EUROPEAN JOURNAL OF PURE AND APPLIED MATHEMATICS

Vol. 2, No. 2, 2009, (182-194) ISSN 1307-5543 – www.ejpam.com

On 1-Sequence-Covering π -s-Images of Locally Separable Metric Spaces

Nguyen Van Dung

Mathematics Faculty, Dongthap University Caolanh City, Dongthap Province, Vietnam

Abstract. In this paper, we give a characterization on 1-sequence-covering π -s-images of locally separable metric spaces by means of point-countable σ -strong sn-network consisting of cosmic spaces (sn-second countable spaces, \aleph_0 -spaces). As an application, we get a new characterization on 1-sequence-covering, quotient π -s-images of locally separable metric spaces, which is helpful in solving Y. Tanaka and S. Xia's question in [21].

AMS subject classifications: 54D65, 54E35, 54E40

Key words: 1-sequence-covering, σ -strong *sn*-network, π -*s*-mapping

1. Introduction

To determine what spaces the images of SniceŤ spaces under SniceŤ mappings are is one of the central questions of general topology [1]. In the past, many noteworthy results on images of metric spaces have been obtained. For a survey in this field,

Email addresses: nvdung@staff.dthu.edu.vn; nguyendungtc@yahoo.com

see [19], for example. Related to characterizations on images of metric spaces, Y. Tanaka and S. Xia posed the following question in [21].

Question 1.1 ([21]). What is a nice characterization for a quotient s-image of a locally separable metric space?

This question was partly answered by many authors [13], [14], [20]. It is known that 1-sequence-covering *s*-images of metric spaces have been characterized by pointcountable *sn*-networks, and 1-sequence-covering π -images of metric spaces have been characterized by σ -strong *sn*-networks [16]. Also, as in the proofs of [10], 1-sequencecovering π -*s*-images of metric spaces can be characterized by point-countable σ strong *sn*-networks. Recently, the characterizations on images of locally separable metric spaces cause attention once again, and 1-sequence-covering *s*-images of locally separable metric spaces have been characterized by point-countable *sn*-network consisting of cosmic spaces (\aleph_0 -spaces) [5].

Taking these results into account, it is natural to be interested in the following question.

Question 1.2. Are the following equivalent for a space X?

- 1. X is an 1-sequence-covering π -s-image of a locally separable metric space.
- 2. X has a point-countable σ -strong sn-network consisting of cosmic spaces (\aleph_0 -spaces).

In this paper, we give a characterization on 1-sequence-covering π -s-images of locally separable metric spaces by means of point-countable σ -strong sn-network consisting of cosmic spaces (sn-second countable spaces, \aleph_0 -spaces). As an application, we get a new characterization on 1-sequence-covering, quotient π -s-images of locally separable metric spaces, which is helpful in solving the above Question 1.1 of Y. Tanaka and S. Xia.

Throughout this paper, all spaces are regular and T_1 , \mathbb{N} denotes the set of all natural numbers, $\omega = \mathbb{N} \cup \{0\}$, and a convergent sequence includes its limit point. Let \mathscr{P} be a family of subsets of X and $x \in X$. Then $\bigcap \mathscr{P}$, and $st(x, \mathscr{P})$ denote the intersection $\bigcap \{P : P \in \mathscr{P}\}$, and the union $\bigcup \{P \in \mathscr{P} : x \in P\}$, respectively. A convergent sequence $\{x_n : n \in \omega\}$ converging to x_0 is *eventually* in a subset A of X, if $\{x_n : n \ge n_0\} \cup \{x_0\} \subset A$ for some $n_0 \in \mathbb{N}$.

For terms which are not defined here, please refer to [3].

2. Main Results

Definition 2.1. *Let P be a subset of a space X*.

(1) P is a sequential neighborhood of x [4], if for every convergent sequence S converging to x in X, S is eventually in P.

(2) *P* is a sequentially open subset of *X* [4], if for every $x \in P$, *P* is a sequential neighborhood of *x*.

Definition 2.2. Let \mathcal{P} be a family of subsets of a space X.

(1) For each $x \in X$, \mathscr{P} is a network at x in X, if $x \in \bigcap \mathscr{P}$, and if $x \in U$ with U open in X, there exists $P \in \mathscr{P}$ such that $x \in P \subset U$.

(2) \mathscr{P} is a cs-network of X [8], if for every convergent sequence S converging to $x \in U$ with U open in X, there exists $P \in \mathscr{P}$ such that S is eventually in $P \subset U$.

(3) \mathscr{P} is an sn-cover of X [14], if each element of \mathscr{P} is a sequential neighborhood of some point in X, and for each $x \in X$, some $P \in \mathscr{P}$ is a sequential neighborhood of x.

Definition 2.3. *Let X be a space.*

(1) X is an \aleph_0 -space [17] (resp., cosmic space [17], sn-second countable space [7]), if X has a countable cs-network (resp., countable network, countable sn-network).

(2) X is a sequential space [4], if every sequentially open subset of X is open.

(3) X is sequentially separable [2], if X has a countable subset D such that for each $x \in X$, there exists a sequence $L \subset D$ converging to x, where D is a sequentially dense subset of X.

Definition 2.4. Let $\mathscr{P} = \bigcup \{\mathscr{P}_x : x \in X\}$ be a family of subsets of a space X satisfying that, for each $x \in X$, \mathscr{P}_x is a network at x in X, and if $U, V \in \mathscr{P}_x$, then $W \subset U \cap V$ for some $W \in \mathscr{P}_x$.

(1) \mathscr{P} is a weak base of X [18], if $G \subset X$ such that for each $x \in G$, there exists $P \in \mathscr{P}_x$ satisfying $P \subset G$, then G is open in X

(2) \mathscr{P} is an sn-network of X [12], if each member of \mathscr{P}_x is a sequential neighborhood of x in X.

(3) The above \mathcal{P}_x is respectively a weak base, and an sn-network at x in X [11].

Remark 2.5 ([14]). An sn-network of a sequential space is a weak base.

Definition 2.6. Let $f : X \longrightarrow Y$ be a mapping.

(1) f is an 1-sequence-covering mapping [12], if for every $y \in Y$, there exists $x_y \in f^{-1}(y)$ such that whenever $\{y_n : n \in \mathbb{N}\}$ is a sequence converging to y in Y there exists a sequence $\{x_n : n \in \mathbb{N}\}$ converging to x_y in X with each $x_n \in f^{-1}(y_n)$.

(2) f is an 1-sequentially quotient mapping [16], if for every $y \in Y$, there exists $x_y \in f^{-1}(y)$ such that whenever $\{y_n : n \in \mathbb{N}\}$ is a sequence converging to y in Y there exists a sequence $\{x_k : k \in \mathbb{N}\}$ converging to x_y in X with each $x_k \in f^{-1}(y_{n_k})$.

(3) f is a π -mapping [1], if for every $y \in Y$ and for every neighborhood U of y in Y, $d(f^{-1}(y), X - f^{-1}(U)) > 0$, where X is a metric space with a metric d.

(4) f is an s-mapping [1], if $f^{-1}(y)$ is separable for every $y \in Y$.

(5) f is a π -s-mapping [10], if f is both π -mapping and s-mapping.

Definition 2.7. Let $\{\mathscr{P}_n : n \in \mathbb{N}\}$ be a refinement sequence of a space X, i.e., each \mathscr{P}_n is a cover of X and \mathscr{P}_{n+1} is a refinement of \mathscr{P}_n .

(1) $\bigcup \{\mathscr{P}_n : n \in \mathbb{N}\}$ is σ -strong network of X [9], if $\{st(x, \mathscr{P}_n) : n \in \mathbb{N}\}$ is a network at x in X for every $x \in X$.

(2) $\bigcup \{\mathscr{P}_n : n \in \mathbb{N}\}$ is weak development of X [10], if $\{st(x, \mathscr{P}_n) : n \in \mathbb{N}\}$ is a weak base at x in X for every $x \in X$.

(3) $\bigcup \{\mathscr{P}_n : n \in \mathbb{N}\}\$ is a σ -strong sn-network of X, if $\bigcup \{\mathscr{P}_n : n \in \mathbb{N}\}\$ is a σ -strong network and each \mathscr{P}_n is an sn-cover of X. A σ -strong sn-network of X is a point-star network of sn-covers in the sense of [16].

(4) $\bigcup \{\mathscr{P}_n : n \in \mathbb{N}\}$ is an sn-weak-development of X, if $\bigcup \{\mathscr{P}_n : n \in \mathbb{N}\}$ is a weakdevelopment and each \mathscr{P}_n is an sn-cover of X.

Definition 2.8. Let $\mathscr{P} = \bigcup \{ \mathscr{P}_n : n \in \mathbb{N} \}$ be a σ -strong network of X. For every $n \in \mathbb{N}$, put $\mathscr{P}_n = \{ P_\alpha : \alpha \in A_n \}$, and endowed A_n with discrete topology. Put

$$M = \left\{ a = (\alpha_n) \in \prod_{n \in \mathbb{N}} A_n : \{ P_{\alpha_n} : n \in \mathbb{N} \} \right\}$$

forms a network at some point x_a in X.

Then M, which is a subspace of the product space $\prod_{n \in \mathbb{N}} A_n$, is a metric space, x_a is unique, and $x_a = \bigcap_{n \in \mathbb{N}} P_{\alpha_n}$ for every $a \in M$. Define $f : M \to X$ by choosing $f(a) = x_a$, then f is a mapping and $(f, M, X, \{\mathscr{P}_n\})$ is a Ponomarev-system [15].

Theorem 2.9. The following are equivalent for a space X.

- 1. X is an 1-sequence-covering π -s-image of a locally separable metric space.
- 2. X is an 1-sequentially-quotient π -s-image of a locally separable metric space.
- 3. X has a point-countable σ -strong sn-network consisting of sn-second countable spaces.
- 4. X has a point-countable σ -strong sn-network consisting of \aleph_0 -spaces.
- 5. X has a point-countable σ -strong sn-network consisting of cosmic spaces.

Proof.

(1) \Rightarrow (2). It is obvious.

(2) \Rightarrow (3). Let $f : M \longrightarrow X$ be an 1-sequentially-quotient π -s-mapping from a locally separable metric space M with a metric d onto X. For each $x \in X$, there exists $a_x \in f^{-1}(x)$ such that whenever $\{x_n : n \in \mathbb{N}\}$ is a sequence converging to x in X there exists a sequence $\{a_k : k \in \mathbb{N}\}$ converging to a_x in M with each $a_k \in f^{-1}(x_{n_k})$. Since M is locally separable metric, $M = \bigoplus_{\lambda \in \Lambda} M_\lambda$ by [3, 4.4.F], where each M_λ is a separable metric space with a metric d_λ . For each $\lambda \in \Lambda$, let D_λ be a countable dense subset of M_λ . For each $n \in \mathbb{N}$, put

$$\mathscr{B}_{\lambda,n,x} = \{B(a,1/n) : a \in D_{\lambda}, a_x \in B(a,1/n)\},\$$

where $B(a, 1/n) = \{ b \in M_{\lambda} : d_{\lambda}(a, b) < 1/n \}$, and put

$$\mathcal{B}_{n,x} = \bigcup \{ \mathcal{B}_{\lambda,n,x} : \lambda \in \Lambda \}, \mathcal{B}_n = \bigcup \{ \mathcal{B}_{n,x} : x \in X \}, \mathcal{B}_x = \bigcup \{ \mathcal{B}_{n,x} : n \in \mathbb{N} \},$$
$$\mathcal{B} = \bigcup \{ \mathcal{B}_n : n \in \mathbb{N} \} = \bigcup \{ \mathcal{B}_x : x \in X \},$$

and

$$\mathcal{P}_{n,x} = f(\mathcal{B}_{n,x}), \mathcal{P}_n = \bigcup \{\mathcal{P}_{n,x} : x \in X\}, \mathcal{P}_x = \bigcup \{\mathcal{P}_{n,x} : n \in \mathbb{N}\},$$
$$\mathcal{P} = \bigcup \{\mathcal{P}_n : n \in \mathbb{N}\} = \bigcup \{\mathcal{P}_x : x \in X\}.$$

Then $\{\mathscr{P}_n : n \in \mathbb{N}\}$ is a refinement sequence of *X*. We shall prove that \mathscr{P} is a pointcountable σ -strong *sn*-network of *X* consisting of *sn*-second countable spaces by the following facts (a), (b), (c), and (d).

(a) $\bigcup \{\mathscr{P}_n : n \in \mathbb{N}\}$ is a σ -strong network of *X*.

Let $x \in U$ with U open in X. Since f is a π -mapping, $d(f^{-1}(x), M - f^{-1}(U)) > 0$. It implies that $d(f^{-1}(x), M - f^{-1}(U)) > 2/n$ for some $n \in \mathbb{N}$. Let $x \in f(B(a, 1/n)) \in \mathcal{P}_n$ for some $B(a, 1/n) \in \mathcal{P}_{\lambda,n,x}$. We shall prove that $B(a, 1/n) \subset f^{-1}(U)$. In fact, if $B(a, 1/n) \notin f^{-1}(U)$, then there exists $b \in B(a, 1/n) - f^{-1}(U)$. Since $f^{-1}(x) \cap$

 $B(a, 1/n) \neq \emptyset$, there exists $c \in f^{-1}(x) \cap B(a, 1/n)$. Then $d(f^{-1}(x), M - f^{-1}(U)) \leq d(c, b) \leq d(c, a) + d(a, b) < 2/n$. It is a contradiction. Then we get $f(B(a, 1/n)) \subset U$. Therefore, $st(x, \mathscr{P}_n) = \bigcup \{ f(B(a, 1/n)) : x \in f(B(a, 1/n)), a \in D_\lambda, \lambda \in \Lambda \} \subset U$. It implies that \mathscr{P} is a σ -strong network of X.

(b) Each \mathcal{P}_n is an *sn*-cover of *X*.

Let $x \in X$ and $P = f(B) \in \mathscr{P}_{n,x}$ for some $B \in \mathscr{B}_{n,x}$. We shall prove that P is a sequential neighborhood of x. Let S be a convergent sequence converging to x in X. Then there exists a convergent sequence L converging to a_x in M such that f(L) is a subsequence of S. Since B is open, L is eventually in B. Hence $f(L_{\lambda})$ is eventually in P. It implies that S is frequently in P. It follows from [6, Remark 1.4] that P is a sequential neighborhood of x. Therefore, \mathscr{P}_n is an *sn*-cover of X.

(c) \mathcal{P} is point-countable.

Let $x \in X$. Since f is an s-mapping, $f^{-1}(x)$ is separable. It implies that $f^{-1}(x)$ meets at most countably many M_{λ} 's. Then $f^{-1}(x)$ meets at most countably many members of \mathscr{B}_n , i.e., x meets at most countable many members of \mathscr{P}_n . Therefore, \mathscr{P} is point-countable.

(d) Each $P \in \mathcal{P}$ is an *sn*-second countable space.

Let P = f(B) for some $B \in \mathscr{B}$. Since *B* is separable metric, *P* is sequentially separable by [14, Lemma 2.2]. Let D_p be a sequentially dense subset of *P*. For each $x \in P$, put $\mathscr{Q}_x = \{Q \cap P : Q \in \mathscr{P}_x, Q \cap D_p \neq \emptyset\}$, and put $\mathscr{Q} = \bigcup \{\mathscr{Q}_x : x \in P\}$. Since \mathscr{P} is point-countable and D_p is countable, \mathscr{Q} is countable. It suffices to prove the following facts (i), (ii), and (iv) for every $x \in P$.

(i) \mathscr{Q}_x is a network at *x* in *P*.

Let $x \in U$ with U open in P. Then $x \in V$ with V open in X and $V \cap P = U$. Let S be a sequence in D_p converging to x. Since \mathscr{P} is a σ -strong *sn*-network of X, $S \cup \{x\}$ is eventually in $Q \subset V$ with some $Q \in \mathscr{P}_x$. It implies that $Q \cap D_p \neq \emptyset$, and $x \in Q \cap P \subset V \cap P = U$. Therefore, \mathscr{Q}_x is a network at x in P.

(ii) If $Q_1, Q_2 \in \mathcal{Q}_x$, then $Q \subset Q_1 \cap Q_2$ for some $Q \in \mathcal{Q}_x$.

Let $Q_1 = f(B_1) \cap P, Q_2 = f(B_2) \cap P$ for some $B_1, B_2 \in \mathscr{B}_x$. Let *S* be a sequence in D_p converging to *x*. Then there exists a sequence *L* converging to a_x in *M* such that f(L) is a subsequence of *S*. Since \mathscr{B}_x is a base at a_x in *M*, there exists $C \in \mathscr{B}_x$ such that $L \cup \{a_x\}$ is eventually in $C \subset B_1 \cap B_2$. Then $S \cup \{x\}$ is frequently in f(C). It implies that $f(C) \cap D_p \neq \emptyset$. Put $Q = f(C) \cap P$. Then $Q \in \mathscr{Q}_x$, and $Q \subset Q_1 \cap Q_2$.

(iii) Each $Q \in \mathcal{Q}_x$ is a sequential neighborhood of x in P.

Let $Q = f(C) \cap P$ with some $C \in \mathscr{B}_x$, and $f(C) \cap D_P \neq \emptyset$, and let *S* be a convergent sequence converging to *x* in *P*. Then there exists a convergent sequence *L* converging to a_x in *M* such that f(L) is a subsequence of *S*. Since *L* is eventually in *C*, *S* is frequently in *Q*. It follows from [6, Remark 1.4] that *Q* is a sequential neighborhood of *x* in *P*.

 $(3) \Rightarrow (4) \Rightarrow (5)$. It is obvious.

(5) \Rightarrow (1). Let $\mathscr{P} = \bigcup \{\mathscr{P}_n : n \in \mathbb{N}\}$ be a point-countable σ -strong *sn*-network of *X* consisting of cosmic spaces. For each $n \in \mathbb{N}$, put $\mathscr{P}_n = \{P_{n,\lambda} : \lambda \in \Lambda_n\} = \bigcup \{\mathscr{P}_{n,x} : x \in X\}$, where each $\mathscr{P}_{n,x}$ is an *sn*-cover at *x* in *X*. Since each $P_{n,\lambda}$ is a cosmic space, $P_{n,\lambda}$ is a sequentially separable space by [14, Corollary 2.6]. Then $P_{n,\lambda}$ has a countable sequentially dense subset $D_{n,\lambda}$. For each $i \in \mathbb{N}$ and $x \in P_{n,\lambda}$, put $\mathscr{Q}_{n,\lambda,i,x} = \{P \cap P_{n,\lambda} : P \in \mathscr{P}_{i,x}, P \cap D_{n,\lambda} \neq \emptyset\}$, and put $\mathscr{Q}_{n,\lambda,i} = \bigcup \{\mathscr{Q}_{n,\lambda,i,x} : x \in P_{n,\lambda}\}$, and $\mathscr{Q}_{n,\lambda} = \bigcup \{\mathscr{Q}_{n,\lambda,i} : i \in \mathbb{N}\}$. Since \mathscr{P} is a point-countable and $D_{n,\lambda}$ is countable, $\mathscr{Q}_{n,\lambda}$ is a countable. It is easy to see that $\{\mathscr{Q}_{n,\lambda,i} : i \in \mathbb{N}\}$ is a refinement sequence of $P_{n,\lambda}$. For each $x \in U$ with *U* open in $P_{n,\lambda}$, we get $x \in V$ with *V* open in *X* and $V \cap P_{n,\lambda} = U$. Since \mathscr{P} is a σ -strong network of *X*, there exists $i \in \mathbb{N}$ such that $x \in st(x, \mathscr{P}_i) \subset V$. Let *L* be a sequence in $D_{n,\lambda}$ converging to *x*. Since \mathscr{P}_i is an *sn*-cover of *X*, $L \cup \{x\}$ is eventually in $P \subset V$ for some $P \in \mathscr{P}_{i,x}$. Then $P \cap D_{n,\lambda} \neq \emptyset$, and $P \cap P_{n,\lambda} \in \mathscr{Q}_{n,\lambda,i}$. It implies that $x \in st(x, \mathscr{Q}_{n,\lambda,i}) = st(x, \mathscr{P}_i) \cap P_{n,\lambda} \subset V \cap P_{n,\lambda} = U$. Therefore, $\{\mathscr{Q}_{n,\lambda,i} : i \in \mathbb{N}\}$ is a σ -strong network of $P_{n,\lambda}$.

For each $x \in P_{n,\lambda}$ and $i \in \mathbb{N}$, let $Q \in \mathcal{Q}_{n,\lambda,i,x}$. Then $Q = P \cap P_{n,\lambda}$, where $P \in \mathcal{P}_{i,x}$ and $P \cap D_{n,\lambda} \neq \emptyset$. Let *S* be a convergent sequence converging to *x* in $P_{n,\lambda}$. Since \mathcal{P}_i is an *sn*-cover of *X*, *S* is eventually in *P*. It implies that *S* is eventually in $P \cap P_{n,\lambda}$. Therefore, $\mathcal{Q}_{n,\lambda}$ is a σ -strong *sn*-network of $P_{n,\lambda}$.

By the above, the Ponomarev-system $(f_{n,\lambda}, M_{n,\lambda}, P_{n,\lambda}, \{\mathcal{Q}_{n,\lambda,i}\})$ exists. Since each $\mathcal{Q}_{n,\lambda,i}$ is countable, $M_{n,\lambda}$ is a separable metric space with the metric $d_{n,\lambda}$ described as follows. For $a = (\alpha_i), b = (\beta_i) \in M_{n,\lambda}$, if a = b, then $d_{n,\lambda}(a, b) = 0$, and otherwise, $d_{n,\lambda}(a, b) = 1/\min\{i \in \mathbb{N} : \alpha_i \neq \beta_i\}$. Put $M = \bigoplus\{M_{n,\lambda} : \lambda \in \Lambda_n, n \in \mathbb{N}\}$ and define $f : M \longrightarrow X$ by choosing $f(a) = f_{n,\lambda}(a)$ if $a \in M_{n,\lambda}$ with $\lambda \in \Lambda_n, n \in \mathbb{N}$. Then f is a mapping, and M is a locally separable metric space with the metric d described as follows. For each $a, b \in M$, if $a, b \in M_{n,\lambda}$ for some $\lambda \in \Lambda_n$ and $n \in \mathbb{N}$, then $d(a, b) = d_{n,\lambda}(a, b)$, and otherwise, d(a, b) = 1. We shall prove that f is a sequence-covering π -s-mapping by the following facts (a), (b), and (c).

(a) f is a π -mapping.

Let $x \in U$ with U open in X. Then $st(x, \mathscr{P}_m) \subset U$ for some $m \in \mathbb{N}$. For each $n \in \mathbb{N}$ and $\lambda \in \Lambda_n$ with $x \in P_{n,\lambda}$, we get $st(x, \mathscr{Q}_{n,\lambda,m}) \subset U_{n,\lambda}$, where $U_{n,\lambda} = U \cap P_{n,\lambda}$. For each $a = (\alpha_i) \in M_{n,\lambda}$, if $d_{n,\lambda}(f_{n,\lambda}^{-1}(x), a) < 1/m$, then there exists $b = (\beta_i) \in f_{n,\lambda}^{-1}(x)$ such that $d_{n,\lambda}(a, b) < 1/m$. Hence $\alpha_i = \beta_i$ if $i \leq m$. Since $x \in Q_{\beta_m} \subset st(x, \mathscr{Q}_{n,\lambda,m}) \subset U_{n,\lambda}$, $f_{n,\lambda}(a) \in Q_{\alpha_m} = Q_{\beta_m} \subset U_{n,\lambda}$. It implies that $a \in f_{n,\lambda}^{-1}(U_{n,\lambda})$. Therefore, if $a \in M_{n,\lambda} - f_{n,\lambda}^{-1}(U_{n,\lambda})$, then $d_{n,\lambda}(f_{n,\lambda}^{-1}(x), a) \geq 1/m$. Hence $d_{n,\lambda}(f_{n,\lambda}^{-1}(x), M_{n,\lambda} - f_{n,\lambda}^{-1}(U_{n,\lambda})) \geq 1/m$. So we get

$$d(f^{-1}(x), M - f^{-1}(U)) = \inf \left\{ d(a, b) : a \in f^{-1}(x), b \in M - f^{-1}(U) \right\}$$

= $\min \left\{ 1, \inf \left\{ d_{n,\lambda}(f_{n,\lambda}^{-1}(x), M_{n,\lambda} - f_{n,\lambda}^{-1}(U_{n,\lambda})) : \lambda \in \Lambda_n, n \in \mathbb{N} \right\} \right\}$
 $\geq 1/m > 0.$

It implies that f is a π -mapping.

(b) f is an *s*-mapping.

Let $x \in X$. For each $n \in \mathbb{N}$, since \mathscr{P}_n is point-countable, $\Lambda_{n,x} = \{\lambda \in \Lambda_n : x \in P_{n,\lambda}\}$ is countable. Since each $M_{n,\lambda}$ is separable metric, $f_{n,\lambda}^{-1}(x)$ is separable. It implies that $f^{-1}(x) = \bigcup \{f_{n,\lambda}^{-1}(x) : \lambda \in \Lambda_{n,x}, n \in \mathbb{N}\}$ is separable. Then f is an s-mapping.

(c) f is 1-sequence-covering.

For each $x \in X$, since \mathscr{P} is a σ -strong *sn*-network of X, there exists $P_{n,\lambda} \in \mathscr{P}$ such that for each convergent sequence S converging to x in X, S is eventually in $P_{n,\lambda}$. Since $\mathscr{Q}_{n,\lambda}$ is a countable σ -strong *sn*-network of $P_{n,\lambda}$, $f_{n,\lambda}$ is an 1-sequencecovering mapping as in the proof (3) \Rightarrow (1) of [16, Theorem 11]. Then there exists $a_x \in M_{n,\lambda}$ such that whenever $H_{n,\lambda}$ is a convergent sequence converging to x in $P_{n,\lambda}$ there exists a convergent sequence $K_{n,\lambda}$ converging to a_x in $M_{n,\lambda}$ with $f_{n,\lambda}(K_{n,\lambda}) = H_{n,\lambda}$. Put $H_{n,\lambda} = S \cap P_{n,\lambda}$, then $H_{n,\lambda}$ is a convergent sequence converging to x in $P_{n,\lambda}$. Since $S - P_{n,\lambda}$ is finite, $S - P_{n,\lambda} = f(F)$ for some finite subset F of M. Put $K = K_{n,\lambda} \cup F$, then K is a convergent sequence converging to a_x in M satisfying f(K) = S. It implies that f is 1-sequence-covering.

Corollary 2.10. *The following are equivalent for a space X*.

- 1. X is an 1-sequence-covering, quotient π -s-image of a locally separable metric space.
- 2. X is an 1-sequentially-quotient, quotient π -s-image of a locally separable metric space.
- 3. X has a point-countable sn-weak-development consisting of sn-second countable spaces.
- 4. *X* has a point-countable sn-weak-development consisting of \aleph_0 -spaces.
- 5. X has a point-countable sn-weak-development consisting of cosmic spaces.

Proof. (1) \Rightarrow (2). It is obvious.

(2) \Rightarrow (3). By Theorem 2.9, *X* has a point-countable σ -strong *sn*-network $\bigcup \{\mathscr{P}_n : n \in \mathbb{N}\}$ consisting of *sn*-second countable spaces. We shall prove that, for every $x \in X$, $\{st(x, \mathscr{P}_n) : n \in \mathbb{N}\}$ is a weak base at *x* in *X* by the following facts (a), (b), and (c).

(a) $\{st(x, \mathcal{P}_n) : n \in \mathbb{N}\}$ is a network at x in X.

It follows from the fact that $\bigcup \{\mathscr{P}_n : n \in \mathbb{N}\}$ is a σ -strong network of *X*.

(b) If $st(x, \mathcal{P}_k), st(x, \mathcal{P}_l) \in \{st(x, \mathcal{P}_n) : n \in \mathbb{N}\}$, then there exists $m \in \mathbb{N}$ such that $st(x, \mathcal{P}_m) \subset st(x, \mathcal{P}_k) \cap st(x, \mathcal{P}_l)$.

It is clear by choosing $m = \max\{k, l\}$.

(c) Since X is a quotient image of a metric space, X is sequential. It is easy to see that each $st(x, \mathcal{P}_n)$ is a sequential neighborhood of x in X. Note that $\{st(x, \mathcal{P}_n) : n \in \mathbb{N}\}$ is a network at x in X. Then $\{st(x, \mathcal{P}_n) : n \in \mathbb{N}\}$ is an *sn*-network at x in X. It implies that $\{st(x, \mathcal{P}_n) : n \in \mathbb{N}\}$ is a weak base at x by Remark 2.5.

 $(3) \Rightarrow (4) \Rightarrow (5)$. It is obvious.

(5) \Rightarrow (1). Let $\mathscr{P} = \bigcup \{\mathscr{P}_n : n \in \mathbb{N}\}$ be a point-countable *sn*-weak-development of *X* consisting of cosmic spaces. By Theorem 2.9, *X* is an 1-sequence-covering π *s*-image of a locally separable metric space under the mapping *f*. Since *X* has a weak-development, *X* is sequential. In fact, let *A* be a sequentially open subset of *X* and $x \in A$. For each $n \in \mathbb{N}$, if $st(x, \mathscr{P}_n) \not\subset A$, then there exists $x_n \in st(x, \mathscr{P}_n) - A$. We get that $\{x_n : n \in \mathbb{N}\}$ is a sequence converging to *x*. Then $\{x_n : n \in \mathbb{N}\} \cup \{x\}$ is eventually in *A*. It is a contradiction. Therefore, $st(x, \mathscr{P}_n) \subset A$ for some $n \in \mathbb{N}$. Hence *A* is open, i.e., *X* is sequential. Since *X* is sequential, *f* is quotient by [14, Lemma 3.5]. It implies that *X* is an 1-sequence-covering, quotient π -s-image of a locally separable metric space.

Remark 2.11. Corollary 2.10 is a partly answer of Question 1.1.

References

- [1] A. V. Arhangel'skii, Mappings and spaces, Russian Math. Surveys 21: 115 162 (1966).
- [2] S. W. Davis, More on Cauchy conditions, *Topology Proc.* 9: 31 36 (1984).
- [3] R. Engelking, *General topology*, Sigma series in pure mathematics, vol. 6, Heldermann Verlag, Berlin, 1988.
- [4] S. P. Franklin, Spaces in which sequences suffice, Fund. Math. 57: 107 115 (1965).
- [5] Y. Ge, 2-sequence-covering mappings in Ponomarev-systems, *Chinese Adv. Math.* (*China*), to appear.
- [6] Y. Ge, On compact images of locally separable metric spaces, *Topology Proc.* 27, 1: 351 360 (2003).
- [7] Y. Ge, Spaces with countable *sn*-networks, *Comment. Math. Univ. Carolina* 45: 169 176 (2004).
- [8] J. A. Gurthrie, A characterization of ℵ₀-spaces, General Topology Appl. 1: 105 110 (1971).
- [9] Y. Ikeda, C. Liu, and Y. Tanaka, Quotient compact images of metric spaces, and related matters, *Topology Appl.* 122, 237 252 (2002).
- [10] Z. Li, On π -s-images of metric spaces, Int. J. Math. Sci. 7: 1101 1107 (2005).
- [11] Z. Li, Q. Li, and X. Zhou, On sequence-covering *msss*-maps, *Mat. Vesnik* 59: 15 21 (2007).
- [12] S. Lin, On sequence-covering *s*-mappings, *Adv. Math. (China)* 25: 548 551 (1996).
- [13] S. Lin, C. Liu, and M. Dai, Images on locally separable metric spaces, *Acta Math. Sinica* (*N.S.*) 13, 1: 1 8 (1997).
- [14] S. Lin and P. Yan, Sequence-covering maps of metric spaces, *Topology Appl.* 109: 301 314 (2001).
- [15] S. Lin and P. Yan, Notes on *cf p*-covers, *Comment. Math. Univ. Carolina* 44, 2: 295 306 (2003).
- [16] S. Lin, J-C. Zhu, Y. Ge, and J-S. Gu, Almost-open maps, sequence-covering maps and sn-networks, Indian J. Pure Appl. Math. 37, 2: 111 – 119 (2006).

REFERENCES

- [17] E. Michael, ℵ₀-spaces, J. Math. Mech. 15: 983–1002 (1966).
- [18] F. Siwiec, On defining a space by a weak-base, Pacific J. Math. 52: 233 245 (1974).
- [19] Y. Tanaka, Theory of k-networks II, Questions Answers in Gen. Topology 19: 27 46 (2001).
- [20] Y. Tanaka and Y. Ge, Around quotient compact images of metric spaces, and symmetric spaces, *Houston J. Math.* 32, 1: 99 117 (2006).
- [21] Y. Tanaka and S. Xia, Certain *s*-images of locally separable metric spaces, *Questions Answers Gen. Topology* 14: 217 231 (1996).
- [22] P. Yan, On strong sequence-covering compact mappings, *Northeast. Math. J.* 14: 341 344 (1998).