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Abstract. In this paper we try to find the finiteness conditions for union of two finite semigroups with
a specially defined binary equation. Moreover we find the ranks of the semigroup B(G, n).
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1. Introduction

Finiteness conditions of semigroups (the properties of semigroups which all finite semi-
groups have) have been considered for certain classes of semigroup constructions. (for exam-
ples see [1, 2]). In this paper periodicity, residual finiteness and solvability of word problem
of union of two finite semigroups are determined.

Let S and T be two finite semigroups with empty intersection. We define a binary equation
on S ∪ T as follows:
If s1 ∈ S and s2 ∈ S then s1.s2 is considered as the same operation defined on S. If t1 ∈ T and
t2 ∈ T then t1.t2 is considered as the same operation defined on T . If s ∈ S and t ∈ T then
st = ts = t. In [3] it is shown that any finitely presented semigroup S is embedded into an
inefficient semigroup, namely, the semigroup S∪SLn where SLn is the free semilattice of rank
n.

Let S be a finite semigroup. A subset U of S is called independent if, for every u in U , the
element u does not belong to the semigroup < U \{u}> generated by the remaining elements
of U (see [4]). In [5] Howie and Ribeiro introduced r1(S), r2(S), r3(S), r4(S) and r5(S)
defined as follows:

• r1(S) = max{k : every subset U of S of cardinality k is independent}

• r2(S) = min{k : there exists a subset U of S of cardinality k which generates S}
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• r3(S) = max{k : there exists a subset U of S of cardinality k
which is independent and which generates S}

• r4(S) = max{k : there exists a subset U of S of cardinality k which is independent}

• r5(S) = min{k : every subset U of S of cardinality k generates S}

Generally in [5], r1(S) is small rank, r2(S) is lower rank, r3(S) is intermediate rank, r4(S)
is upper rank and r5(S) is large rank. In [5] r5(Cn), r5(Tn) and r5(B(G, n)) are given. Here Cn
is the cyclic group of order n, Tn is the full transformation semigroup and B(G, n) is a Brandt
semigroup. In [5] it is also shown that all five ranks of the aperiodic Brandt semigroup Bn are
different. In this paper we examine r1(B(G, n)), r2(B(G, n)), r3(B(G, n)) and r4(B(G, n)).

2. Periodicity

Recall that a semigroup S is periodic if, for each s ∈ S the monogenic semigroup generated
by s is finite, or equivalently there exists positive integers m and n (depending on S) such that
sm = sn.

Theorem 1. Let S and T be finite semigroups. Then S and T are periodic if and only if S ∪ T is
periodic.

Proof. (⇒) Let S and T be periodic. Let x ∈ S ∪ T . Then x ∈ S or x ∈ T . If x ∈ S, since S
is periodic there exists ∃m, n ∈ N such that xm = xn. If x ∈ T , since T is periodic there exists
∃k, l ∈ N such that xk = x l . So S ∪ T is periodic.
(⇐) Let S ∪ T be periodic. Let x ∈ S. Since S ⊆ S ∪ T we have x ∈ S ∪ T . Since S ∪ T is
periodic there exists ∃k1, k2 ∈ N such that xk1 = xk2 . We obtain S is periodic. Let y ∈ T .
Since T ⊆ S ∪ T we have y ∈ S ∪ T . Since S ∪ T is periodic there exists ∃k3, k4 ∈ N such that
yk3 = yk4 . Thus T is also periodic.

3. Residual Finiteness

We call a semigroup residually finite if, for each pair s 6= t ∈ S there exists a homomor-
phism φ from S onto a finite semigroup such that φ(s) 6= φ(t), or equivalently, there exists
a congruance ρ with finite index (that is ρ has finitely many equivalence classes) such that
(s, t) /∈ ρ. (Residual finiteness of completely (0)-simple semigroups, which are Rees matrix
semigroups M[G; I , J , P] over groups was investigated in [2].)

Theorem 2. S ∪ T is residually finite if and only if S and T are residually finite.

Proof. (⇒) Assume that S∪T is residually finite. Since S and T are subsemigroups of S∪T
then S and T are residually finite.
(⇐) Assume that S and T are residually finite semigroups. We will show that S∪T is residually
finite. Let s1, s2 ∈ S∪T and s1 6= s2. Since S is residually finite there is a finite semigroup K and
an onto homomorphism φ : S→ K such that φ(s1) 6= φ(s2). Let Ψ : S ∪ T → K ∪ {0}. If x ∈ S
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let Ψ(x) = φ(x) and if x ∈ T let Ψ(x) = 0. Then Ψ(s1) = φ(s1) 6= φ(s2) = Ψ(s2). If s1, s2 ∈ S
then Ψ(s1s2) = φ(s1s2) = φ(s1).φ(s2). If t1, t2 ∈ T then Ψ(t1 t2) = 0 = ψ(t1).ψ(t2) = 0.0. If
s ∈ S and t ∈ T then Ψ(st) = Ψ(t) = 0=Ψ(s)Ψ(t). So Ψ is an onto homomorphism.

Let t1, t2 ∈ S ∪ T and t1 6= t2. Since T is residually finite there is a finite semigroup L and
an onto homomorphism θ : T → L such that θ(t1) 6= θ(t2). We define α : S ∪ T → L ∪ {1} as
follows. If x ∈ S let α(x) = 1 and if x ∈ T let α(x) = θ(x). It is clear that
α(t1) = θ(t1) 6= θ(t2) = α(t2). If s1, s2 ∈ S then α(s1s2) = α(s1).α(s2) = 1.1 = 1. If t1, t2 ∈ T
then α(t1 t2) = θ(t1 t2) = θ(t1).θ(t2). If s ∈ S and t ∈ T then
α(st) = α(t) = θ(t) = α(s).α(t) = 1.θ(t). So α is an onto homomorphism.

Let s, t ∈ S ∪ T and s 6= t. We define µ : S ∪ T → R2 = {a, b}. Here R2 = {a, b} is the right
zero semigroup with 2 elements and ab = b, ba = a. If s ∈ S let µ(s) = a and if t ∈ T let
µ(t) = b. We have µ(s) = a 6= µ(t) = b. If s1, s2 ∈ S then µ(s1s2) = a = µ(s1).µ(s2) = a.a = a.
If t1, t2 ∈ T then µ(t1 t2) = b = µ(t1).µ(t2) = b.b = b. If s ∈ S and t ∈ T then
µ(st) = µ(t) = b = µ(s)µ(t) = a.b = b. Thus µ is an onto homomorphism.

4. Solvable Word Problem

A semigroup S is said to have a solvable word problem with respect to a generating set A
if there exists a algorithm which, for any two words u, v ∈ A+, decides whether the relation
u = v holds in S or not. It is a well-known fact that, for a finitely generated semigroup S, the
solvability of the word problem does not depend on the choice of the finite generating set for
S. Thus we say that a semigroup S has a solvable word problem with respect to any finite
generating set.

Theorem 3. S∪T has solvable word problem if and only if S and T have solvable word problem.

Proof. (⇒) Let S ∪ T have solvable word problem. Since S and T are finitely generated,
let Y1 be generating set of S and Y2 be generating set of T . Then Y1 ∪ Y2 is a generating set
for S ∪ T . Let w1, w2 ∈ Y+1 . Since w1, w2 ∈ Y+1 ⊆ (Y1 ∪ Y2)+ and since S ∪ T has solvable
word problem there exists an algorithm which decides whether w1 = w2 holds in S∪ T . Since
w1, w2 ∈ Y+1 and Y1 is a generating set for S, the algorithm decides whether w1 = w2 holds
in S. So S has a solvable word problem. Similarly it is shown that T has a solvable word
problem.
(⇐) Assume that S and T have solvable word problem. Let X be a finite generating set
for S ∪ T . Then X1 = X ∩ S and X2 = X ∩ T are generating sets for S and T . The set
Z = {x1 x2 = x2, x2 x1 = x2 | x1 ∈ X1, x2 ∈ X2} is finite. For w1, w2 ∈ X+, if we apply some
necessary relations from Z we obtain w1, w2 ∈ X+ such that w1 = w′1 and w2 = w′2 holds in
T . w′i ∈ X+1 (i = 1,2) or w′i ∈ X+2 (i = 1, 2). If w′1 and w′2 are not elements of the same free
semigroup X+i (i = 1, 2) then w′1 = w′2 does not hold in S∪T . If w′1 and w′2 are in the same free
semigroup X+i (i = 1,2) there exists an algorithm which decides whether the relation w′1 = w′2
holds in S or T . Because S and T have solvable word problem. So S ∪ T has solvable word
problem.
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5. Ranks of B(G, n)

The semigroup B(G, n) = {1, 2, . . . , n} × G × {1, 2, . . . , n} ∪ {0} is the Brandt semigroup.
The binary operation on B(G, n) is defined as follows

(i, a, j).(k, b, l) = (i, ab, l) if j = k

0 if j 6= k

0.(i, a, j) = (i, a, j).0= 0.0= 0

In [5] r5(B(G, n)) is given. Now we define other ranks of B(G, n).

Lemma 1. Let B(G, n) be the Brandt semigroup. Let A be the minimum generating set of G.
Then r1(B(G, n)) = 1, r2(B(G, n)) = 2n.|A| and r3(B(G, n)) = 2n.|A|.

Proof. Let A be the minimum generating set of G. We show the set

B = {(1, a, j), (i, a, 1)|a ∈ A, 1≤ i ≤ n, 1≤ j ≤ n}

is the minimum generating set for B(G, n). For (i, g, j) ∈ B(G, n) we have

(i, g, j) = (i, a1, 1).(1, a2, 1).(1, a3, 1) . . . (1, am, j), (ai ∈ A, i = 1, 2, . . . m).

So B is a generating set for B(G, n). Let C be a generating set for B(G, n). Since
(i, a, 1) = (i, a, 1).(1, 1,1)(a ∈ A) and (1,1, j) = (1, 1,1).(1, 1, j). So we have B ⊆ C . Thus B is
the minimum generating set for B(G, n). We have r2(B(G, n)) = 2n.|A|.

Let D be a generating set for B(G, n) and assume that D is independent. Since D is
a generating set and B is the minimum generating set then B ⊆ D. Let (i′, g, j′) ∈ D B.
Let g = a′1a′2 . . . a′l(a

′
i ∈ A). Then (i′, g, j′) = (i′, a′1, 1).(1, a′2, 1)(1, a′3, 1) . . . (1, a′l , j′). This

contradicts with the assumption of D to be independent. So B is the unique independent
generating subset of B(G, n). Thus r3(B(G, n)) = 2n.|A|.

Let (i, g, j) ∈ B(G, n). If i = j then (i, g, j).(i, g, j) = (i, g2, j) 6= (i, g, j) unless g2 = g. If
i 6= j then (i, g, j).(i, g, j) = 0. So B(G, n) is not a band. Since r2(B(G, n)) 6=| B(G, n) | then
B(G, n) is not royal. (see [5]) So r1(B(G, n)) = 1.

In the following theorem we determine r4(B(G, n)).

Theorem 4. Let B(G, n) be a Brandt semigroup. Let r4(G) = k. Then r4(B(G, n)) = k+ 1.

Proof. Let U be the maximum independent subset of G. Since r4(G) = k then | U |= k. We
will show that U ′ = {(1, u, 1)|u ∈ U}∪{0} is the maximum independent subset of B(G, n). Let
(1, u, 1) = (1, u1, 1).(1, u2, 1)(u1, u2 ∈ U). Then u= u1.u2. Since U is independent then u= u1
or u = u2. We obtain U ′ is independent. Let U ′′ ⊆ B(G, n) be another independent set. We
have U ′ ∪ (S\U ′) = S = B(G, n). Let s ∈ S\U ′. Let

s = (i, g, j)(1≤ i ≤ n, g ∈ G\U , 1≤ j ≤ n).

Since g ∈ G\U then g = g1.g2(g1, g2 ∈ G, g1 6= g, g2 6= g). We have (i, g, j) = (i, g1, j).( j, g2, j)
and U ′′ = ((U ′∪{0})∩U ′′)∪ (U ′′∩ (S\U ′)). Since the elements of S\(U ′∪{0}) can be written
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as a product of two elements. So U ′′ ∩ (S\(U ′ ∪ {0}) = ;. Then U ′′ = (U ′ ∪ {0})∩ U ′′. So
U ′′ ⊆ (U ′ ∪ {0}). We obtain U ′ ∪ {0} is the maximum independent set.
So r4(B(G, n)) = k+ 1.

The studies on finiteness conditions of semigroups and ranks of semigroups may be ex-
panded to different classes of semigroups as future work.

References

[1] H. Ayık. Presentations and Efficiency of Semigroups. PhD thesis, 1998.

[2] H. Ayık. On Finiteness Conditions for Rees Matrix Semigroups. Czechoslovak Mathemati-
cal Journal, 55, 2005.

[3] H. Ayık, M. Minisker, and B. Vatansever. Minimal Presentations and Embedding Into
Inefficient Semigroups. Algebra Colloquium, 12:59–65, 2005.

[4] E. Giraldes and J.M. Howie. Semigroups of High Rank. Proceedings of the Edinburgh
Mathematical Society, 28:13–34, 1985.

[5] J.M. Howie and M.I.M. Ribeiro. Rank Properties of Semigroups II: the small rank and the
large rank. Southeast Asian Bulletin of Mathematics, 24:231–237, 2000.


