EUROPEAN JOURNAL OF PURE AND APPLIED MATHEMATICS

Vol. 2, No. 1, 2009, (73-84)

ISSN 1307-5543 - www.ejpam.com

Weak forms of ω -open sets and decompositions of continuity

Takashi Noiri¹, Ahmad Al-omari^{2*} and Mohd. Salmi Md. Noorani³

Abstract. In this paper, we introduce some generalizations of ω -open sets and investigate some properties of the sets. Moreover, we use them to obtain decompositions of continuity.

AMS subject classifications: 54C05, 54C08, 54C10

Key words: *b*-open, ω -open, pre- ω -open, α - ω -open, decomposition of continuity.

1. introduction

Throughout this paper, (X, τ) and (Y, σ) stand for topological spaces with no separation axioms assumed unless otherwise stated. For a subset A of X, the closure of A and the interior of A will be denoted by Cl(A) and Int(A), respectively. Let (X, τ) be a space and A a subset of X. A point $x \in X$ is called a condensation point of A if for each $U \in \tau$ with $x \in U$, the set $U \cap A$ is uncountable. A is said to be ω -closed [8] if it contains all its condensation points. The complement of an ω -closed set is said to be ω -open. It is well known that a subset W of a space (X, τ) is ω -open if and only if for each $x \in W$, there exists $U \in \tau$ such that $x \in U$ and U - W is countable. The family of all ω -open sets of a space (X, τ) , denoted by τ_{ω} or $\omega O(X)$, forms a topology on X finer than τ . The ω -closure and ω -interior, that can be defined

¹ 2949-1 Shiokita-cho, Hinagu, Yatsushiro-shi, Kumamoto-ken, 869-5142 Japan

²Department of Mathematics, Faculty of Science, Mu'tah University, P.O.Box 7, Karak-Jordan

³School of mathematical Sciences, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia

^{*}Corresponding author. *Email addresses*: t.noiri@nifty.com (T. Noiri), omarimutah1@yahoo.com (A. Alomari), msn@ukm.my (M. Noorani)

in the same way as Cl(A) and Int(A), respectively, will be denoted by $Cl_{\omega}(A)$ and $Int_{\omega}(A)$, respectively. Several characterizations of ω -closed sets were provided in [2,3,8,9,13].

Definition 1.1. A subset *A* of a space *X* is said to be

- 1. α -open [12] if $A \subseteq Int(Cl(Int(A)))$;
- 2. semi-open [10] if $A \subseteq Cl(Int(A))$;
- 3. pre-open [11] if $A \subseteq Int(Cl(A))$;
- 4. β -open [1] if $A \subseteq Cl(Int(Cl(A)))$;
- 5. *b*-open [5] if $A \subseteq Cl(Int(A)) \cup Int(Cl(A))$.

In this paper we introduce and investigate the new notions called b- ω -open sets , pre- ω -open sets and α - ω -open sets which are weaker than ω -open. Moreover, we use these notions to obtain decompositions of continuity.

2. Weak forms of ω -open sets

In this section we introduce the following notions.

Definition 2.1. A subset *A* of a space *X* is said to be

- 1. α - ω -open if $A \subseteq Int_{\omega}(Cl(Int_{\omega}(A)))$;
- 2. pre- ω -open if $A \subseteq Int_{\omega}(Cl(A))$;
- 3. β - ω -open if $A \subseteq Cl(Int_{\omega}(Cl(A)))$;
- 4. b- ω -open if $A \subseteq Int_{\omega}(Cl(A)) \cup Cl(Int_{\omega}(A))$.

Lemma 2.2. Let (X, τ) be a topological space, then the following properties hold:

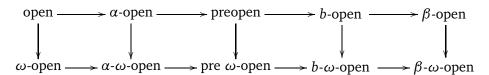
- 1. every ω -open set is α - ω -open.
- 2. every α - ω -open set is pre- ω -open.

- 3. every pre- ω -open set is b- ω -open.
- 4. every b- ω -open set is β - ω -open.

Proof. (1) If A is an ω -open set, then $A = Int_{\omega}(A)$. Since $A \subseteq Cl(A)$, then $A \subseteq Cl(Int_{\omega}(A))$ and $A \subseteq Int_{\omega}(Cl(Int_{\omega}(A)))$. Therefore A is α - ω -open.

- (2) If A is an α - ω -open set, then $A \subseteq Int_{\omega}(Cl(Int_{\omega}(A))) \subseteq Int_{\omega}(Cl(A))$. Therefore A is pre- ω -open.
- (3) If A is pre- ω -open, then $A \subseteq Int_{\omega}(Cl(A)) \subseteq Int_{\omega}(Cl(A)) \cup Cl(Int_{\omega}(A))$. Therefore, A is b- ω -open.
- (4) If A is b- ω -open, then $A \subseteq Int_{\omega}(Cl(A)) \cup Cl(Int_{\omega}(A)) \subseteq Cl(Int_{\omega}(Cl(A))) \cup Cl(Int_{\omega}(A)) \subseteq Cl(Int_{\omega}(Cl(A)))$. Therefore A is β - ω -open.

Since every open set is ω -open, then we have the following diagram for properties of subsets.



The converses need not be true as shown by the following examples.

Example 2.3. Let $X = \{a, b, c\}$ and $\tau = \{X, \phi, \{a\}, \{b\}, \{a, b\}\}$. Then $\{c\}$ is an ω -open (since X is a countable set) set but it is not β -open.

Example 2.4. Let $X = \mathbb{R}$ with the usual topology τ . Let $A = \mathbb{Q} \cap [0,1]$. Then A is a β -open set which is not b- ω -open.

Example 2.5. Let $X = \mathbb{R}$ with the usual topology τ . Let A = (0,1]. Then A is a b-open set which is not pre- ω -open.

Example 2.6. Let $X = \mathbb{R}$ with the usual topology τ . Let $A = \mathbb{Q}$ be the set of all rational numbers. Then A is a preopen set which is not α - ω -open.

Example 2.7. Let X be an uncountable set and let A, B, C and D be subsets of X such that each of them is uncountable and the family $\{A, B, C, D\}$ is a partition of X. We defined the topology

 $\tau = {\phi, X, \{A\}},$

 $\{B\}, \{A, B\}, \{A, B, C\}\}$. Then $\{A, B, D\}$ is an α -open set which is not ω -open.

Lemma 2.8. [7] If U is an open set, then $Cl(U \cap A) = Cl(U \cap Cl(A))$ and hence $U \cap Cl(A) \subseteq Cl(U \cap A)$ for any subset A.

Theorem 2.9. If A is a pre- ω -open subset of a space (X, τ) such that $U \subseteq A \subseteq Cl(U)$ for a subset U of X, then U is a pre- ω -open set.

Proof. Since $A \subseteq Int_{\omega}(Cl(A))$, $U \subseteq Int_{\omega}(Cl(A))$. Also $Cl(A) \subseteq Cl(U)$ implies that $Int_{\omega}(Cl(A)) \subseteq Int_{\omega}(Cl(U))$. Thus $U \subseteq Int_{\omega}(Cl(A))$ $\subseteq Int_{\omega}(Cl(U))$ and hence U ia a pre- ω -open set.

Theorem 2.10. A subset A of a space (X, τ) is semi-open if and only if A is β - ω -open and $Int_{\omega}(Cl(A)) \subseteq Cl(Int(A))$.

Proof. Let A be semi-open. Then $A \subseteq Cl(Int(A)) \subseteq Cl(Int_{\omega}(Cl(A)))$ and hence A is β - ω -open. In addition $Cl(A) \subseteq Cl(Int(A))$ and hence $Int_{\omega}(Cl(A)) \subseteq Cl(Int(A))$. Conversely let A be β - ω -open and $Int_{\omega}(Cl(A))$

 $\subseteq Cl(Int(A))$. Then $A \subseteq Cl(Int_{\omega}(Cl(A))) \subseteq Cl(Cl(Int(A))) = Cl(Int(A))$. And hence A is semi-open.

Proposition 2.11. The intersection of a pre- ω -open set and an open set is pre- ω -open.

Proof. Let A be a pre- ω -open set and U be an open set in X. Then $A \subseteq Int_{\omega}(Cl(A))$ and $Int_{\omega}(U) = U$, by Lemma 2.8, we have $U \cap A \subseteq Int_{\omega}(U) \cap Int_{\omega}(Cl(A)) \subseteq Int_{\omega}(U \cap Cl(A))$. Therefore, $A \cap U$ is pre- ω -open.

Proposition 2.12. The intersection of a β - ω -open set and an open set is β - ω -open.

Proof. Let U be an open set and A a β - ω -open set. Since every open set is ω -open, by

Lemma 2.8, we have

$$\begin{split} U \cap A &\subseteq U \cap Cl(Int_{\omega}(Cl(A))) \\ &\subseteq Cl(U \cap Int_{\omega}(Cl(A))) \\ &= Cl(Int_{\omega}(U) \cap Int_{\omega}(Cl(A))) \\ &= Cl(Int_{\omega}(U \cap Cl(A))) \\ &\subseteq Cl(Int_{\omega}(Cl(U \cap A))). \end{split}$$

This shows that $U \cap A$ is β - ω -open.

We note that the intersection of two pre- ω -open (resp. b- ω -open, β - ω -open) sets need not be pre- ω -open (resp. b- ω -open, β - ω -open) as can be seen from the following example:

Example 2.13. Let $X = \mathbb{R}$ with the usual topology τ . Let $A = \mathbb{Q}$ and $B = (\mathbb{R} \setminus \mathbb{Q}) \cup \{1\}$, then A and B are pre- ω -open, but $A \cap B = \{1\}$ which is not β - ω -open since $Cl(Int_{\omega}(Cl(\{1\}))) = Cl(Int_{\omega}(\{1\})) = Cl(\{\phi\}) = \phi$.

Proposition 2.14. The intersection of a b- ω -open set and an open set is b- ω -open.

Proof. Let A be b- ω -open and U be open, then $A \subseteq Int_{\omega}(Cl(A)) \cup Cl(Int_{\omega}(A))$ and $U = Int_{\omega}(U)$. Then we have

$$\begin{split} U \cap A &\subseteq U \cap [Int_{\omega}(Cl(A)) \cup Cl(Int_{\omega}(A))] \\ &= [U \cap Int_{\omega}(Cl(A))] \cup [U \cap Cl(Int_{\omega}(A))] \\ &= [Int_{\omega}(U) \cap Int_{\omega}(Cl(A))] \cup [U \cap Cl(Int_{\omega}(A))] \\ &\subseteq [Int_{\omega}(U \cap Cl(A))] \cup [Cl(U \cap Int_{\omega}(A))] \\ &\subseteq [Int_{\omega}(Cl(U \cap A))] \cup [Cl(Int_{\omega}(U \cap A))]. \end{split}$$

This shows that $U \cap A$ is b- ω -open.

Proposition 2.15. The intersection of an α - ω -open set and an open set is α - ω -open.

Theorem 2.16. If $\{A_{\alpha} : \alpha \in \Delta\}$ is a collection of b- ω -open (resp. pre- ω -open, β - ω -open) sets of a space (X, τ) , then $\cup_{\alpha \in \Delta} A_{\alpha}$ is b- ω -open (resp. pre- ω -open, β - ω -open).

Proof. We prove only the first case since the other cases are similarly shown. Since $A_{\alpha} \subseteq Int_{\omega}(Cl(A_{\alpha})) \cup Cl(Int_{\omega}(A_{\alpha}))$ for every $\alpha \in \Delta$, we have

$$\begin{split} \cup_{\alpha \in \Delta} A_{\alpha} &\subseteq \cup_{\alpha \in \Delta} [Int_{\omega}(Cl(A_{\alpha})) \cup Cl(Int_{\omega}(A_{\alpha}))] \\ &\subseteq [\cup_{\alpha \in \Delta} Int_{\omega}(Cl(A_{\alpha}))] \cup [\cup_{\alpha \in \Delta} Cl(Int_{\omega}(A_{\alpha}))] \\ &\subseteq [Int_{\omega}(\cup_{\alpha \in \Delta} Cl(A_{\alpha}))] \cup [Cl(\cup_{\alpha \in \Delta} Int_{\omega}(A_{\alpha}))] \\ &\subseteq [Int_{\omega}(Cl(\cup_{\alpha \in \Delta} A_{\alpha}))] \cup [Cl(Int_{\omega}(\cup_{\alpha \in \Delta} A_{\alpha}))]. \end{split}$$

Therefore, $\bigcup_{\alpha \in \Delta} A_{\alpha}$ is b- ω -open.

Proposition 2.17. Let A be a b- ω -open set such that $Int_{\omega}(A) = \phi$. Then A is pre- ω -open.

A space (X, τ) is called a door space if every subset of X is open or closed.

Proposition 2.18. *If* (X, τ) *is a door space, then every pre-\omega-open set is \omega-open.*

Proof. Let *A* be a pre- ω -open set. If *A* is open, then *A* is ω -open. Otherwise, *A* is closed and hence $A \subseteq Int_{\omega}(Cl(A)) = Int_{\omega}(A) \subseteq A$. Therefore, $A = Int_{\omega}(A)$ and thus *A* is an ω -open set.

A topological space X is said to be anti-locally countable [4] if every non-empty open set is uncountable.

Lemma 2.19. [4] If (X, τ) is an anti-locally countable space, then $Int_{\omega}(A) = Int(A)$ for every ω -closed set A of X and $Cl_{\omega}(A) = Cl(A)$ for every ω -open set A of X.

Theorem 2.20. Let (X, τ) be an anti-locally countable space and A a subset of X. Then, the following properties hold:

- 1. if A is pre- ω -open, then it is pre-open.
- 2. if A is b- ω -open and ω -closed, then it is b-open.
- 3. if A is β - ω -open, then it is β -open.

Proof. (1) Let A be a pre- ω -open set. Then by Lemma $2.19 A \subseteq Int_{\omega}(Cl(A)) = Int(Cl(A))$ since every closed set is ω -closed.

- (2) Let A be a b- ω -open and ω -closed set. By Lemma 2.19, we have $Int_{\omega}(Cl(A)) = Int(Cl(A))$, $Cl(Int_{\omega}(A)) = Cl(Int(A))$ and hence $A \subseteq Int_{\omega}(Cl(A)) \cup Cl(Int_{\omega}(A)) = Int(Cl(A)) \cup Cl(Int(A))$. This shows that A is b-open.
- (3) Let A be a β - ω -open set. Then, by Lemma 2.19, we have $A \subseteq Cl(Int_{\omega}(Cl(A))) = Cl(Int(Cl(A)))$ and hence A is β -open.

3. Decompositions of continuity

Definition 3.1. A subset *A* of a space *X* is called

- 1. an ω -t-set if $Int(A) = Int_{\omega}(Cl(A))$;
- 2. an ω -*B*-set if $A = U \cap V$, where $U \in \tau$ and V is an ω -*t*-set.

Proposition 3.2. Let A and B be subsets of a space (X, τ) . If A and B are ω -t-sets, then $A \cap B$ is an ω -t-set.

Proof. Let *A* and *B* be ω -*t*-sets. Then we have

$$\begin{split} Int(A \cap B) &\subseteq Int_{\omega}(Cl(A \cap B)) \\ &\subseteq (Int_{\omega}(Cl(A)) \cap (Cl(B))) \\ &= Int_{\omega}(Cl(A) \cap Int_{\omega}(Cl(B))) \\ &= Int(A) \cap Int(B) \\ &= Int(A \cap B). \end{split}$$

Then $Int(A \cap B) = Int_{\omega}(Cl(A \cap B))$ and hence $A \cap B$ is an ω -t-set.

From the following examples one can deduce that a pre- ω -open set and an ω -B-set are independent.

Example 3.3. Let $X = \mathbb{R}$ with the usual topology τ . Then $\mathbb{R} \setminus \mathbb{Q}$ is pre- ω -open but it is not an ω -B-set and (0,1] is an ω -B-set which is not pre- ω -open.

Proposition 3.4. For a subset A of a space (X, τ) , the following properties are equivalent:

- 1. A is open;
- 2. A is pre- ω -open and an ω -B-set.

Proof. (1) \Rightarrow (2): Let A be open. Then $A = Int(A) \subseteq Int_{\omega}(Cl(A))$ and A is pre- ω -open. Also $A = A \cap X$ and hence A is an ω -B-set.

(2) \Rightarrow (1): Since A is an ω -B-set, we have $A = U \cap V$, where U is an open set and $Int(V) = Int_{\omega}(Cl(V))$. By the hypothesis, A is also pre- ω -open and we have

$$\begin{split} A &\subseteq Int_{\omega}(Cl(A)) \\ &= Int_{\omega}(Cl(U \cap V)) \\ &\subseteq Int_{\omega}(Cl(U) \cap Cl(V)) \\ &= Int_{\omega}(Cl(U)) \cap Int_{\omega}(Cl(V)) \\ &= Int_{\omega}(Cl(U)) \cap Int(V). \end{split}$$

Hence

$$A = U \cap V = (U \cap V) \cap U$$

$$\subseteq (Int_{\omega}(Cl(U)) \cap Int(V)) \cap U$$

$$= (Int_{\omega}(Cl(U)) \cap U) \cap Int(V)$$

$$= U \cap Int(V).$$

Therefore, $A = (U \cap V) = (U \cap Int(V))$ and A is open.

Definition 3.5. A subset *A* of a space *X* is called

- 1. an ω - t_{α} -set if $Int(A) = Int_{\omega}(Cl(Int_{\omega}(A)))$;
- 2. an ω - B_{α} -set if $A = U \cap V$, where $U \in \tau$ and V is an ω - t_{α} -set.

Proposition 3.6. Let A and B be subsets of a space (X, τ) . If A and B are ω - t_{α} -sets, then $A \cap B$ is an ω - t_{α} -set.

Proof. Let *A* and *B* be ω - t_{α} -sets. Then we have

$$\begin{split} Int(A \cap B) &\subseteq Int_{\omega}(Cl(Int_{\omega}(A \cap B))) \\ &\subseteq (Int_{\omega}(Cl(Int_{\omega}(A))) \cap (Cl(Int_{\omega}(B)))) \\ &= Int_{\omega}(Cl(Int_{\omega}(A)) \cap Int_{\omega}(Cl(Int_{\omega}(B))) \\ &= Int(A) \cap Int(B) \\ &= Int(A \cap B). \end{split}$$

Then $Int(A \cap B) = Int_{\omega}(Cl(Int_{\omega}(A \cap B)))$ and hence $A \cap B$ is an ω - t_{α} -set.

From the following examples one can deduce that an α - ω -open set and an ω - B_{α} -set are independent.

Example 3.7. Let $X = \mathbb{R}$ with the usual topology τ . Then $\mathbb{R} \setminus \mathbb{Q}$ is α - ω -open but it is not an ω - B_{α} -set and (0,1] is an ω - B_{α} -set which is not α - ω -open.

Proposition 3.8. For a subset A of a space (X, τ) , the following properties are equivalent:

- 1. A is open;
- 2. A is α - ω -open and an ω - B_{α} -set.

Proof. (1) \Rightarrow (2): Let A be open. Then $A = Int_{\omega}(A) \subseteq Cl(Int_{\omega}(A))$ and $A = Int_{\omega}(A) \subseteq Int_{\omega}(Cl(Int_{\omega}(A)))$. Therefore A is α - ω -open. Also $A = A \cap X$ and hence A is an ω - B_{α} -set. (2) \Rightarrow (1): Since A is an ω - B_{α} -set, we have $A = U \cap V$, where U is an open set and $Int(V) = Int_{\omega}(Cl(Int_{\omega}(V)))$. By the hypothesis, A is also α - ω -open, and we have

$$\begin{split} A &\subseteq Int_{\omega}(Cl(Int_{\omega}(A))) \\ &= Int_{\omega}(Cl(Int_{\omega}(U \cap V)) \\ &\subseteq Int_{\omega}(Cl(Int_{\omega}(U) \cap Cl(Int_{\omega}(V)))) \\ &= Int_{\omega}(Cl(U)) \cap Int_{\omega}(Cl(Int_{\omega}(V))) \\ &= Int_{\omega}(Cl(U)) \cap Int(V). \end{split}$$

Hence,

$$A = U \cap V = (U \cap V) \cap U$$

$$\subseteq (Int_{\omega}(Cl(U)) \cap Int(V)) \cap U$$

$$= (Int_{\omega}(Cl(U)) \cap U) \cap Int(V)$$

$$= U \cap Int(V).$$

Therefore, $A = (U \cap V) = (U \cap Int(V))$ and A is open.

Definition 3.9. A subset A of a space X is called an ω -set if $A = U \cap V$, where $U \in \tau$ and $Int(V) = Int_{\omega}(V)$.

From the following examples one can deduce that an ω -open set and an ω -set are independent.

Example 3.10. Let $X = \mathbb{R}$ with the usual topology τ . Then $\mathbb{R} \setminus \mathbb{Q}$ is ω -open but it is not an ω -set and $A = (0,1) \cap \mathbb{Q}$ is an ω -set which is not ω -open.

Proposition 3.11. For a subset A of a space (X, τ) , the following properties are equivalent:

- 1. A is open;
- 2. A is ω -open and an ω -set.

Proof. (1) \Rightarrow (2): This is obvious.

(2) \Rightarrow (1): Since A is an ω -set, we have $A = U \cap V$, where U is an open set and $Int(V) = Int_{\omega}(V)$. By the hypothesis, A is also ω -open and we have $A = Int_{\omega}(A) = Int_{\omega}(U \cap V) = Int_{\omega}(U) \cap Int_{\omega}(V) = U \cap Int(V)$. Therefore, A is open.

Definition 3.12. A function $f: X \to Y$ is said to be ω-continuous [9] (resp. pre-ω-continuous, ω-*B*-continuous, α-ω-continuous, ω-*B*_α-continuous, ω*-continuous) if $f^{-1}(V)$ is ω-open (resp. pre-ω-open, an ω-*B*-set, α-ω-open, an ω-*B*_α-set, an ω-set) for each open set V in Y.

By Propositions 3.4, 3.8 and 3.11 we have an immediate result.

Theorem 3.13. For a function $f: X \to Y$, the following properties are equivalent:

- 1. f is continuous;
- 2. f is pre- ω -continuous and ω -B-continuous;
- 3. f is α - ω -continuous and ω - B_{α} -continuous;
- 4. f is ω -continuous and ω^* -continuous.

Proposition 3.14. For a subset A of an anti-locally countable space (X, τ) , the following properties are equivalent:

- 1. A is regular open;
- 2. $A = Int_{\omega}(Cl(A));$
- 3. A is pre- ω -open and an ω -t-set.

Proof. (1) \Rightarrow (2): Let *A* be regular open. Then by Lemma 2.19, we have $Int_{\omega}(Cl(A)) = Int(Cl(A)) = A$.

- $(2) \Rightarrow (3)$: The proof is obvious.
- (3) \Rightarrow (1): Let A be pre- ω -open and an ω -t-set. Then $A \subseteq Int_{\omega}(Cl(A)) = Int(A) \subseteq A$ and hence $A = Int_{\omega}(Cl(A)) = Int(Cl(A))$.

Definition 3.15. A function $f: X \to Y$ is said to be completely continuous [6] (resp. ω -t-continuous) if $f^{-1}(V)$ is regular open (resp. an ω -t-set) in X for each open set V of Y.

Theorem 3.16. Let (X, τ) be an anti-locally countable space. A function $f: X \to Y$ is completely continuous if and only if f is pre- ω -continuous and ω -t-continuous.

Proof. This is an immediate consequence of Proposition 3.14.

ACKNOWLEDGEMENTS. This work is financially supported by the Ministry of Higher Education, Malaysia under FRGS grant no: UKM-ST-06-FRGS0008-2008.

REFERENCES 84

References

- [1] M. E. Abd El-Monsef, S. N. El-Deeb and R. A. Mahmoud, " β -open sets and β -continuous mappings", *Bull. Fac. Sci. Assuit Univ.* **12**: 77-90 (1983).
- [2] A. Al-omari and M. S. M. Noorani, "Regular generalized ω-closed sets", *Internat. J. Math. Math. Sci.*, Volume 2007. Article ID 16292, 11 pages, doi: 10.1155/2007/16292.
- [3] A. Al-Omari and M. S. M. Noorani, "Contra-ω-continuous and almost contra-ω-continuous", *Internat. J. Math. Math. Sci.*, Volume 2007. Article ID 40469, 13 pages. doi:10.1155/2007/40469
- [4] K. Al-Zoubi and B. Al-Nashef, "The topology of ω -open subsets", *Al-Manareh* **9** (2): 169-179 (2003).
- [5] D. Andrijević, "On *b*-open sets", *Mat. Vesnik* **48**: 59-64 (1996).
- [6] S. P. Arya and R. Gupta, "On strongly continuous mappings", *Kyungpook Math. J.* **14**: 131-143 (1974).
- [7] R. Engelking, General Topology, Heldermann Veriag Berlin, 2nd edition, 1989.
- [8] H. Z. Hdeib, " ω -closed mappings", Rev. Colomb. Mat. **16** (3-4): 65-78 (1982).
- [9] H. Z. Hdeib, " ω -continuous functions", *Dirasat* **16**, (2): 136-142 (1989).
- [10] N. Levine, "Semi-open sets and semi-continuity in topological spaces", *Amer. Math. Monthly* **70**: 36-41 (1963).
- [11] A. S. Mashhour, M. E. Abd El-Monsef and S. N. El-Deeb, "On precontinuous and weak precontinuous functions", *Proc. Math. Phys. Soc. Egypt* **51**: 47-53 (1982).
- [12] O. Njåstad, "On some classes of nearly open sets", Pacific J. Math. 15: 961-970 (1965.
- [13] T. Noiri, A. Al-omari and M.S.M. Noorani "Slightly ω -continuous functions" *Fasciculi Mathematica* **41**: 97-106 (2009).