EUROPEAN JOURNAL OF PURE AND APPLIED MATHEMATICS Vol. 5, No. 1, 2012, 55-58 ISSN 1307-5543 – www.ejpam.com

Special Issue for the International Conference on Applied Analysis and Algebra 29 June - 02 July 2011, Istanbul Turkey

On the Vanishing Properties of Local Cohomology Modules Defined by a Pair of Ideals

M. Lotfi Parsa^{,*}, Sh. Payrovi

Department of Mathematics, I. K. International University, Qazvin, Iran

Abstract. As a generalization of the ordinary local cohomology modules, recently some authors introduced the local cohomology modules with respect to a pair of ideals. In this paper, we get some results on Artinianness, vanishing, finiteness and other properties of these modules. Let *R* be a commutative Noetherian ring, *I*, *J* two ideals of *R* and *M* a finitely generated *R*-module such that $\dim_R M = n$. We prove that $H_{I,J}^n(M)/JH_{I,J}^n(M)$ is *I*-cofinite Artinian and $H_{I,J}^n(M)/IH_{I,J}^n(M)$ has finite length. Also we show that, if *R* is local with $\dim R/I + J = 0$ and $\dim_R M/JM = d > 0$, then $H_{I,J}^d(M)$ is not finitely generated.

2000 Mathematics Subject Classifications: 13D45, 13E05, 13E10.

Key Words and Phrases: Artinian module, Cofinite module, Local cohomology, Noetherian module.

1. Introduction

Throughout this paper, *R* is a commutative Noetherian ring with non-zero identity, *I*, *J* are two ideals of *R* and *M* is an *R*-module. For notations and terminologies not given in this paper, the reader is referred to [1] and [6], if necessary.

As a generalization of the ordinary local cohomology modules, Takahashi, Yoshino and Yoshizawa, in [6], introduced the local cohomology modules with respect to a pair of ideals (I,J). To be more precise, let $W(I,J) = \{\mathfrak{p} \in \text{Spec}(\mathbb{R}) : I^t \subseteq \mathfrak{p} + J \text{ for some positive integer } t\}$. The set of elements x of M such that $\text{Supp}_R Rx \subseteq W(I,J)$, is said to be (I,J)-torsion submodule of M and is denoted by $\Gamma_{I,J}(M)$. It is easy to see that $\Gamma_{I,J}$ is a covariant, R-linear functor from the category of R-modules to itself. For an integer i, the local cohomology functor $H_{I,J}^i$ with respect to (I,J), is defined to be the i-th right derived functor of $\Gamma_{I,J}$. Also $H_{I,J}^i(M)$ is called

http://www.ejpam.com

© 2012 EJPAM All rights reserved.

^{*}Corresponding author.

Email addresses: lotfi.parsa@ikiu.ac.ir (M. Parsa), shpayrovi@ikiu.ac.ir (Sh. Payrovi)

the *i*-th local cohomology module of *M* with respect to (I,J). If J = 0, then $H_{I,J}^i$ coincides with the ordinary local cohomology functor H_I^i .

Some authors studied the properties of these extended modules; see, for example, [2, 3, 5, 7]. In this direction, we study Artinianness, vanishing and finiteness of the local cohomology modules defined by a pair of ideals. Suppose that M is finitely generated with dim_{*R*} M = n. It is well known that $H_I^n(M)$ is *I*-cofinite Artinian; [see 4, Proposition 5.1]. We generalize this result and prove that $H_{I,J}^n(M)/JH_{I,J}^n(M)$ is *I*-cofinite Artinian.

Let *R* be local and *M* finitely generated with $\dim_R M = n > 0$. It follows by Grothendieck's Non-vanishing Theorem that $H_I^n(M)$ is not finitely generated, whenever $\dim R/I = 0$. As a generalization of this result, we show that if $\dim R/I + J = 0$ and $\dim_R M/JM = d > 0$, then $H_{I,I}^d(M)$ is not finitely generated.

2. Main Results

Recall that *R* is a Noetherian ring, *I*, *J* are two ideals of *R* and *M* is an *R*-module. The following result improves [5, Corollary 3.5].

Theorem 1. Let *M* be finitely generated with $\dim_R M = n$. Then $H^n_{I,J}(M)/JH^n_{I,J}(M)$ is *I*-cofinite Artinian.

Proof. We use induction on *n*. If n = 0, then *M* has finite length. Therefore $\Gamma_{I,J}(M)/J\Gamma_{I,J}(M)$ has finite length and so $\Gamma_{I,J}(M)/J\Gamma_{I,J}(M)$ is *I*-cofinite Artinian. Now suppose, inductively, that n > 0, and the result has been proved for all *R*-modules of dimensions smaller than *n* satisfying the hypothesis. Since $H_{I,J}^n(M/\Gamma_{I,J}(M)) \cong H_{I,J}^n(M)$ by [6, Corollary 1.13(4)], we may assume in addition that *M* is an (I,J)-torsion free *R*-module. Thus *I* contains an element *a* which is non zero-divisor on *M*. Since dim $M/aM \le n - 1$, it follows by the inductive hypothesis that $H_{I,J}^{n-1}(M/aM)/JH_{I,J}^{n-1}(M/aM)$ is *I*-cofinite Artinian. The exact sequence $0 \to M \xrightarrow{a} M \to M/aM \to 0$ induces an exact sequence

$$\cdots \to H^{n-1}_{I,J}(M/aM) \to H^n_{I,J}(M) \xrightarrow{a} H^n_{I,J}(M) \to 0$$

of local cohomology modules. Now the exact sequence

$$H^{n-1}_{I,J}(M/aM)/JH^{n-1}_{I,J}(M/aM) \to H^n_{I,J}(M)/JH^n_{I,J}(M) \xrightarrow{a} H^n_{I,J}(M)/JH^n_{I,J}(M) \to 0$$

implies that $0:_{H^n_{I,J}(M)/JH^n_{I,J}(M)} a$ is *I*-cofinite Artinian. Therefore $H^n_{I,J}(M)/JH^n_{I,J}(M)$ is *I*-cofinite Artinian, by [4, Proposition 4.1]. This completes the inductive step. The result follows by induction.

Let $\tilde{W}(I,J)$ denote the set of ideals \mathfrak{a} of R such that $I^t \subseteq \mathfrak{a} + J$ for some positive integer t. It is easy to see that, for any $\mathfrak{a} \in \tilde{W}(I,J)$, $\Gamma_{\mathfrak{a}}(M)$ is a subset of $\Gamma_{I,J}(M)$.

Theorem 2. Let M be finitely generated with $\dim_R M = n$ and t a positive integer. If $H^i_{I,J}(M) = 0$, for all i > t, then $H^t_{I,J}(M)/\mathfrak{a}H^t_{I,J}(M) = 0$, for any $\mathfrak{a} \in \tilde{W}(I,J)$.

M. Parsa, Sh. Payrovi / Eur. J. Pure Appl. Math, 5 (2012), 55-58

Proof. Let $\mathfrak{a} \in \tilde{W}(I,J)$ be fixed. We prove the claim by using induction on n. If n = 0, then the claim is clear. Assume, inductively, that n > 0 and the result has been proved for any Rmodule of dimension less than n satisfying the hypothesis. Since $H_{I,J}^i(M/\Gamma_{I,J}(M)) \cong H_{I,J}^i(M)$ for all i > 0, by [6, Corollary 1.13(4)], we may assume in addition that $\Gamma_{I,J}(M) = 0$. We have $\Gamma_{\mathfrak{a}}(M) \subseteq \Gamma_{I,J}(M)$, thus $\Gamma_{\mathfrak{a}}(M) = 0$, and therefore \mathfrak{a} contains an element a which is non zero-divisor on M. The exact sequence $0 \to M \xrightarrow{a} M \to M/aM \to 0$ induces the following exact sequence

$$\cdots \to H^{i}_{I,J}(M) \xrightarrow{a} H^{i}_{I,J}(M) \to H^{i}_{I,J}(M/aM) \to H^{i+1}_{I,J}(M) \to \cdots$$

of local cohomology modules. In view of the hypothesis and the above exact sequence, $H_{I,J}^i(M/aM) = 0$ for all i > t. Since *a* is non zero-divisor on *M*, we have dim $M/aM \le n-1$, and therefore the inductive hypothesis implies that $H_{I,J}^t(M/aM)/\mathfrak{a}H_{I,J}^t(M/aM) = 0$. The above exact sequence implies that $H_{I,J}^t(M)/\mathfrak{a}H_{I,J}^t(M) \cong H_{I,J}^t(M/aM)$. Since $a \in \mathfrak{a}$, therefore

$$H_{I_I}^t(M)/\mathfrak{a} H_{I_I}^t(M) \cong H_{I_I}^t(M/aM)/\mathfrak{a} H_{I_I}^t(M/aM).$$

The inductive step is complete. The result follows by induction.

Corollary 1. Let M be a finitely generated module such that $\dim_R M = n$. Then $H^n_{I,J}(M)/\mathfrak{a}H^n_{I,J}(M)$ has finite length, for any $\mathfrak{a} \in \tilde{W}(I,J)$. Specially, $H^n_{I,J}(M)/IH^n_{I,J}(M)$ has finite length.

Proof. Let $\mathfrak{a} \in \tilde{W}(I,J)$ be fixed. If n = 0, then M has finite length and so $\Gamma_{I,J}(M)/\mathfrak{a}\Gamma_{I,J}(M)$ has finite length. Now assume that n > 0. It follows by [6, Theorem 4.7(1)] and Theorem 2, that $H_{I,J}^n(M)/\mathfrak{a}H_{I,J}^n(M) = 0$.

Corollary 2. Let M be finitely generated of finite dimension such that $\dim_{\mathbb{R}} M/JM = d$. Then $H_{I,J}^{d+1}(M)/\mathfrak{a}H_{I,J}^{d+1}(M)$ is finitely generated, for any $\mathfrak{a} \in \tilde{W}(I,J)$. Specially, $H_{I,J}^{d+1}(M)/IH_{I,J}^{d+1}(M)$ is finitely generated.

Proof. Let $\mathfrak{a} \in W(I,J)$ be fixed. If d = -1, then the claim is trivial. Now assume that $d \ge 0$. It follows by [6, Theorem 4.7(2)] and Theorem 2, that $H_{I,J}^{d+1}(M)/\mathfrak{a}H_{I,J}^{d+1}(M) = 0$.

Corollary 3. Let R be local and M a finitely generated module such that $\dim_{\mathbb{R}} M/JM = d$. Then $H^d_{I,J}(M)/\mathfrak{a}H^d_{I,J}(M)$ is finitely generated, for any $\mathfrak{a} \in \tilde{W}(I,J)$. In particular, $H^d_{I,J}(M)/IH^d_{I,J}(M)$ is finitely generated.

Proof. Let $\mathfrak{a} \in \tilde{W}(I,J)$ be fixed. If d = 0, then the claim is trivial. Now assume that d > 0. It follows by [6, Theorem 4.3] and Theorem 2, that $H_{I,J}^d(M)/\mathfrak{a} H_{I,J}^d(M) = 0$.

Proposition 1. Let *R* be local, *M* finitely generated and *t* a non-negative integer. If $H_{I,J}^i(M)$ is finitely generated, for all i > t, then $H_{I,J}^i(M) = 0$, for all i > t.

REFERENCES

Proof. We may assume that $I \neq R$, otherwise $\Gamma_{I,J}$ is identity functor. Proposition 4.10, in [6], says that $H_{I,J}^i(M) = 0$, for all $i > \operatorname{ara}(I\overline{R})$, where $\overline{R} = R/\sqrt{J + \operatorname{Ann}_R(M)}$. Let $s = \operatorname{ara}(I\overline{R})$. When $t \geq s$, there is nothing to prove. Now, assume that t < s. In view of Theorem 2, we have $H_{I,J}^s(M)/IH_{I,J}^s(M) = 0$, so Nakayama's Lemma shows that $H_{I,J}^s(M) = 0$. By keeping this process, we deduce that $H_{I,J}^i(M) = 0$, for all i > t.

Corollary 4. Let *R* be local with dim R/I + J = 0 and *M* finitely generated. Then $H_{I,J}^d(M)$ is not finitely generated, where dim_{*R*} M/JM = d > 0.

Proof. Note that $\sup\{i : H_{I,J}^i(M) \neq 0\} = d$, by [6, Theorem 4.5]. Now the claim follows by Proposition 1.

References

- [1] M Brodmann and R Sharp. *Local Cohomology: An Algebraic Introduction with Geometric Applications*, Cambridge University Press, Cambridge, 1998.
- [2] L Chu. Top local cohomology modules with respect to a pair of ideals, *Proc. Amer. Math. Soc.*, 139:777-782, 2011.
- [3] L Chu and Q Wang. Some results on local cohomology modules defined by a pair of ideals, *J. Math. Kyoto Univ.*, 49:193-200, 2009.
- [4] L Melkersson. Modules cofinite with respect to an ideal, J. Algebra, 285:649-668, 2005.
- [5] Sh Payrovi and M Parsa. Artinianness of local cohomology modules defined by a pair of ideals, To appear in *Bull. Malays. Math. Sci. Soc. (2)*.
- [6] R Takahashi, Y Yoshino and T Yoshizawa. Local cohomology based on a nonclosed support defined by a pair of ideals, *J. Pure Appl. Algebra*, 213:582-600, 2009.
- [7] A Tehranian and A Talemi. Cofiniteness of local cohomology based on a nonclosed support defined by a pair of ideals, *Bull. Iranian Math. Soc.*, 36:145-155, 2010.