right), \ldots$, Thus $V_{\alpha_{1}}, V_{\alpha_{2}}, \ldots, V_{\alpha_{n}}, \ldots$ is a subcover of $\left\{V_{\alpha}: \alpha \in \Delta\right\}$ of Y. This shows that Y is Lindelőf.

Corollary 5. Let $f:(X, \tau) \rightarrow(Y, \sigma)$ be a β-continuous (or ω-continuous) surjective function. If X is β-Lindelớf, then Y is Lindelơf.

3. $\omega \beta$-Irresolute Functions

Definition 7. A function $f:(X, \tau) \rightarrow(Y, \sigma)$ is called $\omega \beta$-irresolute if the inverse image of each $\omega \beta O(Y, \sigma)$ set is an $\omega \beta O(X, \tau)$ set.

Note that every $\omega \beta$-irresolute function is $\omega \beta$-continuous but the converse is not true, which is shown by the following example.

Example 8. Let $X=\mathbb{R}$ with the topologies $\tau=\tau_{\text {coc }}$ and let $Y=\{1,2\}$ with the topology $\sigma=\{\phi, Y,\{2\}\}$. Let $f:(X, \tau) \rightarrow(Y, \sigma)$ be the function defined by

$$
f(x)= \begin{cases}1 & x \in \mathbb{Q} \\ 2 & x \in \mathbb{R}-\mathbb{Q}\end{cases}
$$

Then f is $\omega \beta$-continuous but not $\omega \beta$-irresolute since $f^{-1}(\{1\})=\mathbb{Q} \notin \omega \beta O(X, \tau)$.
Theorem 9. Let $f:(X, \tau) \rightarrow(Y, \sigma)$ be a function. Then the following conditions are equivalent:
i. The function f is $\omega \beta$-irresolute.
ii. For each $x \in X$ and $V \in \omega \beta O(Y, \sigma)$ containing $f(x)$, there exists $U \in \omega \beta O(X, \tau)$ containing x and $f(U) \subseteq V$.
iii. For each $x \in X$, the inverse of every $\omega \beta$-neighbourhood of $f(x)$ is $\omega \beta$ - neighbourhood of x.
iv. For each $x \in X$ and $\omega \beta$-neighbourhood V of $f(x)$, there exists $\omega \beta$-neighbourhood U of x such that $f(U) \subseteq V$.

Proof. (i \rightarrow ii) Assume $x \in X$ and V is $\omega \beta O(Y, \sigma)$ containing $f(x)$, since f is $\omega \beta$-irresolute then $f^{-1}(V) \in \omega \beta O(X, \tau)$ containing x and hence $f\left(f^{-1}(V)\right) \subseteq V$.
(ii \rightarrow iii) Assume $x \in X$ and V is $\omega \beta$-neighbourhood of $f(x)$, by Definition 3 there exists $V_{1} \in \omega \beta O(Y, \sigma)$ such that $f(x) \in V_{1} \subseteq V$, there exists $U \in \omega \beta O(X, \tau)$ containing x and $f(U) \subseteq V_{1}, x \in U \subseteq f^{-1}\left(V_{1}\right) \subseteq f^{-1}(V)$. Hence by use Definition 3, $f^{-1}(V)$ is $\omega \beta$-neighbourhood of x.
(iii \rightarrow iv) Let V is $\omega \beta$-neighbourhood of $f(x)$, by (iii), $f^{-1}(V)$ is $\omega \beta$-neighbourhood of x and $f\left(f^{-1}(V)\right) \subseteq V$.
(iv \rightarrow i) For each $x \in X$, let $V \in \omega \beta O(Y, \sigma)$ containing $f(x)$. Put $A=f^{-1}(V)$, let $x \in A$. Then $f(x) \in V$. Since $V \in \omega \beta O(Y, \sigma)$ then V is a $\omega \beta$-neighbourhood of $f(x)$. So by hypothesis, $A=f^{-1}(V)$ is $\omega \beta$-neighbourhood of x. Hence by Definition 3 there exists $A_{x} \in \omega \beta O(X, \tau)$ such that $x \in A_{x} \subseteq A$. Thus, by Lemma 1 (i) $A=\underset{x \in A}{\cup} A_{x}$ is $\omega \beta O(X, \tau)$ set. Therefore, f is $\omega \beta$-irresolute.

Theorem 10. The following conditions are equivalent for a function $f:(X, \tau) \rightarrow(Y, \sigma)$:
i. f is $\omega \beta$-irresolute.
ii. For each $\omega \beta C(Y, \sigma)$ subset C of $Y, f^{-1}(C)$ is $\omega \beta C(X, \tau)$.
iii. For each subset A of $X, f(\omega \beta c l(A)) \subseteq \omega \beta c l(f(A))$.

Proof. (i \rightarrow ii) Let C be $\omega \beta C(Y, \sigma)$ subset of Y. Then $X-f^{-1}(C) \in \omega \beta O(X, \tau)$, which implies that $f^{-1}(C)$ is $\omega \beta C(X, \tau)$.
(ii \rightarrow iii) Let A be a subset of X, Since $A \subset f^{-1}(f(A))$, we have $A \subset f^{-1}(\omega \beta c l(f(A)))$. Now by (ii), $f^{-1}(\omega \beta c l(f(A)))$ is $\omega \beta C(X, \tau)$ set containing A then $\omega \beta c l(A) \subseteq f^{-1}(\omega \beta c l(f(A)))$, which implies $f(\omega \beta c l(A)) \subseteq \omega \beta c l(f(A))$.
(iii \rightarrow iv) Let $B \subset Y$, by (iii) $f\left(\omega \beta \operatorname{cl}\left(f^{-1}(B)\right)\right) \subseteq \omega \beta c l\left(f\left(f^{-1}(B)\right)\right) \subseteq \omega \beta c l(B)$, hence $\omega \beta c l\left(f^{-1}(B)\right) \subseteq f^{-1}(\omega \beta c l(B))$.
(iv \rightarrow i) Suppose f is not $\omega \beta$-irresolute. So there exist $x \in X$ and $V \in \omega \beta O(Y, \sigma)$ with $f(x) \in V$ such that for all $\omega \beta O(X, \tau)$ set U with $x \in U$ and $f(U) \not \subset(V)$ i.e. $f(U) \cap(Y-V) \neq \phi$. Therefore, by (vii), $x \in f^{-1}(\omega \beta c l(Y-V)$). So by Theorem 2, $f(x) \in \omega \beta c l(Y-V)$. Thus for all $\omega \beta O(Y, \sigma)$ sets V containing $f(x)$, so $V \cap(Y-V) \neq \phi$, a contradiction. Therefore, f is $\omega \beta$-irresolute.

Theorem 11. Let $f:(X, \tau) \rightarrow(Y, \sigma)$ be a function. Then f is $\omega \beta$-irresolute if and only if $f^{-1}(\omega \beta \operatorname{Int}(B)) \subseteq \omega \beta \operatorname{Int}\left(f^{-1}(B)\right)$.

Proof. NECESSITY. Let B be any subset of Y. Since f is $\omega \beta$-irrrsolute, we have $f^{-1}(\omega \beta \operatorname{Int}(B))$ is $\omega \beta O(X, \tau)$ set. As $f^{-1}(\omega \beta \operatorname{Int}(B)) \subseteq f^{-1}(B)$, then $f^{-1}(\omega \beta \operatorname{Int}(B)) \subseteq \omega \beta \operatorname{Int}\left(f^{-1}(B)\right)$. SUFFICIENCY. Let $x \in X$ and $V \in \omega \beta O(Y, \sigma)$ with $f(x) \in V$. Then $x \in f^{-1}(V)$ and so by assumption $x \in \omega \beta \operatorname{Int}\left(f^{-1}(V)\right)$. There exists an $\omega \beta O(X, \tau)$ sets such that $x \in U \subseteq f^{-1}(V)$. Hence $f(x) \in f(U) \subseteq V$ and the result follows.

Proposition 5. If $f:(X, \tau) \rightarrow(Y, \sigma)$ is $\omega \beta$-irresolute and $g:(Y, \sigma) \rightarrow(Z, \rho)$ is $\omega \beta$-continuous, then $g \circ f$ is $\omega \beta$-continuous.

Proof. Let $x \in X$ and let V be any open set in (Z, ρ) containing $g(f(x)$). Since g is $\omega \beta$-continuous, there exists an $\omega \beta O(Y, \sigma)$ set W containing $f(x)$ such that $g(W) \subseteq V$. Put $U=f^{-1}(W)$ since f is $\omega \beta$-irresolute, then $U \in \omega \beta O(X, \tau)$ such that $x \in U$ and $g(f(U)) \subseteq g(W) \subseteq V$. Hence $g \circ f$ is $\omega \beta$-continuous.

Corollary 6. If $f:(X, \tau) \rightarrow(Y, \sigma)$ is $\omega \beta$-irresolute and $g:(Y, \sigma) \rightarrow(Z, \rho)$ is ωb-continuous, then $g \circ f$ is $\omega \beta$-continuous.

Recall that a function $f:(X, \tau) \rightarrow(Y, \sigma)$ is said to be ω-irresolute [1] if the inverse image of each $\omega O(Y, \sigma)$ set is an $\omega O(X, \tau)$.

Theorem 12. If $f:(X, \tau) \rightarrow(Y, \sigma)$ is ω-irresolute and every $\beta O(Y, \sigma)$ set is closed in the space (Y, σ) then f is $\omega \beta$-irresolute.

Proof. Let U be any $\omega \beta O(Y, \sigma)$ set, then for all $y \in Y$, there exists $\beta O(Y, \sigma)$ sets U_{1} containing x such that $U_{1}-U$ is a countable, thus by assumption $U_{1} \subseteq \operatorname{cl}\left(\operatorname{Int}\left(c l\left(U_{1}\right)\right) \subseteq \operatorname{Int}\left(U_{1}\right)\right.$, so U_{1} is open sets in (Y, σ), hence $U \in \omega O(Y, \sigma)$. Since f is ω-irresolute, then $f^{-1}(U) \in \omega O(X, \tau) \subseteq \omega \beta O(X, \tau)$.

Proposition 6. Let $f:(X, \tau) \rightarrow(Y, \sigma)$ be an open continuous function and every $\omega \beta O(Y, \sigma)$ is closed in the space (Y, σ) then f is $\omega \beta$-irresolute.

Proof. Let $U \in \omega \beta O(Y, \sigma)$, by Theorem 3, $\omega \beta c l\left(f^{-1}(U)\right) \subseteq \operatorname{cl}\left(f^{-1}(U)\right)=f^{-1}(c l(U)) \subseteq f^{-1}(\omega \beta c l(U))$, hence f is $\omega \beta$-irresolute, by Theorem 10.

In [3], Aljarrah And Noorani define the $\omega \beta-T_{2}$ as if for each two distinct point $x, y \in X$, there exists $U, V \in \omega \beta O(X, \tau)$ such that $x \in U, y \in V$ and $U \cap V=\phi$.

Theorem 13. If $f:(X, \tau) \rightarrow(Y, \sigma)$ is an $\omega \beta$-irresolute injective function and the space Y is $\omega \beta-T_{2}$, then X is $\omega \beta-T_{2}$.

Proof. Let x_{1} and x_{2} be two distinct points of X. Since f is injective and Y is $\omega \beta-T_{2}$, there exist $V_{1}, V_{2} \in \omega \beta O(Y, \sigma)$ such that $f\left(x_{1}\right) \in V_{1}, f\left(x_{2}\right) \in V_{2}$ and $V_{1} \cap V_{2}=\phi$. Now $x_{1} \in f^{-1}\left(V_{1}\right)$, $x_{2} \in f^{-1}\left(V_{2}\right)$ and $f^{-1}\left(V_{1} \cap V_{2}\right)=f^{-1}\left(V_{1}\right) \cap f^{-1}\left(V_{2}\right)=\phi$. Since f is $\omega \beta$-irresolute then $f^{-1}\left(V_{1}\right), f^{-1}\left(V_{2}\right)$ is $\omega \beta O(X, \tau)$. Hence X is $\omega \beta-T_{2}$.

Definition 8. A space X is said to be $\omega \beta$-connected if there exist disjoint $\omega \beta O(X, \tau)$ sets A and B such that $A \cup B=X$.

Proposition 7. If $f:(X, \tau) \rightarrow(Y, \sigma)$ is an $\omega \beta$-irresolute surjective function and X is $\omega \beta$-connected, then Y is $\omega \beta$-connected.

Proof. Suppose Y is not $\omega \beta$-connected. Then there exist disjoint $\omega \beta O(Y, \sigma)$ sets A and B such that $A \cup B=Y$. Since f is $\omega \beta$-irresolute surjective, $f^{-1}(A)$ and $f^{-1}(B)$ are nonempty $\omega \beta O(X, \tau)$ sets. Moreover $f^{-1}(A) \cup f^{-1}(B)=X$. This is show that (X, τ) is not $\omega \beta$-connected, which is a contradiction. Hence (Y, σ) is $\omega \beta$-connected.

4. $\omega \beta$-Open and $\omega \beta$-Closed Functions

Definition 9. A function $f:(X, \tau) \rightarrow(Y, \sigma)$ is called $\omega \beta$-open (resp. $\omega \beta$-closed) if the image of each open (resp. closed) set in (X, τ) is an $\omega \beta O(Y, \sigma)$ (resp. $\omega \beta C(Y, \sigma)$).

Note that every open (closed) function is $\omega \beta$-open (resp. $\omega \beta$-closed) function, but the converse is not true, which is shown by the following example.

Example 9. Let $X=\{a, b\}$ with the topology $\tau=\{\phi, X,\{a\}\}$ and $Y=\{1,2,3\}$ with the topology $\sigma=\{\phi, X,\{1\},\{2\},\{1,2\}\}$. Let $f:(X, \tau) \rightarrow(Y, \sigma)$ be the function define by $f(x)=3$ for all $x \in X$. Then f is $\omega \beta$-open and $\omega \beta$-closed function, but it is neither open nor closed function.

Proposition 8. A function $f:(X, \tau) \rightarrow(Y, \sigma)$ is $\omega \beta$-open if and only if for each $x \in X$ and each open set U of X containing x, there exists an $\omega \beta O(Y, \sigma)$ set W containing $f(x)$ such that $W \subset f(U)$.

Theorem 14. Let $f:(X, \tau) \rightarrow(Y, \sigma)$ be a function from space (X, τ) into a space (Y, σ). Then f is $\omega \beta$-closed if and only if $\omega \beta c l(f(A)) \subseteq f(\omega \beta c l(A))$ for each set A subset of (X, τ).

Proof. Let f is $\omega \beta$-closed function and A any subset of X. Then $f(A) \subset f(\omega \beta c l(A)) \in \omega \beta C(Y, \sigma)$, it follows that $\omega \beta c l(f(A)) \subset f(\omega \beta c l(A))$. Conversely, assume that $B \in \omega \beta C(X, \tau)$. Then $\omega \beta c l(f(B)) \subset f(\omega \beta c l(B))=f(B)$. Thus we obtain that $\omega \beta c l(f(B))=f(B)$, so f is $\omega \beta$-closed function.

Proposition 9. Let $f:(X, \tau) \rightarrow(Y, \sigma)$ be a continuous surjection function and let $g:(Y, \sigma) \rightarrow(Z, \rho)$ be such that $g \circ f:(X, \tau) \rightarrow(Z, \rho)$ is $\omega \beta$-open function, then g is $\omega \beta$-open.

Proof. Let $y \in Y$ and let $V \in \rho$ with $g(y) \in V$. Choose $x \in X$ such that $f(x)=y$. Since $g \circ f$ is $\omega \beta$-open function, then $g(V)=g \circ f\left(f^{-1}(V)\right) \in \omega \beta O(Z, \rho)$. This is show that g is $\omega \beta$-open function.

The following examples show that the $\omega \beta$-open function is independent with $\omega \beta$-irresolute and $\omega \beta$-continuous function.

Example 10. Let $X=\mathbb{R}$ with the topologies $\tau=\tau_{c o c}$ and let $Y=\{1,2\}$ with the topology $\rho=\{\phi, Y,\{2\}\}$. Let $f:(X, \tau) \rightarrow(Y, \sigma)$ be the function defined by

$$
f(x)= \begin{cases}1 & x \in \mathbb{R}-\mathbb{Q} \\ 2 & x \in \mathbb{Q}\end{cases}
$$

Then f is not $\omega \beta$-continuous, but it can easily seen that $f(x)$ is $\omega \beta$-open function.
Example 11. Let $X=\{1,2\}$ with the topology $\tau=\{\phi, X,\{1\}\}$ and let $Y=\mathbb{R}$ with the topologies $\sigma=\tau_{\text {coc }}$. Let $f:(X, \tau) \rightarrow(Y, \sigma)$ be the function defined by

$$
f(x)= \begin{cases}\mathbb{R}-\mathbb{Q} & x=2 \\ \mathbb{Q} & x=1\end{cases}
$$

Then f is not $\omega \beta$-open, but it can easily seen that f is $\omega \beta$-continuous and $\omega \beta$-irresolute function.

Example 12. Consider the function f in the Example 8 which is $\omega \beta$-open, but not $\omega \beta$-irresolute.
ACKNOWLEDGEMENTS: This work is financially supported by the Malaysian Ministry of Science, Technology and Environment, Science Fund Grant no. UKM-ST-06-FRGS0146-2010.

References

[1] K Al-Zoubi. Semi ω - containuous functions. Abhath Al-yarmouk, 12(1):119-131, 2003.
[2] K Al-Zoubi and B Al-Nashef. The topology of ω - open subsets. Al-Manarah Journal, 9(2):169-179, 2003.
[3] H Aljarrah and M Noorani. On $\omega \beta$ - open sets. submitted.
[4] D Andrijevic. On b-open sets. Mat. Vesnik, 48:59-64, 1996.
[5] S Crossley and S Hildebrand. Semi-topological properties. Fund. Math., 74(3):233-254, 1972.
[6] H Hdeib. ω - continuous functions. Dirasat, XVI:136-142, 1996.
[7] M Monesf, S el Deeb, and R Mahmoud. β-open sets and β-continuous mapping. Bull. Fac. Sci. Assiut univ., C 12:77-90, 1983.
[8] G Navalagi. Semi-precontinuous functions and properties of generalized semi-preclosed sets in topological spaces. Internat. J. Math. Math. Sci., 29(2):58-98, 2002.
[9] T Noiri, A Al-omari, and M Noorani. On ωb - open sets and b-lindelof spaces. Eur. J. Pure Appl. Math., 1:3-9, 2008.

[^0]: *Corresponding author.

 Email addresses: hiamaljarah@yahoo.com (H. Aljarrah), msn@ukm.my (M. Noorani)

