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Abstract. A common problem in structural equation modeling is that of model selection. Many re-

searchers have addressed this problem, but many methods have provided mixed benefits until recently.

Akaike’s well-known criteria, AIC , has been applied in the context of structural equation modeling, but

the effectiveness of many other information criteria have not been studied in a convincing manner. In

this paper, we compare the SEM model selection prowess of several AIC-type and ICOM P-type crite-

ria. We also introduce two new large sample consistent forms of Bozdogan’s ICOM P criteria - one of

which is robust to model misspecification.

To study the empirical performance of the information criteria, we use a well-known SEM simulation

protocol, and demonstrate that most of the information-theoretic criteria select the “pseudo true”

model with very high frequencies. We also demonstrate, however, that the performance of AIC is

inversely related to the sample size. Finally, we apply the new criteria to select an analytical model

for a real dataset from a retail marketing study of consumer behavior. Our results show the versatility

of the new proposed method where both the goodness-of fit and the complexity of the model is taken

into account in one criterion function.
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1. Introduction

Structural Equation Modeling (SEM) has been a popular tool in social and behavioral

sciences since the early 1990’s for the causal modeling of complex, multivariate data sets.

Presently, it has penetrated engineering, management and information sciences, and genomic

research, to mention a few. It has changed the perspective of researchers on how to do

good statistical modeling and model selection. It has also fostered the curiosity of social
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scientists about the underlying constructs or factors in many applications. According to [11],

the SEM approach has been regarded, perhaps, as the most significant and effective statistical

revolution in social sciences.

In SEM one of the fundamental problems is how to evaluate different models and how to

select among the rival models [18]. In the literature of SEM, there are many alternative fit

indices available to the researchers. An excellent recent book by [22], “Linear Causal Mod-

eling with Structural Equations” devotes a fair amount of discussion on many goodness-of-fit

indices. Mulaik [22] further discusses information theoretic measures of model discrepancy

such as AIC, see, e.g., [1, 2, 27, 4]. He devotes a section on the information theoretic mea-

sure of complexity (ICOMP) developed in [6, 7]. However, [22] does not provide numerical

examples or evaluate the empirical performance of these model selection criteria in the SEM

framework.

The first author in [14], evaluated the performance of several information criteria for

measurement models and SEMs. In this paper, our objective is to to extend that research

and to present some new results on ICOMP which is consistent with respect to sample size

and robustness against model misspecification in SEM and in other high dimensional model

fitting.

Therefore, in this paper we revisit and discuss information criteria used to gauge model fit

in structural equation modeling (SEM). This is based on the objective that statistical methods

of fit are related to sample size, any statistical test is increasingly likely to imply rejection of a

model as sample size increases, even if model misfit is trivial in magnitude. Various practical

fit indices have been proposed over the years - and information criteria are among the most

widely used. We review prior information criteria, and propose a couple of new information

criteria based on information measure of complexity of a covariance matrix called ICOM P-

type criteria.

We demonstrate the empirical performance of ICOM P-type criteria along with AIC , Con-

sistent Akaike Information Criterion (CAIC), Consistent Akaike Information Criterion with

Fisher Information (CAIC F) both due to [4], and a Bayesian Model Selection (BMS) crite-

rion developed by [10].

The rest of the paper is organized as follows. Section 2 provides the requisite background

on SEM, which is then followed by Section 3 regarding AIC-type and ICOM P-type criteria

for model selection. Here, we define ICOM P under the correct and misspecified models.

The basic idea is that one can use the difference between ICOMP(misspecified model) and

ICOMP(correctly specified model) as an indication of possible departures from the distribu-

tional form of the model. This brings out the most important weakness of Akaike-type criteria

for model selection, that AIC depends crucially on the assumption that the specified family

of models includes the pseudo true model. In general, this may not be the case. Finally, re-

sults with both simulated and real datasets are shown in Section 5. Our simulation results

are based on three models based on a slight modification of Fan’s simulation protocol [15] to

achieve convergence in LISREL.
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2. Structural Equation Model with Latent Variables

General SEMs consist of two models referred to as measurement and structural equation

(or latent variable) models. The structural equation model defines relationship between la-

tent variables. This model is a path model adapted to latent variables. The measurement

model is a confirmatory factor (CF) model which defines relationship between observed and

latent variables. Latent variables in the measurement model are the factors in the CF model.

Following [19] in matrix notation, we define the general SEM model with these two models

by three equations:

Structural Equation model: η
(r×1)

= Bη
(r×r)(r×1)

+ Γξ
(r×s)(s×1)

+ ζ
(r×1)

Measurement model for y: y
(p×1)

= Λyη
(p×r)(r×1)

+ ǫ
(p×1)

Measurement model for x : x
(q×1)

= Λxξ
(q×s)(s×1)

+ δ
(q×1)

where η is a (r×1) vector of latent endogenous (or dependent) variables, ξ is (s×1) vector of

latent exogenous (or independent) variables, ζ is (r × 1) vector of latent errors in equations,

β is an (r × r) coefficient matrix for the latent endogenous variables, and Γ is a (r × s) co-

efficient matrix for the latent exogenous variables. The structural model specifies the causal

relationships among the latent endogenous variables in β , between the exogenous and en-

dogenous variables in Γ, and describes unexplained residuals of the latent factors in ζ. The

usual assumptions for the structural model are that:

E(η) = E(ξ) = E(ζ) = 0, ζ is uncorrelated with ξ, and (I −β) is nonsingular. The covariance

matrix,

E(ξξ′) = Φ, (1)

is an (s× s) covariance matrix of the latent exogenous variables, and

E(ζζ′) = Ψ (2)

is an (r × r) covariance matrix of the latent errors in equations. The measurement model

specifies how the observed variables, x and y, are determined through Λx and Λy by the

latent variables, ξ and η, respectively. The ǫ and δ terms represent the residuals in x and y

unexplained by ξ and η. The usual assumptions for the measurement model are:

E(η) = E(ξ) = E(ǫ) = E(δ) = 0 . Furthermore, ǫ is uncorrelated with ξ, η and δ. Likewise,

δ is uncorrelated with ξ, η and ǫ. The covariances matrices in the case of the measurement

model are:

E(ǫǫ′) = Θǫ = Σ(ǫ), (3)

a (p× p) covariance matrix of ǫ, and

E(δδ′) = Θδ = Σ(δ), (4)

a (q× q) covariance matrix of δ.
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According to the measurement and structural equation models, the implied full covariance

matrix, Σ(θ), for the general SEM is given by

Σ(θ) =

�
Λy(I − B)−1(ΓΦΓ′ +Ψ)[(I − B)−1]′Λ′y +Θε Λy(I − B)−1ΓΦΛ′x

(Λy(I − B)−1ΓΦΛ′x )
′ ΛxΦΛ

′
x +Θδ

�
. (5)

The elements of the general implied covariance matrix are functions of B, Γ, Λy , Λx , Φ, Ψ, Θε
and Θδ. To be able to use SEM, we need to specify the pattern of the elements of these eight

matrices. There are three kinds of specifications. These are:

• Fixed parameters- that have been assigned specific values,

• Constrained parameters- that are unknown but equal to one or more other parameters,

and

• Free parameters- that are unknown and not constrained to be equal to any other pa-

rameter.

For more on these, see [3, 19], and others.

The fundamental hypothesis for these structural equations procedures is that the covari-

ance matrix of the observed variables is a function of a set of parameters. If the model is

correct and if we know the parameters, then the population covariance matrix can be exactly

reproduced. The hypothesis in this case is:

Σ = Σ(θ). (6)

In (6), Σ is the population covariance matrix of the observed variables, θ is a vector containing

the free parameters of the model, and Σ(θ) is the covariance matrix written as a function of

the covariance matrix implied by a specific model [3].

3. Information Theoretic Model Selection Criteria

One of the fundamental difficulties in statistical analysis and data mining is the choice of

an appropriate model, estimating and determining the order or dimension of a model. In gen-

eral statistical modeling and model evaluation problems, the concept of information theoretic

measure of complexity plays an important role. At the philosophical level, complexity involves

notions such as connectivity patterns and the interactions of model components. Without a

measure of overall model complexity, prediction of model behavior and assessing model quality

is difficult. This requires detailed statistical analysis and computation to choose the best fitting

model among a portfolio of competing models for a given finite sample [4].

Based on Akaike’s AIC , many model-selection procedures that take the form of a penalized

likelihood plus a penalty term) have been proposed.

For a general multivariate linear or nonlinear model defined by

Statistical model = Signal + N oise (7)
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a summary diagram for AIC and ICOMP in terms of a loss function is give by

Loss =
Lack of Fit

+Lack of Parsimony

«
−→ AIC

+Profusion of Complexity




−→ ICOM P

3.1. Akaike-Type Information Criteria

Since Akaike (1973), entropic information criteria has had a substantial impact in statis-

tical model evaluation problems. Its introduction furthered the recognition of the importance

of good modeling and model fitting in the statistical science. As a result, many important

statistical modeling techniques have been developed in various fields of statistics such as in

biostatistics, control theory, econometrics, engineering, medical data mining, psychometrics,

and many others.

Akaike Information Criterion (AIC)

AIC , which is one of the first information criterion developed by Akaike, can be thought of

as a generalized form of the maximum likelihood. AIC can be formulated as maximizing

generalized entropy, or equivalently minimizing Kullback-Leibler (KL) information. See, e.g.

[21], and [20]. It is obtained from asymptotic unbiased estimation of the logarithm of the

average expected likelihood of a model and it is defined by

AIC = −2 log L(bθk) + 2k, (8)

where θ is a k-dimensional unknown parameter vector, bθ , denotes the maximum likelihood

estimator of θ , L(bθ ), is the maximized likelihood function of the model, and k is the number

of unknown parameters estimated in the model.

Consistent Akaike Information Criterion (CAIC)

Without violating Akaike’s principles and using the results in mathematical statistics, Bozdo-

gan [4] extended AIC analytically in two ways. These extensions make AIC asymptotically

consistent, and penalize overparameterization more stringently, so as to pick the simplest of

the true models whenever there is nothing to be lost in doing so. CAIC is defined by

CAIC = −2 log L(bθk) + k(log(n) + 1). (9)

Using a correction factor based on the sample size (n) CAIC is an attempt to overcome the

tendency of the AIC in overestimating the complexity (i.e., number of parameters) of the

underlying model [17].
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Consistent Akaike Information Criterion with Fisher Information (CAICF)

Also in [4], a different estimator for negative twice the expected entropy was proposed. Sim-

ilar to CAIC , this approach extends AIC analytically to make it consistent without deviat-

ing from Akaike’s original premise. In this manner [4] penalizes overparameterization more

strongly, in particular, in large samples. CAIC F is defined by

CAIC F = −2 log L(bθ) + k(log(n)+ 2)+ log |F̂ |, (10)

where F̂ is the estimated Fisher information matrix (FIM) of the model.

Bayesian Model Selection Criterion (BMS)

Bozdogan and Ueno [10] provided yet a further extension of AIC called Bayesian Model

Selection Criterion (BMS), given by

BMS = −2 log L(bθ ) + k log(n)+ 2(
nk

n− k− 2
) + log |F̂ |. (11)

As we note, these extended forms AIC all attempt to repair the inconsistency problem of the

AIC .

3.2. The General Form of Information Complexity: ICOMP

Motivated from considerations similar to those in AIC , here we give details a new entropic

or information-theoretic measure of complexity called ICOM P of [6, 7, 9] as a decision rule for

model selection in SEM.

The development and construction of ICOM P is based on a generalization of the covari-

ance complexity index originally introduced in [29]. Instead of penalizing the number of free

parameters directly, ICOM P penalizes the covariance complexity of the model. It is defined

by

ICOM P = −2 log L(θ̂k) + 2C(ÔCov(θ̂k)), (12)

where L(θ̂k) is the maximized likelihood function, θ̂k is the maximum likelihood estimate of

the parameter vector θk under the model Mk with k unknown parameter, and C represents a

real-valued complexity measure.

As explained in [7, 8, 9], there are several forms and theoretical justifications of ICOM P.

For brevity, here, we will recapitulate and use one of the most general forms of ICOM P

referred to as ICOM P(I F IM). ICOM P(I F IM) exploits the well-known asymptotic optimality

properties of the maximum likelihood estimators (MLEs), and uses the information-based

complexity of the estimated inverse-Fisher information matrix (I F IM or F̂−1) of a model.

This is known as the Cramér-Rao lower bound (CRLB) matrix. See, e.g., [12] and [23, 24, 25].

As such, ICOM P(I F IM) is an approximation to the sum of two KL distances. This approach

provides us an achievable accuracy of the parameter estimates of the model by considering

the entire parameter space.
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For a multivariate normal linear or nonlinear structural model we define the general form

of ICOM P(I F IM) as

ICOM P(F̂−1) = −2 log L(θ̂k) + 2C1(F̂
−1), (13)

where C1 denotes the maximal informational complexity of F̂−1 and is given by

C1(F̂
−1) =

s

2
log[

t r(F̂−1)

s
]−

1

2
log |F̂−1|, (14)

and where s = dim(F̂−1) = rank(F̂−1).

The first component of ICOM P(I F IM) measures the lack of fit of the model, and the

second component measures the complexity of the accuracy of the estimated parameters and

implicitly adjusts for the number of free parameters included in the model. It is a measure

of the state of disorder of a model for a given data set. For more on this, and for some

immediate physical motivation, we refer the readers to the interesting book by [16], entitled

“Physics from Fisher Information.”

The trace of I F IM in the complexity measure involves only the diagonal elements anal-

ogous to variances while the determinant involves also the off-diagonal elements analogous

to covariances. Therefore, ICOM P(I F IM) contrasts the trace and the determinant of I F IM ,

and this amounts to a comparison of the geometric and arithmetic means of the eigenvalues

of I F IM given by

ICOM P(F̂−1) = −2 log L(θ̂k) + s log
�
λa/λg

�
. (15)

We note that ICOM P(I F IM) now looks in appearance like the CAIC , M DL [26], and the

Bayesian criterion SBC [28], except for using log
�
λa/λg

�
instead of using log(n), where

log(n) denotes the natural logarithm of the sample size n. In this sense, ICOM P(I F IM)

resembles a penalized likelihood method similar to AIC and AIC-type criteria, except that the

penalty depends on the curvature of the log likelihood function via the scalar C1 complexity

value of the estimated I F IM .

3.3. Consistent and Misspecification Forms of ICOMP

Bozdogan [9] suggested several other different approaches to generalize and derive the

ICOM P criteria by maximizing the posterior expected utility (PEU) when the models are mis-

specified (which is the case in practice). Here, we give derived forms of these generalized

ICOM P criteria as follows.

ICOM P
�
F̂−1
�

PEU_Miss
= −2 log L
�
θ̂
�
+ k+ 2
�

t r
�
F̂−1R̂
�
+ C1

�
F̂−1
��

(16)

In (16), whereas F̂−1 is I F IM in inner-product form, R̂ is I F IM in outer-product form. If the

model is correctly specified, these two forms of Fisher information matrices would be equal

to one another. That is, if F̂−1 = R̂ , then t r(F̂−1R̂) = t r
�

Ik

�
= k. In this case, we have

ICOM P
�
F̂−1
�

PEU
= −2 log L(θ̂ ) + 3k+ 2C1(F̂

−1)



E. Howe, H. Bozdogan, G. Kıroğlu / Eur. J. Pure Appl. Math, 5 (2012), 282-301 289

= AIC3 + 2C1(F̂
−1) (17)

Bozdogan [9] approximates the term t r(F̂−1R̂) in equation (16) by

t r
�
F̂−1R̂
�
=

nk

n− k− 2

which corrects the bias for small as well as large sample sizes. Thus, equation (16) reduces to

ICOM P
�
F̂−1
�

PEU_Miss
= −2 log L(θ̂ ) + k+ 2(

nk

n− k− 2
) + 2C1(F̂

−1). (18)

This form of ICOM P is useful in cases where we cannot determine the closed form expression

of R̂, outer-product form of I F IM in many modeling situations and SEM is a case in point

example.

Consistent ICOM P that maximizes the posterior expected utility (PEU)is given by

C ICOM P(F̂−1)PEU = −2 log L(θ̂ |X )+ k+ 2k log(n)+ 2C1(F̂
−1)

= CAIC + 2C1(F̂
−1). (19)

Further, consistent ICOM P that maximizes the posterior expected utility (PEU) and also guards

us against misspecification is given by

C ICOM P(F̂−1)PEU_Miss = −2 log L(θ̂ |X )+ k+ 2 log(n)
nk

n− k− 2
+ 2C1(F̂

−1). (20)

A model with minimum ICOMP-type and AIC-type criteria are chosen to be the best model

among all possible competing alternative models.

With ICOM P-type criteria, complexity is viewed not as the number of parameters in the

model, but as the degree of interdependence (i.e., the correlational structure among the pa-

rameter estimates). By defining complexity in this way, ICOM P-type criteria provide a more

judicious penalty term than AIC , M DL, SBC , or CAIC . The lack of parsimony is automatically

adjusted by C1(F̂
−1) across the competing alternative portfolio of models as the parameter

spaces of these models are constrained in the model selection process. For more on ICOM P-

type criteria, we refer the readers to [9] and [13].

4. Derived Forms of Information Criteria in Structural Equation Models

4.1. AIC-type Criteria in SEM

Under the assumption that the observed variables are continuous and have interval scales,

and multivariate normal, that is,

z = (y ′, x ′)′ ∼ N(p+q)(0,Σ(θ)) (21)

and using the maximum likelihood estimators, we obtain AIC , CAIC , CAIC F and BMS for

the SEM. These are given in [13] as follows.

AIC = n(p+ q) log(2π) + n log |Σ̂|+ ntr(Σ̂−1S) + 2k, (22)
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CAIC = n(p+ q) log(2π)+ n log |Σ̂|+ ntr(Σ̂−1S) + k
�

log(n)+ 1
�

, (23)

CAIC F = n(p+ q) log(2π)+ n log |Σ̂|+ ntr(Σ̂−1S) + k
�

log(n)+ 2
�
+ log |F̂ |, (24)

BMS = n(p+ q) log(2π)+ n log |Σ̂|+ ntr(Σ̂−1S) + k log(n)+ (
nk

n− k− 2
) + log |F̂ |, (25)

where k is the number of parameters in SEM.

4.2. ICOMP-type Criteria in SEM

Let Σ̂(θ̂) denote the maximum likelihood estimator (MLE) of the implied covariance ma-

trix Σ(θ) given by

Σ̂(θ̂)
(p+q)×(p+q)

=

�
Λ̂y(I − B̂)−1(Γ̂Φ̂Γ̂′+ Ψ̂)(I − B̂′)−1Λ̂y + Θ̂ǫ Λ̂y(I − B̂)−1Γ̂Φ̂Λ̂′x
Λ̂x Φ̂Γ̂

′(I − B̂′)−1Λ̂′y Λ̂x Φ̂Λ̂
′
x + Θ̂δ

�
. (26)

The first ICOM P criterion in SEM is given by

ICOM P = n(p+ q) log(2π)+ n log |Σ̂|+ ntr(Σ̂−1S) + 2C1(Σ̂(θ̂)). (27)

We can also use the estimated I F IM , the covariance of the model parameters, for the general

SEM as given by

F̂−1 =




1

n
Σ̂(θ̂) 0

0′ 2

n
D
(p+q)

+[Σ̂(θ̂)⊗ Σ̂(θ̂))] D
(p+q)

+
′


 (28)

to obtain several other new forms of ICOM P based on the work of [5].

Note that in one dimension equation in (28) reduces to the I F IM of the normal distribu-

tion N(µ,σ2) given by

F̂−1 =

�
1

n
σ̂2 0

0′ 2

n
σ̂4

�
(29)

which checks and shows the correctness of the formula in (28) and that θ̂ has the consistency

property.

In (28), the matrix D+p is the Moore-Penrose inverse of the duplication matrix Dp. The

duplication matrix Dp is a unique p2× 1

2
p
�

p+ 1
�

matrix, and so its Moore-Penrose inverse is

D+p =
�

D′pDp

�−1

D′p

which is a 1

2
p
�

p+ 1
�
× p2 matrix. Further, note that the duplication matrix Dp is implicitly

defined by

Dpvech(Σ̂(θ̂)) = vec(Σ̂(θ̂))

where vech(Σ̂) vectorizes the distinct elements of Σ̂ by vertically stacking those on and below

the principal diagonal. Consequently

vech(Σ̂(θ̂ )) = D+p vec(Σ̂(θ̂)).
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Based on the above results, we establish ICOM P(I F IM) for the SEM with latent variables

given by

ICOM P(F̂−1) = n(p+ q) log(2π)+ n log |Σ̂|+ ntr(Σ̂−1S) + 2C1(F̂
−1). (30)

We further note that with C1(F̂
−1), we do not actually need to construct F̂−1, since it is a

scalar measure of complexity. As derived in [13], using the definition of complexity, we get a

computationally convenient open form of the expression for C1(F̂
−1)— in the sense that all

the required inputs are available as a part of the standard output of most SEM packages — is

C1(F̂
−1) =

s

2
log




1

n
t r(Σ̂) + 1

2n


t r(Σ̂2) + (t r(Σ̂))2 + 2

p+q∑
j=1

�
σ̂ j j

�2



s




−
1

2
(p+ q+ 2) log
��Σ̂
��+ 1

2

�
(p+ q) +

1

2

�
p+ q
��

p+ q+ 1
��

log(n) (31)

+
1

4

�
p+ q
��

p+ q− 1
�

log(2),

where

s = dim(F̂−1) = rank(F̂−1) =
1

2
(p+ q)(p+ q+ 3). (32)

Therefore, C1(F̂
−1) avoids the construction of I F IM which is very attractive. This shows

the scalability properties of the ICOM P criterion.

The other new forms of ICOM P criteria for SEM are:

ICOM P
�
F̂−1
�

PEU
= n(p+ q) log(2π)+ n log |Σ̂|+ ntr(Σ̂−1S) + 3k+ 2C1(F̂

−1), (33)

and

ICOM P
�
F̂−1
�

PEU_Miss
=n(p+ q) log(2π)+ n log |Σ̂|+ ntr(Σ̂−1S) + k (34)

+ 2(
nk

n− k− 2
) + 2C1(F̂

−1).

The consistent and misspecification and robust forms of ICOM P-type criteria are obtained

in a similar fashion which are given by

C ICOM P(F̂−1)PEU = n(p+q) log(2π)+ n log |Σ̂|+ ntr(Σ̂−1S)+ k(1+2 log(n))+2C1(F̂
−1),

(35)

and

C ICOM P(F̂−1)PEU_Miss =n(p+ q) log(2π) + n log |Σ̂|+ ntr(Σ̂−1S) + k (36)

+ 2 log

�
nk

n− k− 2

�
+ 2C1(F̂

−1).
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Note that these two above forms of ICOM P criteria are both consistent and misspecification

resistant.

Comparing AIC , CAIC , CAIC F , BMS, and the different forms of ICOM P-type criteria, we

see that the difference between these criteria are in their penalty terms. For convenience, we

summarize these model selection criteria in Table 1, which we will use in our numerical ex-

amples. In the next section we give two numerical examples to demonstrate the performance

Table 1: Summary of Information Criteria and Their Penalties.

Information Criteria Penalty term

AIC 2k

CAIC k
�

log(n)+ 1
�

CAIC F k
�

log(n)+ 2
�
+ log |F̂ |

BMS k log(n)+ ( nk

n−k−2
) + log |F̂ |

ICOM P 2C1(Σ̂(θ̂ ))

ICOM P(I F IM) 2C1(F̂
−1)

C ICOM P(I F IM)PEU k(1+ 2 log(n))+ 2C1(F̂
−1)

C ICOM P(I F IM)PEU_Miss k+ 2 log
�

nk

n−k−2

�
+ 2C1(F̂

−1)

of these information criteria in SEM.

5. Numerical Results

5.1. A Large Scale Monte Carlo Simulation Study

In this simulation study, we used the widely known general SEM simulation protocol given

in [15]. This model is formed from 1 latent exogenous variable, 2 latent endogenous vari-

ables, 2 observed exogenous variables, and 4 observed endogenous variables. We slightly

modify the structure of [15] in θε matrix to achieve convergence in LISREL. We generated

500 sample covariance matrices for four sample sizes (100, 400, 1000, and 4000). Each sam-

ple covariance matrix was analyzed for each of the three analytic models given below using

LISREL.

Figure 1 shows the population parameters of the model and the path diagram as expressed

in LISREL notation, with parameters shown here.

Λx =

�
1.00

0.50

�
,Λy =




1.00 0

0.95 0

0 1.00

0 0.90


 ,Γ =
�
−0.60

−0.25

�
,Φ =
�

7
�

, B =

�
0 0

0.60 0

�
,

Ψ =

�
5.00 0

0 4.00

�
,θδ =

�
3.00 0

0 2.50

�
,θε =




3.00 0 0 0

0 3.00 0 0

0 0 4.00 0

0 0 0 4.00
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Once the model parameters are specified, the implied population covariance matrix is ob-

Figure 1: True model with population parameters and model spei�ation onditions.

tained through Equation (5). For the analysis of this covariance matrix, we used three differ-

ent analytic models, given below.

• Overfitting model: AM1 (15 free parameters)

Λx (1,1) = Λy(1,1) = Λx (3,2) = 1

Γ,Φ, B,Ψ,θδ ,θε are estimated freely

Λx =

�
1.00
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�
,Λy =




1.00 0
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0 λ3
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β 0
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,
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�
θδ1

0
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�
,Θε =




θε1
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0 θε2
0 0

0 0 θε3
0

0 0 0 θε4




• Pseudo true model: AM2 (13 free parameters)

Λx (1,1) = Λy(1,1) = Λx (3,2) = 1

θε(1,1) = θε(2,2),θε(3,3) = θε(4,4)

Γ,Φ, B,Ψ,θδ are estimated freely

Λx =

�
1.00

λ1

�
,Λy =




1.00 0

λ2 0

0 1.00

0 λ3


 ,Γ =
�
γ1

γ2

�
,Φ =
�
φ
�

, B =

�
0 0

β 0

�
,
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Ψ =

�
ψ1 0

0 ψ2

�
,Θδ =

�
θδ1

0

0 θδ2

�
,Θε =




θε1
0 0 0

0 θε1
0 0

0 0 θε3
0

0 0 0 θε3




• Underfitting model: AM3 (11 free parameters)

Λx (1,1) = Λy(1,1) = Λx (3,2) = 1

Λx (2,1) = Λy(2,1)

Γ(2,1) = 0

θε(1,1) = θε(2,2),θε(3,3) = θε(4,4)

Φ, B,Ψ,θδ are estimated freely

Λx =

�
1.00

λ1

�
,Λy =




1.00 0

λ1 0

0 1.00

0 λ3


 ,Γ =
�
γ1

0

�
,Φ =
�
φ
�

, B =

�
0 0

β 0

�
,

Ψ =

�
ψ1 0

0 ψ2

�
,Θδ =

�
θδ1

0

0 θδ2

�
,Θε =




θε1
0 0 0

0 θε1
0 0

0 0 θε3
0

0 0 0 θε3




Based on the above AM structures above, we carried out a large scale Monte Carlo simulation

study. Since we have three AMs and four different sample sizes n= 100,400,1000, and 4000,

we have in total 12 different simulation experiments. For each simulation experiment, we

performed 500 replications and scored each of the information criteria to study their empirical

performance based on their hit ratios.

One of the important characteristics of AM3 is that it is a misspecified model according

to [15]; that is misspecified as it relates to underfitting . We note that his misspecification

does not indicate to distributional misspecification since there are many other ways we can

misspecify a model.

The steps of our Monte Carlo simulation are as follows,

1. The covariance matrices are generated with population parameters given in Figure 1,

using PRELIS.

2. Each generated sample covariance matrix is analyzed by means of the three analytic

models using LISREL. Goodness of fit indices and implied covariance matrices from

LISREL outputs are saved.

3. LISREL outputs are passed to program are read into MATLAB, which computes both

AIC-type and ICOM P-type criteria scores, and AMs selection frequencies. Our MATLAB

modules are available from the authors upon request which marries LISREL results with

MATLAB.
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5.1.1. Results of Monte Carlo Simulation Experiments

Table 2: Corret model seletion frequeny by riteria (in %).

Information Criteria n AM1 AM2 AM3

AIC 100 16 84 0

400 23.4 76.6 0

1000 41.6 58.6 0

4000 85.6 14.4 0

CAIC 100 0.4 98.8 0.8

400 0.2 99.8 0

1000 1.2 98.8 0

4000 5.8 94.2 0

CAIC F 100 0 98.4 1.6

400 0.2 99.8 0

1000 0.6 99.4 0

4000 3.6 96.4 0

BMS 100 0 98.6 1.4

400 0.2 99.8 0

1000 1.0 99.0 0

4000 5.6 94.4 0

ICOM P 100 98.6 1.4 0

400 99.8 0.2 0

1000 100 0 0

4000 100 0 0

ICOM P(I F IM) 100 37 63 0

400 48.8 51.2 0

1000 65.4 34.6 0

4000 95.4 4.6 0

ICOM P(I F IM)PEU 100 13.8 86.2 0

400 22.8 77.2 0

1000 41.2 58.8 0

4000 85.4 14.6 0

ICOM P(I F IM)PEU_Miss 100 9.2 90.8 0

400 20.8 79.2 0

1000 40.2 59.8 0

4000 85.4 14.6 0

C ICOM P(I F IM)PEU 100 0 80.6 19.4

400 0 100 0

1000 0 100 0

4000 0.2 99.8 0

C ICOM P(I F IM)PEU_Miss 100 0 52.4 47.6

400 0 100 0

1000 0 100 0

4000 0.2 99.8 0
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In our simulation study, we intentionally did not include the nine traditional goodness of fit

indices which were scored in [15], as they do not have the provision of taking into account

different type of model misspecifications. Therefore, it is misleading even to score and report

their results under such circumstances.

In Table 2, we summarize our result of percent hit ratios of the three AMs, AIC CAIC ,

CAIC F , BMS, ICOM P, ICOM P(I F IM), ICOM P(I F IM)PEU , ICOM P(I F IM)PEU_Miss,

C ICOM P(I F IM)PEU , and C ICOM P(I F IM)PEU_Miss criteria, for each sample size. We note

that CAIC , CAIC F , BMS, ICOM P, ICOM P(I F IM), ICOM P(I F IM)PEU ,

ICOM P(I F IM)PEU_Miss, C ICOM P(I F IM)PEU , and C ICOM P(I F IM)PEU_Miss all hit the pseudo

true AM2 with very high frequencies. Specifically the performances of CAIC , CAIC F , BMS,

C ICOM P(I F IM)PEU , and C ICOM P(I F IM)PEU_Miss are outstanding and all above 90%.

We further observe that AIC ’s performance is not satisfactory as the sample size increases.

For sample sizes n = 100, AIC picks AM2 84% of the time, and as n gets large, AIC ’s hit

percentage diminishes, and deteriorates. We know that AIC is not a consistent criterion.

Specifically, AIC leans toward the AM1 which is an overfitting model which is the behaviour

that is often demonstrated in the literature about AIC .

Of course one should note that, the large scale Monte Carlo simulation experiment we

performed is only using one model set here. This can be easily extended to a large dimensional

other model settings to further study the performances of these criteria in SEM. This requires

high speed computation and computational capability on a super computer and a stand alone

SEM software to carry out the task that is limited at this point.

5.2. A Real Data Example in Market Research

In this example, we apply the information criteria to a real data set from a soft drink

company in Turkey. For propriety reasons we cannot disclose the name of the company. The

data set in this study consists of a sample of n = 135 marketing surveys to study the product

quality and to build a predictive operating model for the soft drink company. The goal of this

survey was to enhance the market positioning and determine the influence of the investment

of the company on their marketing campaign. For this data set we have seven characteristics

which are measured to establish the companies objectives. These seven characteristics are:

refreshing, tastes great, good with meal, exhilarating, feels good, worth the money, and brands

having products of good quality.

Since we do not know a priori the generating model for this real data set, first we applied

an Exploratory Factor Analysis (EFA) to learn which factors were related to the original vari-

ables. According to EFA results, three latent variables were named as “taste”, “feeling”, and

“quality”, based on pre-determined factors. In the EFA model, variables which were loaded

with factor 1 were: “refreshing”, “tastes great”, and “good with meal”. These were taken as

exogenous variables and related to the latent exogenous variable “taste”.

Variables “exhilarating”, and “feels good” were loaded with factor 2. These were taken

as exogenous variables and related to the latent exogenous variable; “feeling.” Finally, vari-

ables “worth money” and “quality products” were loaded with factor 3. These were taken as

endogenous variables and related to the latent endogenous variable “quality”.
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Figure 2: Full SEM with 17 free parameters (Model 1).

Figure 3: Full SEM with 15 free parameters (Model 2).

Figure 4: Full SEM with 13 free parameters (Model 3).



E. Howe, H. Bozdogan, G. Kıroğlu / Eur. J. Pure Appl. Math, 5 (2012), 282-301 298

Since the information criteria used in the study were not applied to the just identified

models, over-identified models were chosen. In accordance with the t-rule [19], one of the

rules of identification must have free parameters under 28 to be over identified. Accordingly,

three different models with free parameters, 17, 15, and 13 were compared to assess the

information criteria. The path diagram of each of these three models, obtained from LISREL,

are given in Figures 2, 3, and 4. Model 1 was fit to the data with 17 free parameters in Figure 2

with P−value = 0.29> 0.05. In this model, the diagonal elements of the covariance of latent

exogenous variables and a single path coefficient between latent and observed endogenous

were fixed. The other parameters were estimated freely. Model 2 was fit to the data with 15

free parameters shown in Figure 3 with P − value = 0.42 > 0.05. It was restricted by setting

to 1 a single path coefficient in each latent variable, and equating diagonal elements of the

covariance matrix of latent variables. In the case of Model 3, the model was fit to the data

with 13 free parameters shown in Figure 4 with P − value = 0.00009 < 0.05. It also was

restricted by setting to 1 as single path coefficient in each latent variable, and equating the

measurement errors of the observed variables belonging to each latent variable.

All information criteria scores for each of these three SEMs, obtained from LISREL and

our MATLAB module, are reported in Table 3. According to the minimum of the information

Table 3: The values of riteria for three General SEMs.

Model Selection Criteria Model 1 Model 2 Model 3

AIC 4218.1 4216.6 4298.8

CAIC 4284.5 4275.2 4349.5

CAIC F 4333.8 4322.4 4389.0

BMS 4319.6 4309.5 4377.6

ICOM P 4187.9 4190.5 4275.9

ICOM P(I F IM) 4245.7 4248.6 4328.3

ICOM P(I F IM)PEU 4279.7 4278.6 4354.3

ICOM P(I F IM)PEU_Miss 4285.2 4282.9 4357.5

C ICOM P(I F IM)PEU 4429.4 4410.8 4468.8

C ICOM P(I F IM)PEU_Miss 4456.8 4432.0 4484.8

criteria, we choose the “best” model among those compared, as the model that achieves the

best balance of fit with respect to parameter cardinality. In this case, all criteria are minimized

at Model 2. These are indicated by the boldfaced scores in Table 3. We note that for this data

set all criteria agreed. In general, this would not typically be the case with other real data

sets.

Based the results above, we can use Model 2 as our operating predictive SEM model in the

subsequent surveys for market campaign to study the product quality. In passing we note that,

although we used the EFA model to determine the SEM structure for this real data set, one

can also use an expert pattern analysis method using the genetic algorithm with information

complexity to obtain the “best” factor pattern structure to establish a confirmatory factor

analysis to derive the SEMs. This new approach is well explained in [30] for further reading.

We have not pursued this approach in this paper.
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6. Conclusions and Discussion

In this paper, we showed the performance of several information criteria, some old and

new ones in general SEMs, under different sample sizes, and different models. Based on our

results from this specific large scale Monte Carlo simulation experiment, for general SEM,

CAIC , CAIC F , BMS, C ICOM P(I F IM)PEU and C ICOM P(I F IM)PEU_Miss criteria show the

best performance. On the other hand, the performance of AIC seems to degrade as sample

sizes increase - it tends to select overfitting models. This behavior is based on the sensitivity of

the log likelihood function to sample size. Because CAIC , CAIC F , BMS, C ICOM P(I F IM)PEU

and C ICOM P(I F IM)PEU_Miss criteria are consistent with respect to sample size (penalty

term includes log(n)), they become more accurate as the sample size gets larger. Our sim-

ulation results demonstrates the performance and the versatility of these criteria. In sum-

mary, we recommend that the information criteria: CAIC F , BMS, C ICOM P(I F IM)PEU and

C ICOM P(I F IM)PEU_Miss, be used in SEM. In the real example, we showed how one can build

an operating predictive SEM in market research. We are currently studying other forms of

misspecification such as the distributional misspecification, presence of high multicollinear-

ity, and error variance heteroscedasticity within the SEM framework using the information

criteria along with other applications. Our results will be reported elsewhere.
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