EUROPEAN JOURNAL OF PURE AND APPLIED MATHEMATICS

Vol. 2, No. 2, 2009, (250-267)
ISSN 1307-5543 - www.ejpam.com

Some Characterizations of Weighted Holomorphic Bloch Space

R. A. Rashwan ${ }^{1}$, A. El-Sayed Ahmed ${ }^{2 *}$ and A. Kamal ${ }^{3}$
${ }^{1}$ Assiut University, Faculty of Science, Department of Mathematics, Assiut, Egypt
${ }^{2}$ Sohag University, Faculty of Science, Department of Mathematics, Sohag 82524, Egypt
Current Address: Taif University, Faculty of Science, Mathematics Department, El-Taif P.O.Box 888, El-Hawiyah, Kingdom of Saudi Arabia
${ }^{3}$ Institute of Computer Science, Al-Kawser city at Sohag Egypt

Abstract

In this paper we introduce a new space, the so called $Q_{K, \omega}$ space of analytic functions on the unit disk in terms of nondecreasing functions. The relation between integral norm of $Q_{K, \omega}$ space and integral norm of the weighted Bloch space $\mathscr{B}_{\omega}^{\alpha}$ is also given.

AMS subject classifications: 30D45, 46E15
Key words: $\mathbf{Q}_{\mathbf{K}, \omega}$ spaces, weighted Bloch functions.

[^0]
1. Introduction

Let $\Delta=\{z:|z|<1\}$ be the open unit disk in the complex plane \mathbb{C}. Recall that the well known Bloch space (cf. [2]) is defined as follows:

$$
\mathscr{B}=\left\{f: f \text { analytic in } \Delta \text { and } \sup _{z \in \Delta}\left(1-|z|^{2}\right)\left|f^{\prime}(z)\right|<\infty\right\}
$$

the little Bloch space \mathscr{B}_{0} (cf. [2]) is a subspace of \mathscr{B} consisting of all $f \in \mathscr{B}$ such that

$$
\lim _{|z| \rightarrow 1^{-}}\left(1-|z|^{2}\right)\left|f^{\prime}(z)\right|=0
$$

The Dirichlet space is defined by

$$
\mathscr{D}=\left\{f: f \text { analytic in } \Delta \text { and } \int_{\Delta}\left|f^{\prime}(z)\right|^{2} d \sigma_{z}<\infty\right\}
$$

where $d \sigma_{z}$ is the Euclidean area element $d x d y$. Let $0<q<\infty$. Then the Besov-type spaces
$\mathbf{B}^{\mathbf{q}}=\left\{f: f\right.$ analytic in Δ and $\left.\sup _{a \in \Delta} \int_{\Delta}\left|f^{\prime}(z)\right|^{q}\left(1-|z|^{2}\right)^{q-2}\left(1-\left|\varphi_{a}(z)\right|^{2}\right)^{2} d \sigma_{z}<\infty\right\}$ are introduced and studied intensively by Stroethoff (cf. [11]). Here, $\varphi_{a}(z)$ stands for the Möbius transformation of Δ given by

$$
\varphi_{a}(z)=\frac{a-z}{1-\bar{a} z}, \text { where } a \in \Delta
$$

In 1994, Aulaskari and Lappan [2] introduced a class of holomorphic functions, the so called $\mathbf{Q}_{\mathbf{p}}$-spaces as follows:

$$
\mathbf{Q}_{\mathbf{p}}=\left\{f: f \text { analytic in } \Delta \text { and } \sup _{a \in \Delta} \int_{\Delta}\left|f^{\prime}(z)\right|^{2} g^{p}(z, a) d \sigma_{z}<\infty\right\}
$$

where $0<p<\infty$ and the weight function

$$
g(z, a)=\log \left|\frac{1-\bar{a} z}{a-z}\right|
$$

is defined as the composition of the Möbius transformation φ_{a} and the fundamental solution of the two-dimensional real Laplacian. The weight function $g(z, a)$ is actually Green's function in Δ with pole at $a \in \Delta$.
For $0<p<\infty,-2<q<\infty$, we say that a function f analytic in Δ belongs to the space $Q_{K}(p, q)$ (cf. [14]), if

$$
\|f\|_{K, p, q}=\sup _{a \in \Delta} \int_{\Delta}\left|f^{\prime}(z)\right|^{p}\left(1-|z|^{2}\right)^{q} K(g(z, a)) d \sigma_{z}<\infty .
$$

Recall that the analytic function

$$
f(z)=\sum_{k}^{\infty} a_{k} z^{n_{k}}\left(\text { with } n_{k} \in \mathbb{N} ; \text { for all } k \in \mathbb{N}=\{1,2,3, \ldots\}\right)
$$

is said to belong to the Hadamard gap class (also known as lacunary series) if there exists a constant $c>1$ such that $\frac{n_{k+1}}{n_{k}} \geq c$ for all $k \in \mathbb{N}$ (see e.g. [17]).
Two quantities A_{f} and B_{f}, both depending on an analytic function f on Δ, are said to be equivalent, written as $A_{f} \approx B_{f}$, if there exists a finite positive constant C not depending on f such that for every analytic function f on Δ we have:

$$
\frac{1}{C} B_{f} \leq A_{f} \leq C B_{f}
$$

If the quantities A_{f} and B_{f}, are equivalent, then in particular we have $A_{f}<\infty$ if and only if $B_{f}<\infty$.
Now, given a reasonable function $\omega:(0,1] \rightarrow[0, \infty)$, the weighted Bloch space \mathscr{B}_{ω} (see [4]) is defined as the set of all analytic functions f on Δ satisfying

$$
(1-|z|)\left|f^{\prime}(z)\right| \leq C \omega(1-|z|), \quad z \in \Delta
$$

for some fixed $C=C_{f}>0$. In the special case where $\omega \equiv 1, \mathscr{B}_{\omega}$ reduces to the classical Bloch space \mathscr{B}. Here, the word "reasonable" is a non-mathematical term; it was just intended to mean that the "not too bad" and the function satisfy some natural conditions.

Now, we introduce the following definitions:

Definition 1.1. For a given reasonable function $\omega:(0,1] \rightarrow[0, \infty)$ and for $0<\alpha<\infty$. An analytic function f on Δ is said to belong to the α-weighted Bloch space $\mathscr{B}_{\omega}^{\alpha}$ if

$$
\|f\|_{\mathscr{B}_{\omega}^{\alpha}}=\sup _{z \in \Delta} \frac{(1-|z|)^{\alpha}}{\omega(1-|z|)}\left|f^{\prime}(z)\right|<\infty .
$$

Definition 1.2. For a given reasonable function ω : $(0,1] \rightarrow[0, \infty)$ and for $0<\alpha<\infty$. An analytic function f on Δ is said to belong to the little weighted Bloch space $\mathscr{B}_{\omega, 0}^{\alpha}$ if

$$
\|f\|_{\mathscr{B}_{\omega, 0}^{\alpha}}=\lim _{|z| \rightarrow 1^{-}} \frac{(1-|z|)^{\alpha}}{\omega(1-|z|)}\left|f^{\prime}(z)\right|=0 .
$$

Throughout this paper and for some techniques we consider the case of $\omega \not \equiv 0$. Now, we introduce the following new definition:

Definition 1.3. For a nondecreasing function $K:[0, \infty) \rightarrow[0, \infty), 0<p<\infty$, and for a given reasonable function $\omega:(0,1] \rightarrow(0, \infty)$, an analytic function f in Δ is said to belong to the space $Q_{K, \omega}$ if

$$
\|f\|_{K, \omega}^{p}=\sup _{a \in \Delta} \int_{\Delta}\left|f^{\prime}(z)\right|^{p}(1-|z|)^{p} \frac{K(g(z, a))}{\omega^{p}(1-|z|)} d \sigma_{z}<\infty .
$$

Remark 1.1. It should be remarked that our $Q_{K, \omega}$ classes are more general than many classes of analytic functions. If $\omega \equiv 1$, we obtain $Q_{K}(p, p)$ type spaces (cf. [14] and [15]). If $p=2$, and $\omega(t)=t$, we obtain Q_{K} spaces as studied recently in [5, 6,9 , $12,13,16]$ and others. If $p=2, \omega(t)=t$ and $K(t)=t^{p}$, we obtain Q_{p} spaces as studied in $[2,3,17]$ and others. If $\omega \equiv 1$ and $K(t)=t^{s}$, then $Q_{K, \omega}=F(p, p, s)$ classes (cf. $[1,18]$).

In this paper, we characterize the weighted Bloch space $\mathscr{B}_{\omega}^{\alpha}$ by our $Q_{K, \omega}$ spaces. One of the main results is a general Besov-type characterization for $\mathscr{B}_{\omega}^{\alpha}$ functions that extends and generalizes the Stroethoff's theorem [11]. Also, we extend and improve some results due to Essén et. al [6] using our new definitions.

2. Holomorphic $Q_{K, \omega}$ Classes

In this paper we show some relations between $Q_{K, \omega}$ norms and $\mathscr{B}_{\omega}^{\alpha}$ norms for a nondecreasing function K, also we give a general way to construct different spaces $Q_{K, \omega_{1}}$ and $Q_{K_{2}, \omega}$ by using some functions K_{1} and K_{2}. Before proving theorems we recall few facts about the Möbius function φ_{a}. First, the function φ_{a} is easily seen to be it own inverse under composition:

$$
\left(\varphi_{a} \circ \varphi_{a}\right)(z)=z \text { for all } z \in \Delta
$$

The following identity can be obtained by straight forward computation:

$$
1-\left|\varphi_{a}(z)\right|^{2}=\frac{\left(1-|a|^{2}\right)\left(1-|z|^{2}\right)}{|1-\bar{a} z|^{2}}, \quad(a, z \in \Delta)
$$

A slightly different form in which we will apply the above identity is:

$$
\begin{equation*}
\frac{1-\left|\varphi_{a}(z)\right|^{2}}{1-|z|^{2}}=\left|\varphi_{a}^{\prime}(z)\right|, \quad(a, z \in \Delta) \tag{2.1}
\end{equation*}
$$

For $a \in \Delta$, the substitution $z=\varphi_{a}(w)$ results in the Jacobian change in measure given by $d \sigma_{w}=\left|\varphi_{a}^{\prime}(z)\right|^{2} d \sigma_{z}$. For a Lebesgue integrable or a non-negative Lebesgue measurable function h on Δ we thus have the following change-of-variable formula:

$$
\begin{equation*}
\int_{\Delta(0, r)} h\left(\varphi_{a}(w)\right) d \sigma_{w}=\int_{\Delta(a, r)} h(z)\left(\frac{1-\left|\varphi_{a}(z)\right|^{2}}{1-|z|^{2}}\right)^{2} d \sigma_{z} \tag{2.2}
\end{equation*}
$$

We assume throughout this paper that

$$
\begin{equation*}
\int_{0}^{1} K\left(\log \frac{1}{r}\right) \frac{r}{\left(1-r^{2}\right)^{2}} d r<\infty \tag{2.3}
\end{equation*}
$$

We need the following lemmas in the sequel.
Lemma 2.1. [17] Let $\alpha \in(0, \infty)$ and suppose that $f(z)=\sum_{j=1}^{\infty} a_{j} z^{n_{j}}$ belongs to Hadamard gap class. Then $f \in \mathscr{B}^{\alpha}$ if and only if

$$
\sup _{j \in \mathbb{N}}\left|a_{j}\right| n_{j}^{1-\alpha}<\infty, \text { where } \mathbb{N}=\{1,2,3, \ldots\}
$$

Lemma 2.2. Let $\omega:(0,1] \rightarrow(0, \infty)$ be a nondecreasing function. Then there are two functions $f_{1}, f_{2} \in \mathscr{B}_{\omega}$ such that

$$
\begin{equation*}
\left|f_{1}^{\prime}(z)\right|+\left|f_{2}^{\prime}(z)\right| \approx \frac{\omega(1-|z|)}{(1-|z|)}, \quad z \in \Delta \tag{2.4}
\end{equation*}
$$

Proof. For a large number $q \in \mathbb{N}$, choose a gap series:

$$
f_{1}(z)=\sum_{j=0}^{\infty} z^{q^{j}}, \quad z \in \Delta .
$$

Then, apply lemma 2.1 to infer that $\frac{(1-|z|)\left|f_{1}^{\prime}(z)\right|}{\omega((1-|z|))} \leq \lambda$ holds for all $z \in \Delta$, where λ is a constant. Furthermore, let us verify

$$
\begin{equation*}
\frac{(1-|z|)\left|f_{1}^{\prime}(z)\right|}{\omega((1-|z|))} \geq \lambda, \quad 1-q^{-k} \leq|z| \leq 1-q^{-\left(k+\frac{1}{2}\right)}, \quad k \in \mathbb{N} . \tag{2.5}
\end{equation*}
$$

And

$$
q^{-\left(k+\frac{1}{2}\right)} \leq 1-|z| \leq q^{-k} \Rightarrow \omega\left(q^{-\left(k+\frac{1}{2}\right)}\right) \leq \omega(1-|z|) \leq \omega\left(q^{-k}\right)
$$

Observe that for any $z \in \Delta$,

$$
\left|f_{1}^{\prime}(z)\right| \geq q^{k}|z|^{q^{k}}-\sum_{j=0}^{k-1} q^{j}|z|^{q^{j}}-\sum_{k+1}^{\infty} q^{j}|z|^{q^{j}}=T_{1}-T_{2}-T_{3} .
$$

And then, fix a z with $|z| \in\left[1-q^{-k}, 1-q^{-\left(k+\frac{1}{2}\right)}\right], k \in \mathbb{N}$, and put $x=\left.|z|\right|^{q^{k}}$. Thus

$$
\left(1-q^{-k}\right)^{q^{k}} \leq x \leq\left[\left(1-q^{-\left(k+\frac{1}{2}\right)}\right)^{q^{k+\frac{1}{2}}}\right]^{q^{\frac{-1}{2}}}
$$

If q is large enough, then for $k \geq 1$ one has

$$
\begin{equation*}
\frac{1}{3} \leq x \leq\left(\frac{1}{2}\right)^{q^{\frac{-1}{2}}} \tag{2.6}
\end{equation*}
$$

and hence $T_{1} \geq \frac{q^{k}}{3}$. Since it is easy to establish

$$
T_{2} \leq \sum_{j=0}^{k-1} q^{j} \leq \frac{q^{k}}{q-1}
$$

it remains to deal with the third term T_{3}. Noting that

$$
|z|^{q^{n}(q-1)} \leq|z|^{q^{k+1}(q-1)}, \quad n \geq k+1
$$

namely, in T_{3} the quotient of two successive terms is not greater than the ratio of the first two terms, one finds that the series of T_{3} is controlled by the geometric series having the same first two terms. Accordingly (2.6) is applied to produce

$$
\begin{aligned}
T_{3} & \leq q^{k+1}|z|^{q^{k+1}} \sum_{j=0}^{\infty}\left(q|z|^{q^{k+2}-q^{k+1}}\right)^{j} \\
& =\frac{q^{k+1}|z|^{k+1}}{1-q|z|^{\left(q^{k+2}-q^{k+1}\right)}}=q^{k} \frac{q x^{q}}{1-q x^{q^{2}-q}} \\
& \leq q^{k} \frac{q\left(\frac{1}{2}\right)^{\frac{1}{2}}}{1-q\left(\frac{1}{2}\right) q^{\frac{3}{2}}-q^{\frac{1}{2}}}
\end{aligned}
$$

The preceding estimates for T_{1}, T_{2} and T_{3} imply

$$
\begin{aligned}
\left|f_{1}^{\prime}(z)\right| & \geq \frac{q^{k}}{4} \frac{\omega(1-|z|)}{\omega(1-|z|)}=\frac{q^{k+\frac{1}{2}}}{4 q^{\frac{1}{2}}} \frac{\omega(1-|z|)}{\omega(1-|z|)} \\
& \geq \frac{\omega(1-|z|)}{4 q^{\frac{1}{2}}(1-|z|) \times \omega(1-|z|)} \\
& \geq \frac{\omega(1-|z|)}{4 q^{\frac{1}{2}} \omega\left(q^{-k}\right) \times(1-|z|)} ; \quad \omega\left(q^{-k}\right) \nrightarrow \infty
\end{aligned}
$$

Reaching (2.5).
In a completely similar manner one can prove that if q is a large natural number, for example $q=m^{2}$ where m is a large natural number, and if

$$
f_{2}(z)=\sum_{j=0}^{\infty} z^{q^{j}}, \quad z \in \Delta
$$

then $\left(1-|z|^{2}\right)\left|f_{2}^{\prime}(z)\right| \leq \lambda$ for all $z \in \Delta$ (owing to Lemma 2.1) and

$$
\begin{equation*}
\frac{(1-|z|)\left|f_{1}^{\prime}(z)\right|}{\omega((1-|z|))} \leq \lambda, \quad 1-q^{-\left(k+\frac{1}{2}\right)} \leq|z| \leq 1-q^{-(k+1)}, \quad k \in \mathbb{N} . \tag{2.7}
\end{equation*}
$$

Of course, (2.5) and (2.7) yield (2.4) unless it occurs that f_{1}^{\prime} and f_{2}^{\prime} have common zero in $\left\{z \in \Delta:|z|<1-q^{-1}\right\}$ in which case one can replace f_{2} with $f_{2}(\zeta z)$ for appropriate $\zeta \in \partial \Delta$, where $\partial \Delta$ is the boundary of the unit disk (note that $f^{\prime}(0)=1$). Our lemma is therefore proved.

Using the same steps of Lemma 2.2, it is not hard to prove the following lemma.
Lemma 2.3. Let $\omega:(0,1] \rightarrow(0, \infty)$ be a nondecreasing function and let $1 \leq \alpha<\infty$.
Then there are two functions $f_{1}, f_{2} \in \mathscr{B}_{\omega}^{\alpha}$ such that

$$
\begin{equation*}
\left|f_{1}^{\prime}(z)\right|+\left|f_{2}^{\prime}(z)\right| \approx \frac{\omega(1-|z|)}{(1-|z|)^{\alpha}}, \quad z \in \Delta \tag{2.8}
\end{equation*}
$$

Proof. The proof is very similar to the proof of Lemma 2.2 and lemma 3.1 in [7], so it will be omitted.

Theorem 2.1. For each non-decreasing function $K:[0, \infty) \rightarrow[0, \infty), 0<p<\infty$ and for a given reasonable non-decreasing function $\omega:(0,1] \rightarrow(0, \infty)$ with $\omega(\alpha t) \approx$ $\omega(t), \alpha>0$, we have that
(i) $Q_{K, \omega} \subset \mathscr{B}_{\omega}{ }^{\frac{p+2}{p}}$ and
(ii) $Q_{K, \omega}=\mathscr{B}_{\omega}{ }^{\frac{p+2}{p}}$, iff

$$
\int_{0}^{1} K\left(\log \frac{1}{r}\right) \frac{r}{\left(1-r^{2}\right)^{2}} d r<\infty
$$

Proof. For a fixed $r \in(0,1)$ and $a \in \Delta$, let

$$
E(a, r)=\{z \in \Delta,|z-a|<r(1-|a|)\} .
$$

We know that $E(a, r) \subset \Delta(a, r)$ and for any $z \in E(a, r)$, we have

$$
(1-r)(1-|a|) \leq 1-|z| \leq(1+r)(1-|a|)
$$

which means that $1-|z|^{2} \simeq 1-|a|^{2}$ for any $z \in E(a, r)$. Denote

$$
F_{\omega, p}(f)(z)=\left|f^{\prime}(z)\right|^{p} \frac{(1-|z|)^{p}}{\omega^{p}(1-|z|)}
$$

Then, we obtain

$$
\begin{aligned}
& \int_{\Delta} F_{\omega, p}(f)(z) K(g(z, a)) d \sigma_{z} \geq \int_{\Delta(a, r)} F_{\omega, p}(f)(z) K(g(z, a)) d \sigma_{z} \\
\geq & K\left(\log \frac{1}{r}\right) \int_{\Delta(a, r)} F_{\omega, p}(f)(z) d \sigma_{z} \\
\geq & K\left(\log \frac{1}{r}\right) \int_{E(a, r)} F_{\omega, p}(f)(z) d \sigma_{z} .
\end{aligned}
$$

For every $z \in E(a, r)$, we have that

$$
(1-r)(1-|a|) \leq 1-|z| \leq(1+r)(1-|a|)
$$

Then,

$$
(1-|z|)^{p} \geq(1-r)^{p}(1-|a|)^{p}, \quad \forall p>0
$$

Now, since we assume that ω is non-decreasing, then we obtain that

$$
\int_{E(a, r)} F_{\omega, p}(f)(z) d \sigma_{z} \geq \frac{(1-r)^{p}(1-|a|)^{p}}{\omega^{p}((1-r)(1-|a|))} \int_{E(a, r)}\left|f^{\prime}(z)\right|^{p} d \sigma_{z} .
$$

Since $\left|f^{\prime}(z)\right|^{p}$ is a subharmonic function, then

$$
\int_{E(a, r)}\left|f^{\prime}(z)\right|^{p} d \sigma_{z} \geq|E(a, r)| \cdot\left|f^{\prime}(a)\right|^{p}=r^{2}(1-|a|)^{2}\left|f^{\prime}(a)\right|^{p} .
$$

Then we obtain

$$
\begin{aligned}
& \int_{\Delta} F_{\omega, p}(f)(z) K(g(z, a)) d \sigma_{z} \geq K\left(\log \frac{1}{r}\right) \frac{(1-r)^{p}(1-|a|)^{p+2}}{\omega^{p}((1-r)(1-|a|))}\left|f^{\prime}(a)\right|^{p} \\
\geq & \lambda K\left(\log \frac{1}{r}\right) \frac{(1-r)^{p}(1-|a|)^{p+2}}{\omega^{p}(1-|a|)}\left|f^{\prime}(a)\right|^{p}
\end{aligned}
$$

where λ is a constant. If $f \in Q_{K, \omega}$, then by the above estimate we have that

$$
\sup _{a \in \Delta} \frac{(1-|a|)^{p+2}\left|f^{\prime}(z)\right|^{p}}{\omega^{p}(1-|a|)}<\infty .
$$

The proof of (i) is therefore completed.
Now, we show that $\mathscr{B}_{\omega}{ }^{\frac{p+2}{p}} \subset Q_{K, \omega}$ provided that K satisfies condition (2.3). For $f \in$ $\mathscr{B}_{\omega}^{\frac{p+2}{p}}$, we have that,

$$
\begin{aligned}
& \int_{\Delta} F_{\omega, p}(f)(z) K(g(z, a)) d \sigma_{z} \leq\|f\|_{\mathscr{B}_{\omega}{ }^{\frac{p+2}{p}}}^{p} \int_{\Delta}\left(1-|z|^{2}\right)^{-2} K(g(z, a)) d \sigma_{z} \\
& =2 \pi\|f\|_{\mathscr{B}_{\omega}{ }^{\frac{p+2}{p}}}^{p} \int_{0}^{1} K\left(\log \frac{1}{r}\right) \frac{r}{\left(1-r^{2}\right)^{2}} d r<\infty,
\end{aligned}
$$

which shows that

$$
\mathscr{B}_{\omega}^{\frac{p+2}{p}} \subset Q_{K, \omega} .
$$

Now we assume that $\mathscr{B}_{\omega}^{\frac{p+2}{p}}=Q_{K, \omega}$ and we verify (2.3) holds. From Lemma 2.3, for f_{1} and f_{2} in $\mathscr{B}_{\omega}{ }^{\frac{p+2}{p}}$, we have that

$$
\begin{equation*}
\left|f_{1}^{\prime}(z)\right|+\left|f_{2}^{\prime}(z)\right| \geq \frac{\omega(1-|z|)}{(1-|z|)^{\frac{p+2}{p}}} \tag{2.9}
\end{equation*}
$$

Then $f_{1}, f_{2} \in Q_{K, \omega}$ and

$$
\begin{align*}
& \infty>\sup _{a \in \Delta} \int_{\Delta}\left(\left|f_{1}^{\prime}(z)\right|^{p}+\left|f_{2}^{\prime}(z)\right|^{p}\right)(1-|z|)^{p} \frac{K(g(z, a))}{\omega^{p}(1-|z|)} d \sigma_{z} \\
& \geq \int_{\Delta}\left(\left|f_{1}^{\prime}(z)\right|+\left|f_{2}^{\prime}(z)\right|\right)^{p}(1-|z|)^{p} \frac{K(g(z, 0))}{\omega^{p}(1-|z|)} d \sigma_{z} \tag{2.10}
\end{align*}
$$

From (2.9) and (2.10), we obtain

$$
\int_{\Delta}\left(\left|f_{1}^{\prime}(z)\right|^{p}+\left|f_{2}^{\prime}(z)\right|^{p}\right)(1-|z|)^{p} \frac{K(g(z, 0))}{\omega^{p}(1-|z|)} d \sigma_{z} \approx 2 \pi \int_{0}^{1} K\left(\log \frac{1}{r}\right) \frac{r}{\left(1-r^{2}\right)^{2}} d r
$$

Thus (2.3) holds, and this completes the proof.

3. The Classes $Q_{K, \omega, 0}$ and $\mathscr{B}_{\omega, 0}^{\alpha}$

We say that $f \in Q_{K, \omega, 0}$ if

$$
\begin{equation*}
\lim _{|a| \rightarrow 1^{-}} \int_{\Delta}\left|f^{\prime}(z)\right|^{p}(1-|z|)^{p} \frac{K(g(z, a))}{\omega^{p}(1-|z|)} d \sigma_{z}=0 \tag{3.1}
\end{equation*}
$$

Also, as a subspace of $\mathscr{B}_{\omega}^{\alpha}$, we define the little weighted Bloch space $\mathscr{B}_{\omega, 0}^{\alpha}$ as the space which consists of analytic functions f on Δ such that

$$
\lim _{|z| \rightarrow 1^{-}} \frac{(1-|z|)^{\alpha}\left|f^{\prime}(z)\right|}{\omega(1-|z|)}=0
$$

where $0<\alpha<\infty$. Thus we can obtain the following theorem:

Theorem 3.1. For each nondecreasing function $K:[0, \infty) \rightarrow[0, \infty), 0<p<\infty$, for a given reasonable non-decreasing function $\omega:(0,1] \rightarrow(0, \infty)$ with $\omega(\alpha t) \approx \omega(t), \alpha>$ 0 . Then
(i) $Q_{K, \omega, 0} \subset \mathscr{B}_{\omega, 0}^{\frac{p+2}{p}}$ and
(ii) $Q_{K, \omega, 0}=\mathscr{B}_{\omega, 0}^{\frac{p+2}{p}}$, if and only if (2.3) holds.

Proof. Without loss of generality, we assume that $K(1)>0$. From the proof of Theorem 2.1, we have that

$$
\begin{aligned}
\pi\left(\frac{1}{e}\right)^{2} K(1) \frac{(1-|a|)^{p+2}}{\omega^{p}(1-|a|)}\left|f^{\prime}(a)\right|^{p} & \leq K(1) \int_{E(a)} F_{\omega, p}(f)(z) d \sigma_{z} \\
& \leq K(1) \int_{\Delta\left(a, \frac{1}{e}\right)} F_{\omega, p}(f)(z) d \sigma_{z} \\
& \leq \int_{\Delta} F_{\omega, p}(f)(z) K(g(z, a)) d \sigma_{z}
\end{aligned}
$$

where

$$
E(a)=\left\{z \in \Delta,|z-a|<\frac{1}{e}(1-|a|)\right\} .
$$

If $f \in Q_{K, \omega, 0}$, we obtain that

$$
\lim _{|a| \rightarrow 1^{-}} \frac{(1-|a|)^{p+2}\left|f^{\prime}(a)\right|^{p}}{\omega^{p}(1-|a|)}=0 .
$$

(ii) We only need to prove that $\mathscr{B}_{\omega, 0}^{\frac{p+2}{p}} \subset Q_{K, w, 0}$. Assume that

$$
A=\int_{0}^{1} K\left(\log \frac{1}{r}\right) \frac{r}{\left(1-r^{2}\right)^{2}} d r<\infty
$$

For a given $\epsilon>0$ there exists an $r_{1}, 0<r_{1}<1$, such that

$$
\begin{equation*}
\int_{r_{1}}^{1} K\left(\log \frac{1}{r}\right) \frac{r}{\left(1-r^{2}\right)^{2}} d r<\epsilon \tag{3.2}
\end{equation*}
$$

Then we have that,

$$
\begin{align*}
& \int_{\Delta \backslash \Delta\left(a, r_{1}\right)}\left|f^{\prime}(z)\right|^{p}(1-|z|)^{p} \frac{K(g(z, a))}{\omega^{p}(1-|z|)} d \sigma_{z} \leq\|f\|_{\mathscr{B}_{\omega, 0}^{\frac{p+2}{p}}}^{p} \int_{\Delta \backslash \Delta\left(a, r_{1}\right)} \frac{K(g(z, a))}{\left(1-|z|^{2}\right)^{2}} d \sigma_{z} \\
= & \|f\|_{\mathscr{B}_{\omega, 0}^{p+2}}^{p} \int_{r_{1}<|w|<1}^{p} K\left(\log \frac{1}{|w|}\right) \frac{1}{\left(1-|w|^{2}\right)^{2}} d \sigma_{w} \\
= & \|f\|_{\mathscr{B}_{\omega, 0}^{p+2}}^{p} \int_{r_{1}}^{p} K\left(\log \frac{1}{r}\right) \frac{r}{\left(1-r^{2}\right)^{2}} d r \leq 2 \pi \epsilon\|f\|_{\mathscr{B}_{\omega, 0}^{p}}^{p} \frac{p+2}{p} . \tag{3.3}
\end{align*}
$$

Similarly, if $f \in \mathscr{B}_{\omega, 0}^{\frac{p+2}{p}}$, we obtain that

$$
\left|f^{\prime}\left(\varphi_{a}(w)\right)\right|^{p} \frac{\left(1-\left|\varphi_{a}(w)\right|^{2}\right)^{\frac{p+2}{p}}}{\omega^{p}\left(1-\left|\varphi_{a}(w)\right|\right)} \longrightarrow 0
$$

converges uniformly for $|w| \leq r$ if $|a| \rightarrow 1^{-}$, where r is fixed and $0<r<1$. Then, we obtain that

$$
\begin{align*}
& \lim _{|a| \rightarrow 1^{-}} \int_{\Delta}\left|f^{\prime}(z)\right|^{p}(1-|z|)^{p} \frac{K(g(z, a))}{\omega^{p}(1-|z|)} d \sigma_{z} \\
& =\lim _{|a| \rightarrow 1^{-}} \int_{|w|<r}\left|f^{\prime}\left(\varphi_{a}(w)\right)\right|^{p}\left(1-\left|\varphi_{a}(w)\right|\right)^{p} \frac{K\left(\log \frac{1}{|w|}\right)}{\omega^{p}\left(1-\left|\varphi_{a}(w)\right|\right)} \frac{1}{\left(1-|w|^{2}\right)^{2}} d \sigma_{w} . \\
& \leq A \lim _{|a| \rightarrow 1^{-}} \sup _{|w| \leq r_{1}}\left|f^{\prime}\left(\varphi_{a}(w)\right)\right|^{p} \frac{\left(1-\left|\varphi_{a}(w)\right|\right)^{p+2}}{\omega^{p}\left(1-\left|\varphi_{a}(w)\right|\right)}=0 \tag{3.4}
\end{align*}
$$

where By (3.2) and (3.3) it is easy to obtain that

$$
\begin{equation*}
\lim _{|a| \rightarrow 1^{-}} \int_{\Delta}\left|f^{\prime}(z)\right|^{p}(1-|z|)^{p} \frac{K(g(z, a))}{\omega^{p}(1-|z|)} d \sigma_{z}=0 \tag{3.5}
\end{equation*}
$$

Conversely, suppose that (2.3) does not hold; that is

$$
\int_{0}^{1} K\left(\log \frac{1}{r}\right) \frac{r}{\left(1-r^{2}\right)^{2}} d r=\infty
$$

Thus we find a continuous strictly decreasing function $g:[0,1) \longrightarrow[0, \infty)$ tending to zero at 1 such that

$$
\begin{equation*}
\int_{0}^{1} K\left(\log \frac{1}{r}\right) \frac{g(r)}{\left(1-r^{2}\right)^{2}} r d r=\infty \tag{3.6}
\end{equation*}
$$

It is easy to see that

$$
\begin{equation*}
r^{2^{k+1}-2} \geq \exp \left\{-2^{k+2}(1+r)\right\}, \quad r \in[0.5,1) \tag{3.7}
\end{equation*}
$$

We know for $\beta>0$ that, $t^{2 \beta} \exp \{-4 t\}_{t=\frac{\beta}{2}}=\left(\frac{\beta}{2}\right)^{2 \beta} \exp \{-2 \beta\}$. Then, there exists an integer k for $\frac{3}{4} \leq r<1$ such that $\frac{\beta}{2} \leq 2^{k}(1-r)<\frac{\beta+1}{2}$ and

$$
\begin{align*}
2^{\beta k} \exp \left\{-2^{k+2}(1-r)\right\} & =(1-r)^{-2 \beta}\left(2^{k}(1-r)\right)^{2 \beta} \exp \left\{-2^{k+2}(1-r)\right\} \\
& >\left(\frac{1+\beta}{2}\right)^{2 \beta}(1-r)^{-2 \beta} \exp \{-2(\beta+1)\} \tag{3.8}
\end{align*}
$$

For $\frac{3}{4} \leq r<1$ we define

$$
f_{0}(z)=\sum_{k=0}^{\infty} a_{k} 2^{\frac{2 k}{p}} z^{2^{k}}
$$

where $a_{k}=g\left(1-\frac{(p+1)}{p} 2^{k}\right), k=0,1,2, \ldots$. By (3.7) and (3.8), we deduce that

$$
\begin{gather*}
M_{2}^{2}\left(r, f_{0}^{\prime}\right)=\int_{0}^{2 \pi}\left|f^{\prime}{ }_{0}\left(r e^{i \theta}\right)\right|^{2} d \theta=2 \pi \sum_{k=0}^{\infty} a_{k}^{2} 2^{\frac{2 k(p+2)}{p}} z^{2^{k}-2} \\
\geq \tag{3.9}\\
2 \pi g^{\frac{2}{p}}(r) 2^{\frac{2 k(p+2)}{p}} \exp \left\{-2^{k+2}(1-r)\right\} \geq \lambda g^{\frac{2}{p}}(r)(1-r)^{\frac{-2(p+2)}{p}},
\end{gather*}
$$

where λ is a constant. Since f_{0} is defined by a gap series with Hadamard condition, we have

$$
M_{2}\left(r, f_{0}^{\prime}\right) \approx M_{p}\left(r, f_{0}^{\prime}\right), \text { where } \quad M_{p}\left(r, f_{0}^{\prime}\right)=\left(\int_{0}^{2 \pi}\left|f^{\prime}{ }_{0}\left(r e^{i \theta}\right)\right|^{p} d \theta\right)^{\frac{1}{p}}
$$

Therefore,

$$
\begin{aligned}
\sup _{a \in \Delta} \int_{\Delta}\left|f_{0}^{\prime}(z)\right|^{p}(1-|z|)^{p} \frac{K(g(z, a))}{\omega^{p}(1-|z|)} d \sigma_{z} & \geq \int_{0}^{1} M_{p}^{p}\left(r, f_{0}^{\prime}\right)\left(1-r^{2}\right)^{p} K\left(\log \frac{1}{r}\right) r d r \\
& \approx \int_{0}^{1} M_{2}^{p}\left(r, f_{0}^{\prime}\right)\left(1-r^{2}\right)^{p} K\left(\log \frac{1}{r}\right) r d r \\
& \geq \int_{\frac{3}{4}}^{1} K\left(\log \frac{1}{r}\right) \frac{g(r)}{\left(1-r^{2}\right)^{2}} r d r=\infty
\end{aligned}
$$

This means that $f_{0} \in \mathscr{B}_{\omega, 0}^{\frac{p+2}{p}} \backslash Q_{K, w, 0}$, which is a contraction. Hence (2.3) holds. This completes the proof of our theorem.

4. More Results on $Q_{K, \omega}$-spaces

The following result means that the kernel function K can be chosen as bounded.
Theorem 4.1. Assume that $K(1)>0$. Let $K_{1}(r)=\inf \{K(r), K(1)\}$, then

$$
Q_{K, w}=Q_{K_{1}, w} .
$$

Proof. Since $K_{1} \leq K$ and K_{1} is nondecreasing, it is clear that $Q_{K, \omega} \subset Q_{K_{1}, w}$. It remains to prove that $Q_{K_{1}, \omega} \subset Q_{K, \omega}$. We note that

$$
\begin{aligned}
& g(z, a)>1, \quad z \in \Delta\left(a, \frac{1}{e}\right) \text { and } \\
& g(z, a) \leq 1, \quad z \in \Delta \backslash \Delta\left(a, \frac{1}{e}\right) .
\end{aligned}
$$

Thus $K(g(z, a))=K_{1}(g(z, a))$ in $\Delta \backslash \Delta\left(a, \frac{1}{e}\right)$. It suffices to deal with integrals over $\Delta\left(a, \frac{1}{e}\right)$. If $f \in Q_{K_{1}, \omega}$ and f is a weighted Bloch function i.e, $f \in \mathscr{B}_{\omega}$ then by Theorem 2.1, it follows that

$$
\begin{aligned}
& \int_{\Delta\left(a, \frac{1}{e}\right)}\left|f^{\prime}(z)\right|^{p}(1-|z|)^{p} \frac{K(g(z, a))}{\omega^{p}(1-|z|)} d \sigma_{z} \leq\|f\|_{\mathscr{B}_{\omega}{ }^{\frac{p}{p}}}^{p} \int_{\Delta\left(a, \frac{1}{e}\right)} K(g(z, a)) \frac{1}{\left(1-|z|^{2}\right)^{2}} d \sigma_{z} \\
= & \|f\|_{\mathscr{B}_{\omega}{ }^{p}}^{p} \int_{\Delta\left(0, \frac{1}{e}\right)} K\left(\log \frac{1}{|w|}\right) \frac{1}{\left(1-|z|^{2}\right)^{2}} d \sigma_{w} \leq C\|f\|_{\mathscr{B}_{\omega}{ }^{\frac{p+2}{p}}}^{p}
\end{aligned}
$$

Thus, $f \in Q_{K, \omega}$ and Theorem 4.1 is proved.

Corollary 4.1. Let $0<p<\infty, \omega:(0,1] \rightarrow(0, \infty)$. Then $f \in Q_{K, w}$ if and only if

$$
\sup _{a \in \Delta} \int_{\Delta}\left|f^{\prime}(z)\right|^{p}(1-|z|)^{p} \frac{K\left(1-\left|\varphi_{a}(z)\right|^{2}\right)}{\omega^{p}(1-|z|)} d \sigma_{z}<\infty .
$$

For the application of the above results, we state the following lemma which is needed later.

Lemma 4.1. Let $K:[0, \infty) \rightarrow[0, \infty), 0<p<\infty$, for a given reasonable function $\omega:(0,1] \rightarrow(0, \infty)$. Then
(i) $f \in \mathscr{B}_{\omega}{ }^{\frac{p+2}{p}}$ if and only if there exists $R \in(0,1)$ such that

$$
\begin{equation*}
\sup _{a \in \Delta} \int_{\Delta(a, R)}\left|f^{\prime}(z)\right|^{p}(1-|z|)^{p} \frac{(1-|z|) K(g(z, a))}{\omega^{p}(1-|z|)} d \sigma_{z}<\infty, \tag{4.1}
\end{equation*}
$$

(ii) $f \in \mathscr{B}_{\omega, 0}^{\frac{p+2}{p}}$ if and only if there exists $R \in(0,1)$ such that

$$
\begin{equation*}
\lim _{|a| \rightarrow 1^{-}} \int_{\Delta(a, R)}\left|f^{\prime}(z)\right|^{p}(1-|z|)^{p} \frac{K(g(z, a))}{\omega^{p}(1-|z|)} d \sigma_{z}=0 \tag{4.2}
\end{equation*}
$$

Proof. (i) Assume $f \in \mathscr{B}_{\omega}{ }^{\frac{p+2}{p}}$. For any $R \in(0,1)$ and $a \in \Delta$, we have

$$
\begin{aligned}
& \int_{\Delta(a, R)}\left|f^{\prime}(z)\right|^{p}(1-|z|)^{p} \frac{K(g(z, a))}{\omega^{p}(1-|z|)} d \sigma_{z} \\
& =\int_{\Delta(0, R)}\left|f^{\prime}\left(\varphi_{a}(z)\right)\right|^{p} \frac{\left(1-\left|\varphi_{a}(z)\right|^{2}\right)^{p+2}}{\left(1+\left|\varphi_{a}(z)\right|\right)^{p+2}} \frac{K\left(\frac{1}{|z|}\right)}{\left(1-|z|^{2}\right)^{2} \omega^{p}(1-|z|)} d \sigma_{z} \\
& \leq\|f\|^{p}{ }_{\substack{\mathscr{B}_{\omega} \\
p+2}} \int_{\Delta(0, R)} K\left(\log \frac{1}{|z|}\right) \frac{1}{\left(1-|z|^{2}\right)^{2}} d \sigma_{z} \\
& \leq \lambda_{1}\|f\|_{\substack{p \\
\mathscr{B}_{\omega}{ }^{p}{ }^{p}+2}}
\end{aligned}
$$

where $1<\left(1+\left|\varphi_{a}(z)\right|\right)^{p+2}<2^{p+2}$ and λ_{1} is a constant. Conversely, suppose that (4.1) holds for some $R, 0<R<1$, by the proof of Theorem 2.1 (i) with $1-|a| \approx 1-|z|$ on
$E(a, R) ; a, z \in \Delta$, we obtain

$$
\begin{aligned}
& \int_{\Delta(a, R)}\left|f^{\prime}(z)\right|^{p}(1-|z|)^{p} \frac{K(g(z, a))}{\omega^{p}(1-|z|)} d \sigma_{z} \geq K\left(\log \frac{1}{R}\right) \int_{\Delta(a, R)}\left|f^{\prime}(z)\right|^{p} \frac{(1-|z|)^{p}}{\omega^{p}(1-|z|)} d \sigma_{z} \\
& \geq \lambda_{2} K\left(\log \frac{1}{R}\right) \omega^{-p}(1-|a|) \int_{E(a, R)}\left|f^{\prime}(z)\right|^{p}(1-|z|)^{p} d \sigma_{z} \\
& \geq \pi \lambda_{2} R^{2} K\left(\log \frac{1}{R}\right) \frac{(1-|a|)^{p}}{\omega^{p}(1-|a|)}\left|f^{\prime}(a)\right|^{p},
\end{aligned}
$$

where λ_{2} is a constant. The last inequality shows that $f \in \mathscr{B}_{\omega}{ }^{\frac{p+2}{p}}$ The proof of (ii) is similar to proof (i) by taking the limit when $|a| \longrightarrow 1^{-}$in (i), hence it can be omitted.

Theorem 4.2. Let $0<p<\infty, \omega:(0,1] \rightarrow(0, \infty)$. Assume $K_{1}(r) \leq K_{2}(r)$ for $r \in(0,1)$ and $\frac{K_{1}(r)}{K_{2}(r)} \rightarrow 0$ as $r \rightarrow 0$. If the integral in (2.3) is divergent for K_{2}, then

$$
Q_{K_{2}, \omega} \varsubsetneqq Q_{K_{1}, \omega}
$$

Proof. It is clear that $Q_{K_{2}, \omega} \subset Q_{K_{1}, \omega}$. Suppose that

$$
Q_{K_{2}, \omega}=Q_{K_{1}, \omega}
$$

By the open mapping theorem (see [8]), we know that the identity map from one of these spaces into the other one is continuous. Thus there exists a constant C such that

$$
\|f\|_{K_{2}, \omega} \leq C\|f\|_{K_{1}, \omega}
$$

Since $\frac{K_{1}(r)}{K_{2}(r)} \rightarrow 0$ as $r \rightarrow 0$, then there exists $r_{0} \in(0,1)$ such that $K_{1}(r) \leq(2 C)^{-1} K_{2}(r)$ for $0<r \leq r_{0}$. Choose $t_{0}=e^{-r_{0}}$ and we deduce that if $f \in Q_{K_{2}, \omega}$, then

$$
\begin{aligned}
& \sup _{a \in \Delta} \int_{\Delta}\left|f^{\prime}(z)\right|^{p}(1-|z|)^{p} \frac{K_{2}(g(z, a))}{\omega^{p}(1-|z|)} d \sigma_{z} \leq C \sup _{a \in \Delta} \int_{\Delta\left(a, t_{0}\right)}\left|f^{\prime}(z)\right|^{p}(1-|z|)^{p} \frac{K_{1}(g(z, a))}{\omega^{p}(1-|z|)} d \sigma_{z} \\
& +\frac{1}{2} \sup _{a \in \Delta} \int_{\Delta}\left|f^{\prime}(z)\right|^{p}(1-|z|)^{p} \frac{K_{2}(g(z, a))}{\omega^{p}(1-|z|)} d \sigma_{z} .
\end{aligned}
$$

Therefore,

$$
\sup _{a \in \Delta} \int_{\Delta}\left|f^{\prime}(z)\right|^{p}(1-|z|)^{p} \frac{K_{2}(g(z, a))}{\omega^{p}(1-|z|)} d \sigma_{z} \leq 2 C \sup _{a \in \Delta} \int_{\Delta\left(a, t_{0}\right)}\left|f^{\prime}(z)\right|^{p}(1-|z|)^{p} \frac{K_{1}(g(z, a))}{\omega^{p}(1-|z|)} d \sigma_{z}
$$

By Lemma 4.1 and for $f \in Q_{K_{2}, \omega}$, there exists a constant C_{1} such that

$$
\begin{equation*}
\sup _{a \in \Delta} \int_{\Delta}\left|f^{\prime}(z)\right|^{p}(1-|z|)^{p} \frac{K_{2}(g(z, a))}{\omega^{p}(1-|z|)} d \sigma_{z} \leq C_{1}\|f\|_{\mathscr{B}_{\omega}{ }^{p}}^{p} . \tag{4.3}
\end{equation*}
$$

If $g \in \mathscr{B}_{\omega}{ }^{\frac{p+2}{p}}$ and $g_{r}(z)=g(r z), 0<r<1$, then $\left\|g_{r}\right\|_{\mathscr{B}_{\omega}{ }^{\frac{p+2}{p}}} \leq\|g\|_{\mathscr{B}_{\omega}{ }^{\frac{p+2}{p}}}$. Since $g_{r} \in Q_{K_{2}, \omega}, \quad 0<r<1$, we can choose $f=g_{r}$ in the inequality (4.3). Using Fatou's lemma (see [10]), we deduce that

$$
\sup _{a \in \Delta} \int_{\Delta}\left|g^{\prime}(z)\right|^{p}(1-|z|)^{p} \frac{K_{2}(g(z, a))}{\omega^{p}(1-|z|)} d \sigma_{z}<C_{1}\|g\|_{\mathscr{B}_{\omega} \frac{p+2}{p}}^{p} .
$$

We have proved that $g \in Q_{K_{2}, \omega}$. It means that $Q_{K_{2}, \omega}=\mathscr{B}_{\omega}{ }^{\frac{p+2}{p}}$. It follows from Theorem 2.1 that the integral in (2.3) with $K=K_{2}$ must be convergent, a contradiction. We obtain that

$$
Q_{K_{2}, \omega} \varsubsetneqq Q_{K_{1}, \omega} .
$$

Now, the proof of Theorem 4.2 is completed.

ACKNOWLEDGEMENTS. The authors would like to thank the referee for his careful reading of the manuscript and for the useful suggestions.

References

[1] A. El-Sayed Ahmed and M. A. Bakhit, Composition operators on some holomorphic Banach function spaces, Mathematica Scandinavica, Vol 104 (2)(2009),275-295.
[2] R. Aulaskari and P. Lappan, Criteria for an analytic function to be Bloch and a harmonic or meromorphic function to be normal, Complex Analysis and its Applications (Eds Y. Chung-Chun et al.), Pitman Research Notes in Mathematics 305, Longman (1994), 136-146.
[3] R. Aulaskari, P. Lappan, Peter and R. Zhao, On harmonic normal and $Q_{p}^{\#}$ functions, Ill. J. Math. 45, No.2(2001), 423-440.
[4] K. M. Dyakonov, Weighted Bloch spaces, H^{p}, and BMOA, J. Lond. Math. Soc. II. Ser. 65 No. 2(2002), 411-417.
[5] M. Essén and H. Wulan, On analytic and meromorphic functions and spaces of Q_{K} type, Illinois J. Math. 46(2002), 1233-1258.
[6] M. Essén, H. Wulan and J. Xiao, Several function-theoretic characterizations of Möbius invariant Q_{K} spaces, J. Funct. Anal. 230, No. 1 (2006), 78-115.
[7] P. Galanopoulos, On $\mathscr{B}_{\log }$ to $\mathscr{Q}_{\log }^{p}$ pullbacks, J. Math. Anal. Appl. Vol 337(2008), 712725.
[8] E. Kreyszig, Introductory Functional Analysis with Applications, John Wiley and Sons (1978).
[9] S. Li, Songxiao and H. Wulan, Composition operators on Q_{k} spaces, J. Math. Anal. Appl. 327(2)(2007), 948-958.
[10] H. L. Royden, Real analysis. 2nd ed. New York: Macmillan, 1968.
[11] K. Stroethoff, Besov-type characterisations for the Bloch space, Bull. Austral. Math. Soc. 39(1989), 405-420.
[12] H. Wulan and P. Wu, Characterizations of Q_{T} spaces, J. Math. Anal. Appl. 254 No. 2(2001), 484-497.
[13] H. Wulan and Y. Zhang, Hadamard products and Q_{K} spaces, J. Math. Anal. Appl. 337(2008), 1142-1150.
[14] H. Wulan and K. Zhu, Q_{K} type spaces of analytic functions, J. Funct. spaces Appl. 4(2006), 73-84.
[15] H. Wulan and J. Zhou, The higher order derivatives of Q_{K} type spaces, J. Math. Anal. Appl. 332, No. 2(2007), 1216-1228.
[16] H. Wulan and K. Zhu, Derivative-free characterizations of Q_{K} spaces, J. Aust. Math. Soc. 82, No. 2(2007), 283-295.
[17] J. Xiao, Holomorphic Q Classes, Springer LNM 1767, Berlin, 2001.
[18] R. Zhao, On a general family of function spaces, Ann. Acad. Sci. Fenn. Math. Diss. 105, 1996.

[^0]: *Corresponding author.

 Email addresses: r_rashwan@yahoo. com (R. Rashwan), ahsayed80@hotmail.com (A. Ahmed), alaa_mohamed1@yahoo.com (A. Kamal)
 (c) 2009 EJPAM All rights reserved.

