EUROPEAN JOURNAL OF PURE AND APPLIED MATHEMATICS

Vol. 2, No. 1, 2009, (85-96)

ISSN 1307-5543 - www.ejpam.com

LOCALLY β -CLOSED SPACES

C. K. Basu^{1*} and M. K. Ghosh²

¹ Department of Mathematics, University of Kalyani, Kalyani-741235, Nadia, West Bengal, India

² Dumkal College, Basantapur, Basantapur-742406, Murshidabad, West Bengal, India

Abstract. In this paper, we generalize the notion of β -closed-ness [7] to arbitrary subsets and in terms of it we introduce the class of locally β -closed spaces and also investigate of its several properties. It is observed that although local β -closedness is independent of local compact T_2 -ness but one can be obtained from the other by the help of a new class of functions viz. β - θ -closed functions which are independent not only of closed functions but also of continuous functions.

AMS subject classifications: 54C99, 54D99

Key words: β -open, β -closed, β -regular, β - θ -open, β - θ -closed functions, locally β -closed, locally compact T_2 .

1. Introduction

Among various generalized open sets, the notion of β -open sets introduced by Abd. El-Monsef et al. [1] which is equivalent to the notion of semipre-open sets due to Andrijević [4], plays a significant role in General Topology and Real Analysis. Now a days many topologists have focused their research on various topics, using β -open sets. Mention may be made of some of the recent works which are found in [1,2,3, 4,5,6,7,8,9,10,11,12,13,18,19,20,21,23]. Very recently Basu and Ghosh [7] by the help of β -open sets introduced a covering property known as β -closedness and characterized such spaces from different angles. In this paper, we

^{*}Corresponding author. Email addresses: ckbasu1962@yahoo.com (C. Basu), manabghosh@gmail.com (M. Ghosh)

generalize the concept of β -closedness to arbitrary subsets and using such sets, we introduce and investigate locally β -closed spaces. Although we have seen that local β -closedness is independent of local compact T_2 -ness but our intension is to achieve either of the spaces from the other. In this regard, a new class of functions called β - θ -closed function is introduced, which quite satisfactorily enables to establish our goal. In addition, a sufficient condition for a locally β -closed space to be extremally disconnected is also established.

2. Preliminaries

Throughout the paper, spaces X and Y will always denote topological spaces without any separation axioms and $\psi: X \to Y$ will represent a (single valued) function. Given a set A, its closure and interior are denoted by cl(A) and int(A) respectively. A set A is said to be α -open [17] (resp. preopen [16], semi-open [14], β -open [1] or semi-preopen [4]) if $A \subset$ int(cl(int(A))) (resp. $A \subset int(cl(A)), A \subset cl(int(A)), A \subset cl(int(cl(A)))$). The complement of a β -open (resp. semi-open) set is said to be β -closed [1] or semi-preclosed [4] (resp. semiclosed [14]). The intersection of all β -closed (resp. semi-closed) sets containing A is called the β -closure [1] or semi-preclosure [4] (resp. semiclosure) of A and is denoted by $\beta cl(A)$ or sp-cl(A) (resp. scl(A)). A set A is called β -regular [7] (=sp-regular [18]) if its both β -open as well as β -closed. The family of all β -open (resp. β -regular, regular open) sets containing a point $x \in X$ is denoted by $\beta O(X,x)$ (resp. $\beta R(X,x)$, RO(X,x)). The family of all β -open (resp. β -regular, regular open) sets in X is denoted by $\beta O(X)$ (resp. $\beta R(X)$, RO(X)). A point x of X is in the β - θ -closure [7] (=sp- θ -closure [18]) of A, denoted by $x \in \beta$ - θ -cl(A) (resp. $x \in \text{sp-}\theta\text{-}cl(S)$) if $A \cap \beta cl(U) \neq \emptyset$ for each $U \in \beta O(X, x)$. A subset A is said to be $\beta \cdot \theta$ -closed [7] (or sp- θ -closed [18]) if $A = \beta - \theta - cl(A)$ or $A = \text{sp-}\theta - cl(A)$. The complement of a $\beta - \theta$ -closed or sp- θ -closed set is said to be β - θ -open [7] or sp- θ -open [18]. The family of all β - θ -open sets of X is denoted by $\beta - \theta - O(X)$ and that containing a point x of X is denoted by $\beta - \theta - O(X, x)$.

A filter base \mathscr{F} is said to β - θ -adhere at some point x of X if $x \in \beta$ - θ -cl(F) for each $F \in \mathscr{F}$ and is said to β - θ -converge to a point x of X if for each $U \in \beta O(X, x)$, there is an $F \in \mathscr{F}$ such that $F \subset \beta cl(U)$. A subset is said to be an NC-set [22] if every cover of A by regular open sets

of *X* has a finite subcover.

We state the following results which will be frequently used in the sequel.

Lemma 2.1 (**T. Noiri** [18], **Basu and Ghosh** [7]). The following hold for a subset A of a space X:

- 1. $A \in \beta O(X)$ if and only if $\beta cl(A) \in \beta R(X)$.
- 2. β - θ - $cl(A) = \cap \{V : A \subset V : and V \in \beta R(X)\}.$
- 3. $x \in \beta$ - θ -cl(A) if and only if $A \cap V \neq \emptyset$ for each $V \in \beta R(X, x)$.
- 4. If $A \subset B$, then $\beta \theta cl(A) \subset \beta \theta cl(B)$.
- 5. $\beta \theta cl(\beta \theta cl(A)) = \beta \theta cl(A)$.
- 6. $A \in \beta$ - θ -O(X) if and only if for each $x \in A$, there exists a $V \in \beta R(X, x)$ such that $x \in V \subset A$.
- 7. β - θ -cl(A) is a β - θ -closed set and union of even two β - θ -closed sets is not necessarily a β - θ -closed set.
- 8. If $A \in \beta O(X)$, then $\beta cl(A) = \beta \theta cl(A)$.
- 9. $A \in \beta R(X)$ if and only if A is β - θ -open and β - θ -closed.
- 10. β -regular $\Rightarrow \beta$ - θ -open $\Rightarrow \beta$ -open. But the converses are not necessarily true.

3. β -Closed Subsets and β - θ -Closed Functions

Definition 3.1. A subset S of a topological space X is said to be β -closed relative to X (β -set, for short) if for every cover $\{V_{\alpha} : \alpha \in I\}$ of S by β -open sets in X, there exists a finite subset I_0 of I such that $S \subset \bigcup \{\beta cl(V_{\alpha}) : \alpha \in I_0\}$. If in particular, if S = X and S is β -closed relative to X then X is β -closed [7].

It is not hard to prove the theorem 3.2 that gives several characterizations of a subset of a space X which is β -closed relative to X and will be utilized in establishing several results.

Theorem 3.1. For a non-void subset S of a space, the following are equivalent:

- (a) S is β -closed relative to X.
- (b) Every filter base on X which meets S, β - θ -adheres at some point of S.

- (c) Every maximal filter base on X which meets S, β - θ -converges to some point of S.
- (d) Every cover of S by β - θ -open sets of X has a finite subcover.
- (e) Every cover of S by β -regular sets of X has a finite subcover.
- (f) For every family $\{U_{\alpha} : \alpha \in I\}$ of β -regular sets of X with $[\cap_{\alpha \in I} U_{\alpha}] \cap S = \emptyset$, there is a finite subset I_0 of I such that $[\cap_{\alpha \in I_0} U_{\alpha}] \cap S = \emptyset$.
- (g) Every filter base on S, β - θ -adheres to some point of S.
- (h) Every maximal filter base on S, β - θ -converges to some point of S.

Theorem 3.2. For a space X, the following are equivalent:

- (a) X is β -closed.
- (b) Every proper β - θ -closed set is β -closed relative to X.
- (c) Every proper β -regular set is β -closed relative to X.

Proof: $(a) \Rightarrow (b)$: Let $\{U_{\alpha} : \alpha \in I\}$ be a cover of a proper β - θ -closed set S by β -regular sets of X. Since X - S is β - θ -open, for each $x \in X - S$, there exists a $V_x \in \beta R(X, x)$ such that $x \in V_x \subset X - S$. Hence the family $\{V_x : x \in X - S\} \cup \{U_{\alpha} : \alpha \in I\}$ is a cover of X by β -regular sets of X. Since X is β -closed, there is a finite subset I_0 of I such that $S \subset \bigcup \{U_{\alpha} : \alpha \in I_0\}$. Therefore by theorem 3.2, S is β -closed relative to X.

- $(b) \Rightarrow (c)$: Since every β -regular set is β - θ -closed, the proof is obvious.
- $(c) \Rightarrow (a)$: Let $S \neq \emptyset$, X be a β -regular set. Since $X = S \cup (X S)$ and S and X S are both β -regular, the proof is obvious.

Theorem 3.3. If S is β -closed relative to X where X is T_2 then S is a β - θ -closed set.

Proof: Let $x \notin S$. Then for each $y \in S$, there exists an open set U_y containing y such that $x \notin cl(U_y) = V_y$ (say). Since each V_y is regular closed and hence is β -regular and $S \subset \bigcup_{y \in S} V_y$, then by theorem 3.2, there exists a finite subset S_0 of S such that $S \subset \bigcup_{y \in S_0} V_y = V$ (say). Now the set V is being a regular closed set and hence its complement $X - V \in RO(X, x)$. X - V is therefore β -regular set containing x. So S is β - θ -closed.

Lemma 3.1. (Abd. El-Monsef et al. [1]) Let A and Y be subsets of a space X. Then (i) If $A \in \beta O(X)$ and Y is α -open in X, then $A \cap Y \in \beta O(Y)$.

(ii) If $A \in \beta O(Y)$ and $Y \in \beta O(X)$, then $A \in \beta O(X)$.

Lemma 3.2. [13] Let X be a space and A, Y be subsets of X such that $A \subset Y \subset X$ and Y is α -open in X. Then the following properties hold:

- (i) $A \in \beta O(Y)$ if and only if $A \in \beta O(X)$.
- (ii) $\beta cl_X(A) \cap Y = \beta cl_Y(A)$, where $\beta cl_Y(A)$ denotes the β -closure of A in the subspace Y.

Theorem 3.4. Let (X, τ) be a space and Y is α -open in X, then $\beta R(Y, \tau_Y) = \beta R(X, \tau) \cap Y$.

Proof: Let $A \in \beta R(X, \tau) \cap Y$. Then $A = U \cap Y$ for some $U \in \beta R(X, \tau)$. Then by lemma 3.5, $A \in \beta O(Y, \tau_Y)$. Now by lemma 3.6, we have $\beta cl_Y(A) = \beta cl_X(A) \cap Y \subset \beta cl_X(U) \cap Y = U \cap Y = A$. So, A is β -closed in (Y, τ_Y) and hence $A \in \beta R(Y, \tau_Y)$. Therefore, $\beta R(X, \tau) \cap Y \subset \beta R(Y, \tau_Y)$. Conversely, let $W \in \beta R(Y, \tau_Y)$. Then by lemma 3.6(i), $W \in \beta O(X, \tau)$. Clearly $W = \beta cl_Y(W) = \beta cl_X(W) \cap Y$ (by lemma 3.6(ii)) and hence $W \in \beta R(X, \tau) \cap Y$.

Theorem 3.5. Let Y be an α -open set in a space (X, τ) . Then (Y, τ_Y) is β -closed if and only if Y is β -closed relative to X.

Proof: Let (Y, τ_Y) be β -closed. If $\mathscr{U} = \{U_\alpha : \alpha \in \Lambda\}$ is a cover of Y by β -regular sets of X. Then by above theorem 3.7, $\mathscr{U}_Y = \{U_\alpha \cap Y : \alpha \in \Lambda\}$ is a cover of Y by β -regular sets of (Y, τ_Y) . Since (Y, τ_Y) is β -closed then Y is covered by finite number of sets of \mathscr{U} say, U_1, \ldots, U_n and hence Y is β -closed relative to X.

Conversely, let Y be β -closed relative to X. Let $\mathscr{U} = \{U_\alpha : \alpha \in \Lambda\}$ be a cover of Y, where each $U_\alpha \in \beta R(Y, \tau_Y)$. Then by above theorem 3.7, for each $\alpha \in \Lambda$, there exists a β -regular set $V_\alpha \in \beta R(X)$ such that $U_\alpha = V_\alpha \cap Y$. Therefore Y is covered by the family $\mathscr{U} = \{V_\alpha : \alpha \in \Lambda\}$. Since Y is β -closed relative to X, there exists $V_{\alpha_1}, \ldots, V_{\alpha_n} \in \mathscr{V}$ such that $Y \subset \bigcup_{i=1}^n V_{\alpha_i}$. Now as $Y = \bigcup_{i=1}^n (V_{\alpha_i} \cap Y), \{U_{\alpha_1}, \ldots, U_{\alpha_n}\}$ is a finite subfamily of \mathscr{U} which covers Y. So (Y, τ_Y) is β -closed.

Theorem 3.6. Let A, Y be subsets of a space (X, τ) such that $A \subset Y \subset X$ and Y be α -open in (X, τ) . Then A is β -closed relative to (Y, τ_Y) if and only if A is β -closed relative to (X, τ) .

Proof: The proof is obvious because of theorem 3.7.

Corollary 3.1. If Y, Z are open subsets of a space X such that $Z \subset Y \subset X$ then Z is a β -closed subspace of Y if and only if Z is a β -closed subspace of X.

Proof: The proof follows from theorem 3.8 and theorem 3.9.

Definition 3.2. A function $\psi: X \to Y$ is said to be β - θ -closed if image of each β - θ -closed set is closed in Y.

It is not hard to prove the following characterizations for β - θ -closed function.

Theorem 3.7. For a function $\psi: X \to Y$, the following are equivalent:

- (i) ψ is β - θ -closed.
- (ii) $cl(\psi(B)) \subset \psi(\beta \theta cl(B))$, for each $B \subset X$.
- (iii) For each $y \in Y$ and each β - θ -open set V containing $\psi^{-1}(y)$, there is an open set U containing y satisfying $\psi^{-1}(U) \subset V$.
- (iv) For each subset A of Y and each β - θ -open set V containing $\psi^{-1}(A)$ there is an open set U containing A such that $\psi^{-1}(U) \subset V$.
- (v) $\{y \in Y : \psi^{-1}(y) \subset V\}$ is open in Y whenever U is $\beta \cdot \theta$ -open in X.
- (vi) $\{y \in Y : \psi^{-1}(y) \cap B \neq \emptyset\}$ is closed in Y whenever B is β - θ -closed in X.

The concepts of closed functions and β - θ -closed functions are independent to each other. In addition, the notions of continuity and β - θ -closedness are also independent. To validitate these we establish the following examples:

Example 3.1. Let $X = \mathbb{R}$, the set of reals with the topology τ_X in which the non-void open sets are subsets of X which contain the point 1. Clearly every non-void β -open set must contains the point 1 and β - θ -closed sets are \emptyset and X only. Let $Y = \{a,b,c\}$ with the topology $\tau_Y = \{\emptyset,Y,\{a\},\{a,c\}\}$. Let $\psi:(X,\tau_X) \to (Y,\tau_Y)$ be defined as $\psi(X) = a$ for all $X \in X$. Clearly ψ is continuous but as $\psi(X) = \{a\}$, where $\{a\}$ is not closed in Y, ψ is not a β - θ -closed function.

Example 3.2. Let $X = \{a, b, c\}$, $\tau = \{\emptyset, X, \{a\}, \{a, b\}, \{a, c\}\}\}$ and $\sigma = \{\emptyset, X, \{a\}, \{a, b\}\}\}$. Consider the identity function $\psi_1 : (X, \tau) \to (X, \sigma)$. Clearly ψ_1 is not a closed function but ψ_1 is β - θ -closed since the only β - θ -closed sets of (X, τ) are ϕ and X only. Again the identity function $\psi_2 : (X, \sigma) \to (X, \tau)$ is clearly a closed function which is not continuous. Since the family of

all β -open sets of (X, σ) is $\{\emptyset, X, \{a\}, \{a, b\}, \{a, c\}\}\$ then $\beta R(X, \sigma) = \beta - \theta - O(X, \sigma) = \{\emptyset, X\}$. Therefore ψ_2 is a $\beta - \theta$ -closed function.

Example 3.3. The identity function $\psi : (\mathbb{R}, \mathcal{U}) \to (\mathbb{R}, \mathcal{U})$, where $(\mathbb{R}, \mathcal{U})$ is the set of reals with the usual topology \mathcal{U} is a closed function which is not a β - θ -closed function. In fact each closed rays $(-\infty, a]$, $[b, \infty)$ are β -open sets in $(\mathbb{R}, \mathcal{U})$. So for a < b, the interval (a, b) is β - θ -closed. But its image $\psi((a, b)) = (a, b)$ is not closed in $(\mathbb{R}, \mathcal{U})$.

Theorem 3.8. Let $\psi: X \to Y$ be a surjective β - θ -closed function having β -closed relative to X (i.e. β -set) point inverses. Then $\psi^{-1}(A)$ is β -closed relative to X whenever A is compact in Y.

Proof: Let $\mathscr{V} = \{V_{\lambda} : \lambda \in \Lambda\}$ be a β - θ -open cover of $\psi^{-1}(A)$. By hypothesis and by theorem 3.2, for each $y \in A$ there exist $\lambda_1, \ldots, \lambda_n$ such that $\psi^{-1}(y) \subset \bigcup_{i=1}^n V_{\lambda_i} = V_y$ (say). Since V_y is β - θ -open and ψ is β - θ -closed, by theorem 3.12, there exists an open set U_y containing y such that $\psi^{-1}(U_y) \subset V_y$. Since A is compact, there exist $y_1, \ldots, y_n \in A$ such that $\psi^{-1}(A) \subset \bigcup_{i=1}^k \psi^{-1}(U_{y_i})$. Hence $\psi^{-1}(A) \subset \bigcup_{i=1}^k V_{y_i}$, where each V_{y_i} is a union of finite number of members of \mathscr{V} . Therefore $\psi^{-1}(A)$ is β -closed relative to X.

Theorem 3.9. Let $\psi: X \to Y$ be a surjective β - θ -closed function having β -closed relative to X (i.e. β -set) point inverses. If Y is compact and X is T_2 then ψ is continuous.

Proof: Since Y is compact then by the above theorem 3.16, $\psi^{-1}(A)$ is β -closed relative to X whenever A is closed in Y. Obviously $\psi^{-1}(A)$ is an NC-set and since X is T_2 then $\psi^{-1}(A)$ is closed as well in X. Therefore ψ is continuous.

4. Locally β -Closed Spaces

Definition 4.1. A space X is called locally β -closed if for each $x \in X$, there exists a regular open neighbourhood of which is a β -closed subspace of X.

Remark 4.1. Every β -closed space is locally β -closed. But the converse is not true, in general. Any infinite set with the discrete topology is an example of a locally β -closed space which is not β -closed.

Theorem 4.1. A space X is locally β -closed if and only if for each $x \in X$, there is a $V \in RO(X, x)$ such that V is locally β -closed.

Proof: The necessity part is obvious.

For the sufficiency part, let $W \in RO(X)$. We shall prove that if $A \in RO(W)$ then $A \in RO(X)$. Indeed, $A = int_W(cl_W(A)) = int_W(W \cap cl_X(A)) = int_X(W \cap cl_X(A)) = int_X(W) \cap int_X(cl_X(A)) = W \cap int_X(cl_X(A)) = int_X(cl_X(A))$ (as $A \subset W$). By hypothesis, for each $x \in X$, there is a $W \in RO(X,x)$ such that (W,τ_W) is locally β -closed. Then by definition for each $x \in W$, there is an $U \in RO(W)$ such that $x \in U$ and $y \in RO(X)$ is a $y \in RO(X)$. Then by the argument given above $y \in RO(X,x)$ and hence by the corollary 3.10, $y \in RO(X)$ is locally $y \in RO(X)$. So, $y \in RO(X)$ is locally $y \in RO(X)$.

Theorem 4.2. For a topological space (X, τ) , the following are equivalent:

- (a) (X, τ) is locally β -closed.
- (b) For each point x of X, there is a $V \in RO(X, x)$ which is β -closed relative to X.
- (c) Each point x of X has an open neighbourhood V of x such that int(cl(V)) is β -closed relative to X.
- (d) For each point x of X, there is an open neighbourhood U of x such that scl(U) is β -closed relative to X.
- (e) For each point x of X, there is an open neighbourhood U of x such that $\beta cl(U)$ is β -closed relative to X.
- (f) For each point of X, there is an α -open set V containing x such that int(cl(V)) is a β -closed subspace of X.

Proof: The proof is followed from the facts that a set A is pre-open if and only if scl(A) = int(cl(A)) and for an open set U, $\beta cl(U) = int \ cl(U)$ and from theorem 3.8.

Theorem 4.3. A space (X, τ) is locally β -closed if and only if (X, τ_{α}) is locally β -closed.

Proof: Since $\beta O(X, \tau) = \beta O(X, \tau_{\alpha})$, the proof is immediate.

The following examples show that local β -closedness and local compact T_2 -ness are independent to each other.

Example 4.1. Example of a locally β -closed space which is not locally compact T_2

Let $X = \mathbb{R}$, the set of reals with the countable complement topology τ . Clearly $PO(X) = \{uncountable infinite subset of <math>X$ or $\phi\} = \beta O(X)$. Since for a subset S of X, $\beta cl(S) = S \cup int(cl(int(S)) [6]$, then $\beta cl(V) = X$ for any non-empty $V \in \beta O(X)$. Therefore (X, τ) is β -closed and hence is locally β -closed. Clearly (X, τ) is not locally compact T_2 .

Example 4.2. Example of a locally compact T_2 space which is not locally β -closed

Let $X = \mathbb{R}$, the set of reals with the usual topology \mathscr{U} . Clearly (X, \mathscr{U}) is locally compact T_2 but is not a locally β -closed space.

Although we have seen from above examples that local β -closedness and local compact T_2 -ness are independent concepts but the next two theorems are two of our main results and relate locally compact T_2 spaces to locally β -closed spaces

Theorem 4.4. Let $\psi: X \to Y$ be continuous β - θ -closed surjection with point inverses are β -closed sets relative to X (i.e. β -set). Then X is locally β -closed whenever Y is locally compact T_2 .

Proof: Since Y is being a locally compact T_2 space, for each $x \in X$, there exists an open neighbourhood V of x such that cl(V) is compact in Y. As ψ is β - θ -closed, by theorem 3.16, $\psi^{-1}(cl(V))$ is a β -closed set relative to X. As ψ is continuous it is obvious that $int(cl(\psi^{-1}(V))) \subset \psi^{-1}(cl(V))$. But $int(cl(\psi^{-1}(V)))$ is obviously β -regular set containing X and hence by theorem 3.3, $int(cl(\psi^{-1}(V)))$ is β -closed relative to X. Therefore by theorem 4.4, X is locally β -closed.

Remark 4.2. In the above theorem X is not necessarily T_2 .

Example 4.3. Let $X = \text{any finite set and } \tau_X = \{\emptyset, X\}$. Let $Y = \{a\}$ with the discrete topology. Let $\psi : X \to Y$ be the constant function. Then Y is locally compact T_2 and ψ is continuous β - θ -closed surjection with β -closed set relative to X (i.e. β -set) point inverses. However X is not T_2 .

Definition 4.2. [7] A function $\psi: X \to Y$ is said to be (θ, β) -continuous if for each $x \in X$ and each $V \in \beta R(Y, \psi(x))$ there is an open set U containing x such that $\psi(U) \subset V$.

Theorem 4.5. If $\psi: X \to Y$ is a β - θ -closed, (θ, β) -continuous surjection with point inverses are β -closed sets relative to X (i.e. β -sets). Then Y is locally β -closed if X is locally compact T_2 .

Proof: First of all we claim that Y is T_2 . Indeed, by the hypothesis, for distinct points y_1 and y_2 in Y, $\psi^{-1}(y_i)$ for i=1,2 are disjoint β -closed sets relative to X and hence they are NCsets. Since Y is T_2 , one can check easily that, there exist disjoint W_1 , $W_2 \in RO(X)$ satisfying $\psi^{-1}(y_i) \subset U_i$ for i=1,2. As every regular open set is β -regular and hence is β - θ -open and as ψ is β - θ -closed, then by theorem 3.12, there exist open sets U_i containing y_i such that $\psi^{-1}(U_i) \subset W_i$ for i=1,2. Therefore Y is T_2 . Let $y \in Y$. Since X is a locally compact T_2 space, then for each $x \in \psi^{-1}(y)$, there exists a closed compact neighbourhood V_x of x in X. Now as the family $\{int(V_x): x \in \psi^{-1}(y)\}$ is being a β -regular cover (argument given above) of the set $\psi^{-1}(y)$ which is β -closed relative to X, then by theorem 3.2, there exist $x_1,x_2,....,x_k\in\psi^{-1}(y)\text{ such that }\psi^{-1}(y)\subset\cup_{i=1}^k int(V_{x_i}).\text{ Hence }\psi^{-1}(y)\subset\cup_{i=1}^k int(V_{x_i})\subset$ $int(\bigcup_{i=1}^k V_{x_i})$. Since the latter subset is β - θ -open and ψ is β - θ -closed then by theorem 3.12 there exists an open set W_y containing y such that $\psi^{-1}(W_y) \subset int(\bigcup_{i=1}^k V_{x_i})$. Hence $y \in W_y \subset int(\bigcup_{i=1}^k V_{x_i})$. $\psi(int(\bigcup_{i=1}^k V_{x_i})) \subset \psi(\bigcup_{i=1}^k V_{x_i})$. As it is obvious that (θ, β) -continuous image of a compact set is a β -closed set and Y is T_2 , $\psi(\bigcup_{i=1}^k V_{x_i})$ is obviously closed. Since $y \in W_y \subset int(cl(W_y)) \subset$ $\psi(\bigcup_{i=1}^k V_{x_i})$ and $int(cl(W_y))$ is β -regular then $int(cl(W_y))$ is β -closed relative to X. Therefore by theorem 4.4, Y is locally β -closed.

Definition 4.3. A topological space X is called γ -perfect if for each $U \in RO(X)$ and each $x \notin U$, there exists a family of open sets $\mathcal{V} = \{V_\alpha : \alpha \in I\}$ such that $U \subset \bigcup_{\alpha \in I} cl(V_\alpha)$ with $x \notin \bigcup_{\alpha \in I} cl(V_\alpha)$.

Theorem 4.6. Every locally β -closed γ -perfect space is extremally disconnected.

Proof: Let $U \in RO(X)$, where X is a locally β -closed γ -perfect space. Let $x \notin U$. Since X is locally β -closed, there is a $V \in RO(X,x)$ such that V is β -closed relative to X. Let $R = U \cap V$.

Case-I: Suppose $R = \emptyset$. Then *U* will be obviously closed.

Case-II: Suppose $R \neq \emptyset$. Then as $R \in RO(X) \subset \beta R(X)$ and $R \subset V$, where V is β -closed relative to X, R is clearly β -closed relative to X. Since X is γ -perfect and $R \in RO(X)$ with

REFERENCES 95

 $x \notin R$ the there exists a family of open sets $\mathscr{V} = \{V_{\alpha} : \alpha \in I\}$ such that $R \subset \bigcup_{\alpha \in I} cl(V_{\alpha})$ with $x \notin \bigcup_{\alpha \in I} cl(V_{\alpha})$. Since every regular closed set is being β -regular, the family $\{cl(V_{\alpha}) : \alpha \in I\}$ is a β -regular cover of the set R which is β -closed relative to X. So there exist $\alpha_1,, \alpha_n \in I$ such that $R \subset \bigcup_{i=1}^n cl(V_{\alpha_i})$. Let $W = X - \bigcup_{i=1}^n cl(V_{\alpha_i})$. Clearly $W \cap V$ is an open set containing x disjoint from U. Hence U is closed. Therefore X is extremally disconnected.

References

- [1] M. E. Abd. El. Monsef, S. N. El-Deeb and R. A. Mahmoud, β -open sets and β -continuous mappings, Bull. Fac. Sci. Assiut Univ., 12(1) (1983), 77-90.
- [2] M. E. Abd. El. Monsef, A. M. Kozae, Some generalized forms of compactness and closedness, Delta J. Sci. 9(2), 1985, 257-269.
- [3] T. Aho and T. Nieminen, Spaces in which preopen subsets are semi-open, Ricerche Mat., 43 (1994), 45-59.
- [4] D. Andrijević, Semi-preopen sets, Math. Vesnik, 38 (1986), 24-32.
- [5] D. Andrijević, On SPO-equivalent topologies, Suppl. Rend. Cir. Mat. Palermo, 29 (1992), 317-328.
- [6] D. Andrijević, On b-open sets, Math. Vesnik, 48 (1996), 59-64.
- [7] C. K. Basu and M. K. Ghosh, β -closed spaces and β - θ -subclosed graphs, European J. of Pure and Appl. Math., Vol. 1, No. 3, 2008 (40-50).
- [8] Y. Beceren and T. Noiri, Some functions defined by semi-open and β -open sets, Chaos Solitons and Fractals, 36 (2008), 1225-1231.
- [9] J. Borsík, Oscillation for almost continuity, Acta. Math. Hungar., 115(4)(2007), 319-332.
- [10] M. Caldas, S. Jafari, Some propertires of contra β -continuous functions, Mem. Fac. Sci. Kochi. Univ. (Math.) 2001; 22: 19-28.
- [11] Z. Duszynski, On some concepts of weak connectedness of topological spaces, Acta. Math. Hungar., 110(1-2), 2006, 81-90.
- [12] M. Ganster and D. Andrijevic, On some questions concerning semi-preopen sets, Journ. Inst. Math. and Comp. Sci. (Math. Ser.) 1(1988), 65-75.
- [13] S. Jafari and T. Noiri, Properties of β -connected spaces, Acta Math. Hungar., 101 (3)(2003), 227-236.
- [14] N. Levine, Semi-open sets and semi-continuity in topological spaces, Amer. Math. Monthly 70 (1963), 36-41.

REFERENCES 96

- [15] G. DI Maio and T. Noiri, On s-closed spaces, Ind. J. Pure Appl. Math. 18 (3) (1987), 226-233.
- [16] A. S. Mashhour, M. E. Abd El-Monsef and S. N. El-Deeb, On precontinuous and weak precontinuous mappings, Proc. Math. Phys. Soc. Egypt, 53 (1982), 47-53.
- [17] O. Njastad, On some classes of nearly open sets, Pacific Jour. Math., 15 (1965), 961-970.
- [18] T. Noiri, Weak and strong forms of β -irressolute functions, Acta Math. Hungar., 99, No. 4, (2003) 315-328.
- [19] V. Popa and T. Noiri, On β -continuous functions, Real Analysis Exchange 18(1992-1993), 544-548.
- [20] V. Popa and T. Noiri, Weakly β -continuous functions, An. Univ. Timisoara Ser. Mat. Inform., 32 (1994), 83-92.
- [21] V. Popa and T. Noiri, On upper and lower β -continuous multifunctions, Real Analysis Exchange, 22(1), 1996/1997, 362-376.
- [22] M. K. Singal and A. Mathur, On nearly compact spaces, Boll. Un. Mat. Ital 4(6) 1969, 702-710.
- [23] T. H. Halvac, Relations between new topologies obtained from old ones, Acta Math. Hungar., 64(3), (1994), 231-235.