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Abstract. In this paper we develop a novel nonparametric predictive subset regression modeling pro-

cedure that involves a combination of regression trees with radial basis function (RBF) neural networks

hybridized with the genetic algorithm (GA) to carry out the subset selection of the best predictors. We

use the information-theoretic measure of complexity (ICOMP) criterion of [5, 6, 7, 8] as our fitness

function to choose the best approximating radial basis functions and to choose the best subset of pre-

dictors with the GA. To avoid the potential singularities in the design matrix, we combine our model

with analytical global ridge regression for regularization. On the other hand, estimation and prediction

performance of model also taken into account for best subset chosen.
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1. Introduction

High dimensionality of the independent or the predictor variables in regression models

increases the model complexity and that makes the analysis difficult. Data mining techniques

help practitioners to overcome such problems. In this frame work, model selection is an

important tool to reduce the dimensionality and to measure the model complexity is an an

important enterprize to find a subset of predictor variables which represent the underlying

relationship between the input or predictor and output or response variables. Although in the

literature there are many different model selection criteria that have been proposed and used,

most of these criteria are based on Akaike’s Information Criterion (AIC), or they are based

on some variations of AIC. In contrast to AIC, information complexity (ICOM P) type criteria

constitute a new class or a new generation model selection criteria.
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In model selection procedures, the chosen model is important as much as the chosen

model selection criterion. The assumption of linear relationship between input and output

variables can lead us to choose wrong subset of variables. Radial Basis Function Neural Net-

works (RBF-NN), or what statisticians call nonparametric regression models, seem to be more

appropriate in general because RBF-NN does not assume any functional relation between in-

put and output variables. Therefore, combining RBF-NN with some statistical techniques can

provide us better results and improve the prediction accuracy in regression modeling.

The idea of combining RBF-NN and Regression Trees (RT) goes back to [12] where how to

combine RBF-NN and decision trees are explained. Later, [19] extended this idea to combine

RBF-NN with regression and classification trees. Based on the results of [12] and [19], in

this paper for the first time, we combine RBF-NN and RT model and we hybridize it with

ridge regression, to overcome possible singularity problem on design matrix. We introduce

the genetic algorithm (GA) to choose best subset of input variables by scoring the information

complexity (ICOM P) criterion.

The paper is organized as follows. In Section 2, we present linear models and radial

basis function neural networks (RBF-NN) with least squares estimation. Section 3, presents

combination of regression trees and RBF-NN. In this section we discuss how to transform the

tree nodes into RBFs. In Section 4, we present subset selection of RBFs and state the current

problems of forward, backward, combination of forward and backward, and all possible subset

selection procedures currently used in the literature. To avoid over-fitting and the potential

singularities in the regression design or model matrix, in Section 5, we discuss two main ways

of regularization and present global and local ridge regression. We provide several ways of

choosing optimal ridge parameters. Section 6 presents several information-theoretic model

selection criteria. For space considerations, we restrict the detailed proofs and derivations of

these criteria where appropriate. For more details on information criteria, we will refer the

readers to [5, 6, 7, 8]. We further provide the derived forms of the model selection criteria in

RBF-NN. In Section 7, we present the general background of the genetic algorithm (GA) and

its implementation within the RBF-NN. In Section 8, we provide a large scale simulation study

using a highly nonlinear simulation protocol where we first choose the best RBF. Then, we

carry out a GA subset selection of best predictors and give the regression tree. Following this,

we construct the best predictive RBF-NN model based on the best predictors chosen. As an

end result, we build the final best fitting RBF-NN model in its open analytical form using the

recovered RBF centers, c, radius r, and the regression weights, w. Although the structure of

hybrid RBF-NN model represents a very complicated equation, nevertheless, it provides useful

information of the structure of the predictive model which is nonlinear. Section 9 concludes

the paper.

2. Linear Models and Radial Basis Function Neural Networks (RBF-NN)

2.1. Linear Models

We shall consider supervised learning, or what statisticians call, nonparametric regression

problem for a given multi-dimensional data set with the dependent variable y and indepen-
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dent (or predictor) variables x1, x2, . . . , xm. We define the general linear model as

y = f (w, x) =

m∑

j=1

w jh j(x) = w1h1 +w2h2 + . . .+wmhm, (1)

where the regressors,
¦

h j(x)
©m

j=1
, are fixed basis functions (or the transfer functions of the

hidden units) of the predictors, x ∈ ℜn, and
¦

w j

©m

j=1
are the unknown adaptable coefficients,

or weights.

To perform linear regression with this model, we solve the following system of equations:

y = Hw + ǫ, (2)

where y is a vector of (n×1) observations on a dependent variable, and H is a (n×m) design

matrix and are responses of m regressors given by

H(n×m) =




h1(x1) h2(x1) · · · hm(x1)

h1(x2) h2(x2) · · · hm(x2)
...

...
. . .

...

h1(xn) h2(xn) h1(x1) hm(xn)




. (3)

In (2), w is a (n× 1) coefficient vector, and ǫ is a (n× 1) vector of random noise term, such

that ǫ ∼ N(0,σ2I) or equivalently ǫi ∼ N(0,σ2I), f or i = 1,2, . . . , n.

2.2. Radial Basis Functions

The flexibility of f in (1) stems from the fact that we can consider and fit many different

radial basis functions (RBFs). RBFs are one possible choice for the hidden unit activation

functions in a linear network. The most distinguishing feature of these functions is that they

are local, or at least their response decreases monotonically away from a center point. The

RBFs are used in function approximation, regularization, noisy interpolation, density estima-

tion optimal classification and clustering, etc. The RBFs, we shall consider, are given below.

Gaussian Kernel (GK):

h j(x) = ex p(−
p∑

k=1

(xk− c jk)
2

r2
jk

) (4)

Cauchy Kernel (CK):

h j(x) =
1

1+ ex p(−∑p

k=1

(xk−c jk)
2

r2
jk

)

(5)

Multiquadric Kernel (MLQK):

h j(x) =

s
1+ ex p(−Σp

k=1

(xk − c jk)
2

r2
jk

) (6)
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Inverse Multiquadric Kernel (IMLQK):

h j(x) =
1Ç

1+ ex p(−Σp

k=1

(xk−c jk)
2

r2
jk

)

(7)

2.3. Radial Basis Function Neural Networks

The RBF-NN introduces a mapping or transformation of the n-dimensional inputs non-

linearly to an m-dimensional space and then estimate a model using linear regression. The

nonlinear transformation is achieved using m basis functions, each characterized by their cen-

ter c j in the (original) input space and a width or radius vector r j , j ∈ {1,2, . . . , m} [19]. In

principle, RBFs can be used in any sort of modeling, whether they are linear or nonlinear and

for single-layer or multi-layer networks. [20] has shown that RBF-NN possess the property of

best approximation.

2.4. Least Squares Estimation

Given a network (or model) in (1) consisting of m RBFs with centers
¦

c j

©m

j=1
and radii¦

r j

©m

j=1
and a training set with p patterns,

��
x i, yi

�	p

i=1
, the optimal network weights can be

found by minimizing the sum of squared errors:

SSE =

p∑

i=1

�
f (x i)− yi

�2
(8)

and is given by

ŵ =
�

H
′
H
�−1

H
′
y (9)

the so called normal equation. Here H is the design matrix, with its elements Hi j = h j(x i),

and y =
�

y1, y2, . . . , yp

�′
is the p-dimensional vector of training set output values.

3. Combining Regression Trees and RBFNN

3.1. Regression Trees

The basic idea of RT is to partition the input space recursively into two, and approximate

the function in each half by the average output value of the samples it contains to refine the

subset variable selection [9]. Each split is parallel to one of the axes and can be expressed

as an inequality involving of the input components
�
e.g.xk > b

�
. The input space is divided

into hyperrectangles organized into a binary tree where each branch is determined by the

dimension (k) and boundary (b) which together minimize the residual error between model

and data [19]. The root node of the regression tree is the smallest hyperrectangle that will in-

clude all of the training data
�

x i

	p

i=1
. Its size sk (half–width) and center ck in each dimension
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k are

sk =
1

2

�
max

i∈S

�
x ik

�−min
i∈S

�
x ik

��
(10)

ck =
1

2

�
max

i∈S

�
x ik

�
+min

i∈S

�
x ik

��
(11)

where k ∈ K is the set of predictor indices, and S =
�
1,2, . . . , p

	
is the set of training set

indices. A split of the root node divides the training samples into left and right subsets, SL

and SR, on either side of a boundary b in one of the dimensions k such that

sL =
�
i : x ik ≤ b

	
, (12)

sR =
�
i : x ik > b

	
. (13)

The mean output value on either side of the bifurcation is

y L =
1

pL

∑

i∈SL

yi , (14)

yR =
1

pR

∑

i∈SR

yi , (15)

where pL and pR are the number of samples in each subset. The mean square error (MSE) is

then calculated as in equation (16).

MSE(k, b) =
1

p



∑

i∈SL

�
yi − y L

�2
+
∑

i∈SR

�
yi − yR

�2


 (16)

The split which minimizes MSE (k, b) over all possible choices of k and b is used to create

the “children” of the root node and is found by simple discrete search over m dimensions and

p observations. The children of the root node are split recursively in the same manner and the

process terminates when every remaining split creates children containing fewer than pmin

samples, which is a parameter of the method. The children are shifted with respect to their

parent nodes and their sizes reduced in the k− th dimension.

RT can both estimate a model and indicate which components of the input vector most

relevant to the modeled relationship. Dimensions which carry the most information about the

output tend to split earliest and most often [19].

3.2. Transforming Tree Nodes Into RBFs

The regression tree contains a root node, some nonterminal nodes (having children) and

some terminal nodes (having no children). Each node is associated with a hyperrectangle of

input space having a center c and size s as described above. The node corresponding to the

largest hyperrectangle is the root node and that is divided up into smaller and smaller pieces

progressing down the tree. To transform the hyperrectangle into different basis kernel RBFs
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we use its center c as the RBF center and its size s, scaled by a parameter α as the RBF radius

given by

r = αs. (17)

The scalar α has the same value for all nodes (Kubat, 1998), and it is another parameter

of the method. One can use α=
p

2α−1
K where αK is the Kubat’s parameter [12, 19].

4. Subset Selection of RBFs and Current Problems

After the tree nodes are transformed into RBFs, the next step of the method is to carry out

a subset selection of variables to be included in the model to choose the best fitting subset(s).

Current standard techniques for variable selection include:

• Forward selection: The basis kernel RBFs are added until-over-fitting occurs

• Backward elimination: The basis kernel RBFs are pruned until over-fitting is prevented.

• A combination of the two: Two forward selection steps followed by one backward elim-

ination step.

• All possible subset selection: Full combinatorial search.

There are some problems with these techniques. Both forward and backward procedures

can not deal with the collinearity in the predictor variables. Major criticisms on the forward,

backward, and stepwise selection are that, little or no theoretical justification exists for the

order in which variables enter or exit the algorithm [3, 25]. On the other hand, stepwise

searching rarely finds the overall best model or even the best subsets of a particular size

[17, 10, 18]. Stepwise selection, at the very best, can only produce an “adequate” model. All

possible subset selection is a fail proof method, but it is not computationally feasible. It takes

too much time to compute and it is costly. For 20 predictor variables, for the usual subset

regression model, total number of possible models we need to evaluate is: 220 = 1,048,576.

The regression trees can automatically determine the relevance of the variables. But they

still tend to overfit the model because the regression tree method does not discard any of the

predictor variables out of the models. In this case, we have 2220

= 21,048,576 possible models

to evaluate and to choose from.

Other major problems of these standard techniques are, over-fitting, ill-conditioned design

matrix, high collinearity in the predictor variables and, computational complexity, etc. In this

case what we need is an intelligent hybrid modeling between:

• Any complex modeling problems such as regression trees with RBF-NN models.

• A clever model choice criteria such as the information complexity;

• Fast and efficient stochastic search algorithms such as the genetic algorithms (GA), and

• Hybridization of GA with combinatorial all possible subset selection.
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5. Regularization: Ridge Regression

There are two main ways to avoid over-fitting and to avoid the potential singularities in the

design matrix. The first way, regularization [23, 2], reduces the “number of good parameter

measurements” [16] in a large full saturated model by adding a weight penalty term to the

minimization criterion. We introduce the regularization by using global ridge regressions to

avoid the potential singularities in the model matrix.

Second way to avoid over-fitting is to explicitly limit the complexity of the network by al-

lowing only a subset of the variables using information criteria to determine the parsimonious

networks and best subset of predictors. In this paper, we use not only ridge regression but

also subset selection to avoid over-fitting and singularity problems.

5.1. Global Ridge Regression

In the global ridge regression to counter the effects of over-fitting, a roughness penalty

term is added to the sum of squared errors to produce the cost function;

C(w,λ) =

p∑

i=1

�
f (x i)− yi

�2
+λ

m∑

i=1

w2
j = ǫ

′ǫ+w′w (18)

which is minimized to find a weight vector which is more robust to noise in the training set.

The optimal weight vector for global ridge regression is

ŵ =
�

H
′
H +λIm

�−1
H
′
y (19)

where Im is the m dimensional identity matrix.

5.2. Local Ridge Regression

We generalize the global ridge regression to attach a separate regularization parameter to

each basis function by using the cost function

C(w,λ) =

p∑

i=1

�
f (x i)− yi

�2
+

m∑

i=1

λ jw
2
j . (20)

Leading to the optimal weight of

ŵ =
�

H
′
H +Λ

�−1
H
′
y, (21)

where Λ = diag{λ j}mj=1 is a diagonal regularization parameter matrix.

5.3. Choosing the Optimal Ridge Parameter

There is much controversy as to how to choose the ridge parameter λ. Several authors

have proposed analytical procedures for choosing the optimal parameter λ. Some of these

are:
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• Hoerl, Kennard & Baldwin (HKB) [11] approach to choosing λ

λ̂HKB =
ms2

ŵ
′
LSŵLS

(22)

where m= k, the number of predictors not including the intercept term, n is the number

of observations, s2 is the estimated error variance using k predictors so that

s2 =
1

(n− k+ 1)

�
y −HŵLS

�′ �
y −HŵLS

�
(23)

and ŵLS is the estimated coefficient vector obtained from a no-constant model given by

ŵLS =
�
H ′H

�−1
H ′ y. (24)

• Lawless and Wang [14] suggested that

ŵLS =
ms2

∑k

j=1 ŵ2
j
λ j

(25)

as an estimator of σ̂2/σ̂2
w based on Bayesian argument.

• Empirical Bayes method of determining λ proposed by Sclove [22]

λ̂s =
σ̂2

σ̂2
w

(26)

where

σ̂2 =
1

n
y ′
h

I −H
�
H ′H

�−1
H ′
i

y (27)

is the estimated residual variance and

σ̂2
w =

y ′ y − nσ̂2

t r (H ′H)
. (28)

6. Information Theoretic Model Selection Criteria

For the model seletion, we use information theoretic measure of complexity (ICOMP)

criteria of [5, 6, 7, 8] function to choose the best fitting basis kernel RBFs, and the best

subset of predictors with the hybridized GA with regularization of the regression trees and

RBF networks.

The complexity of a nonparametric regression model increases with the number of inde-

pendent and adjustable parameters, also termed effective degrees of freedom, in the model.

According to the qualitative principle of Occam’s Razor, we need to find the simplest model

that fits the observed data. We need to provide a trade off between how well the model fits

the data and the model complexity.
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The derived forms of information criteria used to evaluate and compare different horizon-

tal and vertical subset selection in the genetic algorithm (GA) for the regularized regression

trees and RBF networks model given by (2) under the assumption: ǫ ∼ N
�

0,σ2 I
�

or equiva-

lently ǫi ∼ N
�

0,σ2
�

or i = 1,2, . . . , n. are defined as follows.

1. Several forms of ICOMP Based on Information Complexity Measures [5, 6, 7, 8]: One

of the general forms of ICOMP is an approximation to the sum of two Kullback-Leibler

(KL) [13] distances.

• For general multivariate normal linear or nonlinear structural models, suppose

C1

�
Σ̂model

�
is approximated by the complexity of the inverse-Fisher information

matrix (IFIM) C1

�
F̂−1

�
θ̂
��

, then we define ICOMP(IFIM) as

ICOM P(I F IM) = −2log L
�
θ̂
�
+ 2C1

�
F̂−1

�
θ̂
��

(29)

C1 (·) is a maximal information theoretic measure of complexity of IFIM of a mul-

tivariate normal distribution given by

C1

�
F̂−1

�
θ̂
��
=

s

2
log L

 
t r
�
F̂−1

�
θ̂
��

s

!
− 1

2
log | F̂−1

�
θ̂
�
| (30)

where s = dim
�
F̂−1

�
= rank

�
F̂−1

�
. For the regression trees and RBF networks,

the estimated inverse Fisher information matrix (IFIM ) is given by

ÔCov
�

ŵ, σ̂2
�
= F̂−1 =


 σ̂

2
�
H ′H

�−1
0

0 2σ̂4

4


 , (31)

where

σ̂2 =

�
y −H bw�′ �y −H bw�

n
. (32)

Then, ICOMP(IFIM) using the definition, becomes:

ICOM P(I F IM) = nln (2π)+ nlog L
�
σ̂2
�
+ n+ 2C1

�
F̂−1

�
θ̂
��

(33)

where the entropic complexity

C1

�
F̂−1

�
θ̂m

��
= (m+ 1) log




t rσ̂2
�
H ′H

�−1
+ 2θ̂ 4

4

m+ 1


 (34)

− 1

2
log | σ̂2

�
H ′H

�−1 |+log

�
2σ̂4

4

�

We can also define ICOMP for misspecified models.
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• ICOMP under Misspecification:

ICOM P(I F IM)Misspec = −2lnL
�
θ̂
�
+ 2C1

�
ÔCov

�
θ̂
�

Misspec

�
(35)

= nln (2π) + nln
�
σ̂2
�
+ n+ 2C1

�
ÔCov

�
θ̂
�

Misspec

�

where
ÔCov

�
θ̂
�

Misspec
= F̂−1bRF̂−1 (36)

is a consistent estimator of the covariance matrix Cov
�
θ ∗

k

�
for

F̂−1 =


 σ̂

2
�
H ′H

�−1
0

0 2σ̂4

4


 , and R̂=




1

σ̂4 H ′D2H H ′1 sk

2σ̂3�
H ′1 sk

2σ̂3

�′
(n−m)(K t−1)

4σ̂4


 .

This is often called the “sandwich covariance” or “robust covariance” estimator,

since it is a correct variance regardless whether of the assumed model is correct

or not. When the model is correct we get bF = bR, and the formula reduces to

the usual inverse Fisher information matrix bF−1 [24]. Note that this covariance

matrix takes into account presence of skewness and kurtosis which is not possible

with AIC, and MDL/SBC.

2. Akaike’s Information Criterion (AIC) [1]:

AIC(m) = nln (2π) + nln

��
y −H bw�′ �y −H bw�

n

�
+ n+ 2 (m+ 1) (37)

3. Schwartz Bayesian (SBC) criterion [21]:

SBC(m) = nln (2π)+ nln

��
y −H bw�′ �y −H bw�

n

�
+ n+mlog (n) (38)

4. Consistent Akaike’s Information Criterion using Fisher Information (CAICF) [4]:

CAIC F(m) = nln (2π)+ nln

��
y −H bw�′ �y −H bw�

n

�
+ n (39)

+ 2 (m+ 1)+ log | F
�
θ̂k

�
|

where F
�
θ̂k

�
is the Fisher information matrix at the parameter estimation θ̂k.
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7. Genetic Algorithm for Subset Selection

The genetic algorithm (GA) is a stochastic or probabilistic search algorithm that employs

natural selection and genetic operators. A GA treats information as a series of codes on a

binary string, where each string represents a different solution to a given problem. It follows

the principles first laid down by Charles Darwin of survival of the fittest. The algorithm

searches within a defined search space to solve a problem. It has outstanding performance in

finding the optimal solution for problems in many different fields.

Recall that the regularized regression tree and RBF networks model given by 1, the GA is

used to find the best or nearly best subset of predictors from the data.

7.1. Implementation of the GA

The GA is implemented using the following steps:

1. Implementing a genetic coding scheme: The first step of the GA is to represent each

subset model as a binary string. A binary code of 1 indicates presence and a 0 indi-

cating absence. Every string is of the same length, but contain different combinations

of predictor variables. For a data set with k = 6 predictors with a constant, following

string represents a model including constant, and input variables x2, x3, and x6.

1 0 1 1 0 0 1

x0 x1 x2 x3 x4 x5 x6

2. Generating an initial population of the models: The initial population consists of ran-

domly selected models from all possible models. We have to choose an initial population

of size N . Our algorithm allows one to choose any population size. The best population

size to choose depends on many different factors and requires further investigation.

3. Using a fitness function to evaluate the performance of the models in the population: A

fitness function provides a way of evaluating the performance of the models. We use the

ICOM P information criteria defined in the previous section as the fitness function. In

general, the analyst has the freedom of using any appropriate model selection criterion

as the fitness functions.

4. Selecting the parents models from the current population: This step is to choose models

to be used in the next step to generate new population. The selection of parents’ models

is based on the natural selection. That is, the model with better fitness value has greater

chance to be selected as parents. We calculate the difference:

∆ICOM P(i)(I F IM) = ICOM P(I F IM)Max − ICOM P(I F IM)i = Range (40)

for i = 1,2, . . . , N , where N is the population size. Next, we average these differences;

that is, we compute

∆ICOM P(I F IM) =
1

N

n∑

i=1

∆ICOM P(i)(I F IM) (41)
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Then the ratio of each model’s difference value to the mean difference value is calcu-

lated. That is, we compute

ICOM PRatio =
∆ICOM P(i)(I F IM)

∆ICOM P(I F IM)
(42)

This ratio is used to determine which models will be included in the mating pool. The

chance of a model being mated is proportional to this ratio. In other words, a model

with a ratio of two is twice as likely to mate as a model with a ratio of one. The process

of selecting mates to produce offspring models continues until the number of offsprings

equals the initial population size. This is called the proportional selection or fitting.

5. Produce offspring models by crossover and mutation process: The selected parents are

then used to generate offsprings by performing crossover and/or mutation process on

them. Both the crossover and mutation probability is determined by the analyst. A

higher crossover probability will on one hand introduce more new models into the pop-

ulation in each generation, while on the other hand remove more of the good models

from the previous generation. A mutation probability is a random search operator. It

helps to jump to another search space within the solutions’ scope. [15] states that mu-

tation should be used sparingly because the algorithm will become little more than a

random search with a high mutation probability. There are several different ways of

performing the crossover. These are single point crossover, two-point crossover, and

uniform crossover, etc.

8. Simulation Studies

In this section, we report our computational results on a simulated data set using hybrid

RBF-NN approach between the regression trees RBF networks with regularization, the GA

and ICOM P(I F IM)Misspec . In our numerical example, we use different basis kernels, Gaus-

sian kernel (GK), Cauchy kernel (CK), Multiquadric kernel (MLQK), and Inverse Multiquadric

kernel (IMLQK). On the other hand, to choose the optimal ridge parameter λ for the regular-

ization, we use Hoerl, Kennard & Baldwin (HKB) method under four different model selection

criteria. Namely, we use AIC , SBC , CAIC F , and ICOM P(I F IM)Misspec . We define regression

tree parameters; pmin is integer value of 10% of training data sample size, α parameter is 2 or

4 whichever fits better. The GA parameters are: number of generations is 15, population size

is 10, crossover type is uniform, probability of crossover is 0.5, probability of mutation is 0.1,

and elitist rule is used for optimization.

To carry out a subset selection of variables, we consider the following Monte Carlo simu-

lation protocol. We draw n U (0,1) random numbers and include a model in the mating pool

each time when one of the random numbers falls within its bin. Since better models have

wider bins, we expect members of the current generation with better model selection criteria

scores to be over-represented in the mating pool. This fulfills the natural selection role of the

GA. The mating pool determined in this way is subjected to a crossover process that deter-
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mines the subset regression models included in the next generation. We generate 7 predictor

variables by using a constant multiple of uniform random variables between 0 and 1.That is:

x1 = 1× U (0,1)

x2 = 2× U (0,1)

x3 = 3× U (0,1)

x4 = 4× U (0,1)

x5 = 5× U (0,1)

x6 = 6× U (0,1)

x7 = 7× U (0,1)

By using some predictors of the model data matrix X =
�

x1, x2, x3, x4, x5, x6, x7

�
, the output

or the response variable is generated using following functional relationship:

y = 10sin
�
πx1 x2

�
+ 20

�
x3 − 0.5

�2
+ 10x4+ ǫ (43)

where ǫ ∼ N (0,1). Note that in this simulation protocol the first three variables are nonlinear,

the next is linear to output, then last 3 variables have no effect on the response y. Therefore,

true model includes the regressors x1,x2, x3 and, x4.

8.1. Simulation Study 1

In the first phase of the simulation study, we choose the best kernel function for hybrid

RBF model transfer functions according to their model selection performance. To realize this

objective, we run 100 simulations using different sample sizes, n = 50,100,250 and 500,

respectively, and then construct Hybrid RBF model with different kernel functions includ-

ing Gaussian, Cauchy, Multiquadratic, and Inverse Multiquadratic. The true model selection

percentages, according to ICOM P(I F IM)Misspec criterion, are summarized in the Table 1.

Looking at the results in Table 1, we see that Gaussian kernel function performs the best asTable 1: Comparison of kernel fun
tions' performan
es.
Kernel Function Sample Size

50 100 250 500

Gauss 26% 49% 71% 89%

Cauchy 19% 47% 71% 74%

Multiquadratic 13% 25% 68% 87%

Inverse Multiquadratic 17% 45% 70% 78%

compared to other kernel functions for this simulated model.

8.2. Simulation Study 2

The second phase of the simulation study is to compare the performance of the hybrid

RBF model approach with that of the classical linear regression model. Our simulation set
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up is the same as before. We run the simulation 100 times with different sample sizes:

n = 50,100,250 and 500, respectively and score different model selection criteria AIC , BIC ,

CAIC F , ICOM(I F IM)Misspec under the proposed hybrid RBF and the classic linear regression

model. Table 2 summarizes the percent hit ratios of the true model.Table 2: Comparison of Proposed Model and Linear Regression Model.
Hybrid RBF Model Linear Regression Model

n 50 100 250 500 50 100 250 500

AIC 17 58 78 87 10 12 3 0

SBC 24 64 80 90 6 14 17 7

CAICF 19 50 84 87 14 24 45 24

ICOM P(I F IM)Misspe 26 49 71 89 22 33 13 1

It is clear from Table 2 that hybrid RBF model is superior to the linear regression model in

terms of model selection results. Hybrid RBF model selects the true model with high frequency

as the sample size increases. Considering the highly nonlinear relationship between input and

output variables, hybrid RBF model performs better in terms of model selection based on all

the information criteria. The poor performance of linear regression model on a simulated true

Freidman model which has nonlinear structure is not so surprising since the linear regression

does not take model misspecification into account and can not handle the singularity problem

in the design matrix, H
′
H. On the other hand, due to function approximation and implicit

smoothing properties of the hybrid RBF approach guards us from model misspecification as

shown in our simulation results in terms of its outstanding performance.

8.3. Simulation Study 3

Third and last phase of our simulation study is to determine the estimation and prediction

success of hybrid RBF model using the same simulation protocol as above. We generate

training data with sample sizes: n = 50,100,250 and 500. We use 20 observations of the

test data for each. First, we learn model parameters from test data and then we predict our

results from the data using parameters determined from the training data. Table 3 gives the

training and testing errors in two ways. We also report the root mean square error (RMSE)

and root mean square percentage error (RMSPE). Figures 1 and 2 show that hybrid RBF

model fits the data very well not only for training data but also for test data. This aspect can

be an evidence to claim that hybrid RBF model learns the relationship within the regression

data set considered.

Although the structure of hybrid RBF model represents a very complicated equation, we

can build the final best fitting RBF-NN model in its open analytical form using the recovered

RBF centers, c, radius r, and the regression weights, w. In (44) we show the constructed

hybrid RBF model obtained for sample size n = 250 from the the generated regression tree

which is shown in Figure 3.
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tion Performan
e of Hybrid RBF Model.
Error Type

Sample Size RMSE RMSPE

Train-Test Train Test Train Test

50− 20 9.89 12.39 7.27 3.40

100− 20 8.08 8.18 11.64 5.09

250− 20 9.31 10.83 5.33 2.07

500− 20 8.48 7.90 5.20 2.38
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Figure 1: Observed and estimated values of Y for training data.
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Figure 2: Observed and estimated values of Y for test data.
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Figure 3: Regression tree developed for n = 250.
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y = 10sin
�
πx1 x2

�
+ 20

�
x3− 0.5

�2
+ 10x4+ ǫ (44)
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9. Conclusions

In this paper, we have tackled a very important and common problem in statistical analysis

of predictive regression modeling. That is, we showed how to select a best subset of variables

in a regression model using the genetic algorithm (GA). In this context, we scored several

AIC and ICOM P-type criteria to evaluate the hybrid RBF model, RBF-NN combined with re-

gression trees using ridge regression regularization. We used a highly nonlinear simulation

protocol that shows the nonlinear functional relationship between input and output variables

and that of some redundant variables. Simulation results show that Gaussian kernel function

is the best choice for hidden unit transfer function of hybrid RBF-NN. On the other hand,

model selection performance of hybrid RBF-NN model is much more superior than the linear

regression model. In fact the usual standard linear regression model fails miserably when the

data exhibits highly nonlinear structure. The success of hybrid RBF-NN model using model se-

lection criteria as a fitness function consistently improves as the sample size increases. Finally,

estimation and prediction performance of hybrid RBF-NN models is measured with respect to

RMSE and RMSPE using the best subset of predictor variables chosen. Our results show that,

hybrid RBF-NN model is quite adoptive to handle highly nonlinear relationships between the

predictor and response variables in regression modeling.

It would be interesting to extend this work to the multivariate case where we have more

than one response variable. This work within RBF-NN modeling framework has not been

carried out before. We intend to pursue this avenue in a future research initiative.
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