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1. Introduction and Preliminaries

Throughout this section w, £, ¢;, ¢ and ¢, denote the spaces of all, bounded,
absolutely summable, convergent and null sequences x = (x; ) with complex terms

respectively.
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An Orlicz function is a function M : [0,00) — [0, 00), which is continuous, non-
decreasing and convex with M(0) = 0, M(x) > 0, for x > 0 and M(x) — oo, as
X — 00.
An Orlicz function M is said to satisfy the A,-condition for all values of u, if there

exists a constant K > 0, such that
MQ2u) <KM(u) (u=>0).

The above A,-condition implies M (Iu) < K1'°¢KM(u), forallu >0, > 1.
For details on integral representation of Orlicz function as well as on complemen-
tary Orlicz functions one may refer to [7, 12].

For an Orlicz function M, we have the following inequality:
M(Ax) < AM(x), forall x > 0and A with0 < A < 1.

Lindenstrauss and Tzafriri [9] used the Orlicz function and introduced the se-

quence space £,, as follows:

by ={(x)ew: ZM('%') < 00, for some p > 0}.
k=1

They proved that £, is a Banach space normed by

o0
. x|
IGe)ll = inf{p > 0: Y M(==) < 1}.
= P
Let A = (A;) be a sequence of non-zero scalars. Then for E a sequence space, the
multiplier sequence space E(A), associated with the multiplier sequence A is defined
as

E(A) = {(x;) e w: (Ax,) € E}.

The scope for the studies on sequence spaces was extended by using the notion

of associated multiplier sequences. Goes and Goes [4] defined the differentiated
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sequence space dE and integrated sequence space f E for a given sequence space E,
using the multiplier sequences (k™!) and (k) respectively. A multiplier sequence can
be used to accelerate the convergence of the sequences in some spaces. In some sense,
it can be viewed as a catalyst, which is used to accelerate the process of chemical
reaction.

The notion of difference sequence space was introduced by Kizmaz [6], who stud-

ied the difference sequence spaces Z(A), for Z ={,c, ¢, and defined as follows:
Z(A)={x=(x ) ew:(Ax) € Z},

where Ax = (Ax;) = (X, — x4 4q), forallk e N.

In this paper our aim is to investigate some important structures of some spaces
which are defined using an Orlicz function and a multiplier sequence. These spaces
generalize the spaces Z(A), for Z ={,c, ¢, introduced and studied by Kizmaz [6].

Let A = (A;) be a non-zero sequence of scalars. Then we define the following

sequence spaces for an Orlicz function M:

|AAx |

Co(M, A, A)={x=(x;): HIEHM( ) =0, for some p > 0},

. |AAx, — L]
c(M,A,A)={x=(x;): hIEnM(—) =0, for some L and p > 0},
0

| A x|

o (M,A,A)={x = (x;) : sup M( ) < 00, for some p > 0},
k

where AAx; = A X — Ajp1 Xy, forall k €N.
It is obvious that c,(M, A, A) C c(M, A, A) C L (M, A, A).
Throughout the paper X will denote one of the sequence spaces ¢, c and £ . The

sequence spaces X (M, A, A) are Banach spaces normed by

|AAX, |

) <1}

x|l = 121%,| +inf{p >0 SIipM(

Now we shall write A™!x, = x, —x,_;, for all k € N. It is trivial that (A4, x;) € X(M)
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if and only if (A™!4,x,) € X(M). Now for x € X(M, A, A™!), we define

: | A7 Ay
|x|[,-1 = inf{p > 0:supM(——— ) < 1}.
k P

It can be shown that X(M,A,A) is a BK-space under the norms ||.||, and [|.||,
respectively and it is obvious that the norms ||.||, and ||.||,-1 are equivalent.

Obviously A™! : X(M,A,A™Y) — X(M), defined by A™'x = y = (A7 A,x}), is
isometric isomorphism.

Hence c,(M,A, A7), c(M,A,A™1) and £ (M, A, A™1) are isometrically isomor-
phic to co(M), c(M) and £ (M) respectively. From abstract point of view X(M, A, A™1)
is identical with X (M), for X = ¢,,c and £ .

The results obtained in the next section also hold for the spaces c,(M,A, A™1),
c(M,A,A™") and £ (M, A, A™") as well as for the spaces associated with these three
spaces.

Now we define the spaces ¢,(M, A, A), ¢(M, A, A) and K;o(M,A, A) as follows:

¢o(M, A, A) is a subspace of c,(M, A, A) consisting of those x € c¢,(M, A, A) such
that

. | AL x|
hIEnM(T) =0 for each d > 0.

Similarly we can define ¢(M, A, A) and E;o(M ,\,A) as subspace of ¢(M,A,A) and
£ (M, A, A) respectively.

It is obvious that ¢(M,A,A) C ¢(M,A,A) C ENOO(M,A, A). Also as above we can
show that ¢,(M,A,A), ¢(M,A,A) and K;o(M ,\,A) are isometrically isomorphic to
Co(M), ¢(M) and E;o(M ) respectively.

Moreover X(M,A) € X(M,A,A) and X(M,A) € X(M, A, A) which can be shown
by using the following inequality:

Adx 1 A 1 [Ax
|AAy k|)< M(l k k|) M(| k+1Xk 1|).
2 2 2
P P

M(



H. Dutta / Eur. J. Pure Appl. Math, 2 (2009), (554-563) 558

2. Kothe-Toeplitz and Null Dual Spaces

In this section we compute Kothe-Toeplitz or a-dual and Null or N- dual of some
difference sequence spaces as described in the preceding section.

Let E and F be two sequence spaces. Then the F dual of E is defined as
Ef ={(x,)ew: (x,y,) €F forall (y,) € E}.

For F = {, and c,, the duals are termed as a-(or Kothe-Toeplitz) dual and N-(or
Null) dual of E and denoted by E* and E" respectively. If X C Y, then Y* C X* for

z=a,N.
Lemma 1. x € { (M, A, A) implies supM(Ik_lp#x"l) < 00, for some p > 0.
k
Proof. Let x € £ (M, A, A), then

ApXp — A X
supM(| ok Tkl k+1|)<oo, for some p > 0.
k P

Then there exists a U > 0 such that

| AkXk — Ags1Xps1l

P

M(

)< U, forall k eN.

Taking 1) = kp, for an arbitrary fixed positive integer k, by the subadditivity of mod-

ulus, the monotonicity and convexity of M:

A Xy — Api1X 1< A xp — A x
M(| 1X1 = Mg k+1|)<_ZM(| 1X1 = A l+1|)<U.
U k = P

Then the above inequality, the inequality

| A1 X1l 1 |24 211 = Aig1 Xpeqa

< ( k )

(k+1p " k+1 p kp

and the convexity of M imply
(|7Lk+1xk+1|) < 1 | 214 1211 = Mg Xpesa )

(M( )+ kM(
P

(k+1p " — k+1 kp
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|A14]

< max{M( ), U} < o0

Hence we have the desired result.

Lemma 2. x € { (M, A, A) implies supk*|A,.x;| < oo.
k
Proof. Proof is obvious by using Lemma 1.

Remark 1. Similar results as in Lemma 1 and Lemma 2 hold for K;o(M , A\, A) also,

where the statement for some p > 0’ should be replaced by for every p > 0’

For the next theorem, let D; = {a = (a;) : D, klklzlakl < oo}, D, = {b = (by) :
k=1

supk ™A, by | < oo}
k

Theorem 1. Let M be an Orlicz function. Then
(D) [c(M, A, A)]* = [€oo(M, A, A)]“ =Dy,

(ii) [6(M, A, A)]* = [£,(M, A, A)]* =D,
(iii) D} = D,.

o0
Proof. (i) Let a € Dy, then ». |k7L,:1ak| < 00. Now for any x € £ (M,A,A) we
k=1

have sup |k™* A, x| < co. Then we have
k

o0 o0
Z lag x| < sup |k~ A x| Z kA ay | < oo.
k=1 k k=1

Hence a € [{ (M, A, A)]°%.
Thus
D; C [£oo(M, A, A)]" (D

Again we know

[Eoo(Mj A: A)]a g [C(Ms Aa A)]a g [CO(M’ A; A)]a (2)
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o0
Conversely suppose that a € [c(M,A,A)]% Then ). |ayx;] < oo, for each x €
k=1
c(M,A,A). So we take
X = k;lk, k>1

then
o0 o0
Z kA g | = Z la,x,| < o0o.
k=1 k=1

This implies that a € D,. Thus
[c(M,A,A)]* € D,. 3
Combining (3) with (1), (2) it follows
[c(M, A, A)]* = [{(M,A,A)]* =D,

This completes the proof of part(i).
(ii) Proof is similar to that of part (i).
(iii) The proof of the inclusion D} 2 D, is similar to that of D, € [{ (M, A, A)]“.

For the converse part suppose a € D and a ¢ D,. Then we have
sup |kt Aa,| = o0
Hence we can find a strictly increasing sequence (k;) of positive integers k; such that
|kj_17tkjakj| > j2forall j >1
We define the sequence x by

_1 . _
B Iakj |, if k =k;
X =
0, otherwise
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Then x € D,, because
o0 o0 o0
“1, | — -1 -1 .2
E |kA x| = E ijlkj a | < E je<o0
k=1 j=1 j=1

o o0

Thus x € D; but Y, |agx;| = Y. lay,x;,| = 0o. This is a contradiction to a € Df.
k=1 j=1

Hence a € D,. This completes the proof.

If we take A, = 1, for all k € N in Theorem 1, then we obtain the following

corollary:.

Corollary 1. For X =cand {,
(1) [X(M, A)]* = [X(M, A)]* =H,,
(it) HY = H,,

where

H,={a=1(a,): Z |ka,| < oo}
k=1

and

H,={b=(b;) :suplk 'b,| < oo}.
k
For the next theorem, let G, = {a = (a;) : h;fn kA a, = 0}.

Theorem 2. Let M be an Orlicz function. Then
(l) [C(M’ A: A)]N = [eoo(Ma A: A)]N = Gl:
(i) [E(M, A, A)IY = [€(M, A, A)]Y = G,

Proof. (i) Proof is immediate using Lemma 2.

(ii) Proof is similar to that of part (i).

If we take A, = 1, for all k € N in Theorem 2, then we obtain the following

corollary:.
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Corollary 2. For X =cand {,
(@) XM, )]V = [X(M, 2]V = Ly,

where L, = {a = (q;) : lilgn ka, = 0}.

Theorem 3. If M satisfies the A,-condition, then we have X(M,A,A) = X(M,A,A),

forevery X =cy, cand (.

Proof. We give the proof for X = ¢, and for other spaces it will follow on applying

similar arguments.

To prove the theorem, it is enough to show that £ (M, A, A) is a subspace of
0 (M, A,A).
Let x € { (M, A, A), then for some p > 0,
| A x|

sup M( )< oo
k

Therefore

| A2 x|
M(————) < oo, for every k € N.
Jo}

Choose an arbitrary n > 0. If p < 1) then M(%) < oo for every k € N. Let now
n<pandputl:%>1.
Since M satisfies the A,-condition, there exists a constant K such that

| AL

AN X
A% k|)SK(B)I"gzKM(—)<ooforeveryk€N.
n P

M(

Now let us denote

|AAX |

S =supM( ) < o0, for the fixed p > 0.
k

Then it follows that for every ) > 0, we have

|AAx]

sup M( ) < k(2york g < oo,
k n
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