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Abstract. In this paper we try to find the finiteness conditions for union of two finite semigroups with
a specially defined binary equation. Moreover we find the ranks of the semigroup B(G, n).

2010 Mathematics Subject Classifications: 20M05

Key Words and Phrases: finiteness conditions, ranks, union

1. Introduction

Finiteness conditions of semigroups (the properties of semigroups which all finite semi-
groups have) have been considered for certain classes of semigroup constructions. (for exam-
ples see [1, 2]). In this paper periodicity, residual finiteness and solvability of word problem
of union of two finite semigroups are determined.

Let S and T be two finite semigroups with empty intersection. We define a binary equation

on SUT as follows:
If s; € S and s, € S then s;.5, is considered as the same operation defined on S. If t; € T and
ty € T then t;.t, is considered as the same operation defined on T. If s € S and ¢t € T then
st = ts = t. In [3] it is shown that any finitely presented semigroup S is embedded into an
inefficient semigroup, namely, the semigroup SUSL, where SL,, is the free semilattice of rank
n.

Let S be a finite semigroup. A subset U of S is called independent if, for every u in U, the
element u does not belong to the semigroup < U \ {u} > generated by the remaining elements
of U (see [4]). In [5] Howie and Ribeiro introduced r;(S), r5(S), r3(S), r4(S) and r5(S)
defined as follows:

o r;(S)=max{k: every subset U of S of cardinality k is independent}

e 15(S) =min{k : there exists a subset U of S of cardinality k which generates S}
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o r3(S)=max{k : there exists a subset U of S of cardinality k
which is independent and which generates S}

o r4(S)=max{k : there exists a subset U of S of cardinality k which is independent}
o r5(S)=min{k : every subset U of S of cardinality k generates S}

Generally in [5], r1(S) is small rank, r,(S) is lower rank, r3(S) is intermediate rank, r4(S)
is upper rank and r5(S) is large rank. In [5] r5(C,), r5(T,) and r5(B(G, n)) are given. Here C,
is the cyclic group of order n, T, is the full transformation semigroup and B(G, n) is a Brandt
semigroup. In [5] it is also shown that all five ranks of the aperiodic Brandt semigroup B,, are
different. In this paper we examine r(B(G,n)), r5(B(G,n)), r3(B(G,n)) and r4(B(G, n)).

2. Periodicity

Recall that a semigroup S is periodic if, for each s € S the monogenic semigroup generated
by s is finite, or equivalently there exists positive integers m and n (depending on S) such that
sm=s"

Theorem 1. Let S and T be finite semigroups. Then S and T are periodic if and only if SU T is
periodic.

Proof. (=) Let S and T be periodic. Let x e SUT. Thenx€Sorx e T. If x €8, since S
is periodic there exists 3m,n € N such that x™ = x". If x € T, since T is periodic there exists
3k,1 € N such that x* = x!. So SUT is periodic.

(<) Let SUT be periodic. Let x € S. Since S C SUT we have x e SUT. Since SUT is
periodic there exists 3k;,k, € N such that xX1 = x*2, We obtain S is periodic. Let y € T.
Since T €CSUT we have y € SUT. Since SU T is periodic there exists dk3, ks € N such that
y*s = yk4_ Thus T is also periodic. O

3. Residual Finiteness

We call a semigroup residually finite if, for each pair s # t € S there exists a homomor-
phism ¢ from S onto a finite semigroup such that ¢(s) # ¢(t), or equivalently, there exists
a congruance p with finite index (that is p has finitely many equivalence classes) such that
(s,t) ¢ p. (Residual finiteness of completely (0)-simple semigroups, which are Rees matrix
semigroups M [G;I,J,P] over groups was investigated in [2].)

Theorem 2. SU T is residually finite if and only if S and T are residually finite.

Proof. (=) Assume that SUT is residually finite. Since S and T are subsemigroups of SUT
then S and T are residually finite.
(<) Assume that S and T are residually finite semigroups. We will show that SUT is residually
finite. Lets;,s, € SUT and s; # s5. Since S is residually finite there is a finite semigroup K and
an onto homomorphism ¢ : S — K such that ¢(s;) # ¢(s,). Let ¥ : SUT - KU {0}. If x €S
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let ¥(x) = ¢(x) and if x € T let ¥(x) = 0. Then ¥(s;) = ¢p(s1) # P (s5) = ¥(sy). If 51,50 €S
then W(s;s9) = ¢(s159) = P(51).¢(sy). If t1,t5, € T then W(t ty) =0 = (t;).4(t,) =0.0. If
seSandteT then ¥(st) =W¥(t)=0=¥(s)¥(t). So ¥ is an onto homomorphism.

Let t1,t, € SUT and t; # t. Since T is residually finite there is a finite semigroup L and
an onto homomorphism 6 : T — L such that 8(t;) # 6(t,). We definea: SUT — LU {1} as
follows. If x € S let a(x) =1 and if x € T let a(x) = 6(x). It is clear that
a(ty) =0(ty) # 0(ty) = a(ty). If s1,59 €S then a(s;sy) = alsy).alsy)=1.1=1.If t1,t, €T
then a(t ty) = 0(tty) = 0(t;).0(ty). f s€S and t € T then
a(st)=a(t)=0(t) = a(s).a(t) =1.6(t). So a is an onto homomorphism.

Lets,t € SUT and s # t. We define u: SUT — R, = {a, b}. Here R, = {a, b} is the right
zero semigroup with 2 elements and ab = b, ba = a. If s € S let u(s) =a and if t € T let
u(t) = b. We have u(s) =a # u(t) = b. If s1,s, € S then u(s;s9) = a = u(s;).u(sy) = a.a =a.
If t1,ty € T then u(tty) = b =pu(t;).u(ty) =b.b=>b.Ifs€S and t € T then
u(st) =u(t) = b= u(s)u(t) =a.b =b. Thus u is an onto homomorphism. O

4. Solvable Word Problem

A semigroup S is said to have a solvable word problem with respect to a generating set A
if there exists a algorithm which, for any two words u,v € A*, decides whether the relation
u=1v holds in S or not. It is a well-known fact that, for a finitely generated semigroup S, the
solvability of the word problem does not depend on the choice of the finite generating set for
S. Thus we say that a semigroup S has a solvable word problem with respect to any finite
generating set.

Theorem 3. SUT has solvable word problem if and only if S and T have solvable word problem.

Proof. (=) Let SU T have solvable word problem. Since S and T are finitely generated,
let Y; be generating set of S and Y, be generating set of T. Then Y; UY, is a generating set
for SUT. Let wy,w, € Y;". Since wy,wy € Y;" € (Y; UY,)" and since SU T has solvable
word problem there exists an algorithm which decides whether w; = w, holds in SUT. Since
Wi, Wy € Y1+ and Y; is a generating set for S, the algorithm decides whether w; = w4 holds
in S. So S has a solvable word problem. Similarly it is shown that T has a solvable word
problem.

(<) Assume that S and T have solvable word problem. Let X be a finite generating set
for SUT. Then X; = X NS and X, = X N T are generating sets for S and T. The set
Z = {X1X5 = X5,X3X] = X5 | X; € X1,X, € X,} is finite. For wy,w, € X, if we apply some
necessary relations from Z we obtain wy,w, € X" such that w; = w] and w, = w;, holds in
T. wi e X{(i=1,2) or w/ € X (i =1,2). If w| and w), are not elements of the same free
semigroup X; (i = 1,2) then w} = wy, does not hold in SUT. If w] and wy, are in the same free
semigroup X l+ (i = 1,2) there exists an algorithm which decides whether the relation w} = w/,
holds in S or T. Because S and T have solvable word problem. So S U T has solvable word
problem. O
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5. Ranks of B(G,n)

The semigroup B(G,n) = {1,2,...,n} x G x {1,2,...,n} U {0} is the Brandt semigroup.
The binary operation on B(G, n) is defined as follows

(i,a,j).(k,b,1)=(i,ab,l) if j=k
0if j #k
0.(i,a,j)=(i,a,j).0=0.0=0
In [5] r5(B(G, n)) is given. Now we define other ranks of B(G, n).

Lemma 1. Let B(G,n) be the Brandt semigroup. Let A be the minimum generating set of G.
Then r{(B(G,n)) =1, ry(B(G,n)) = 2n.|A| and r3(B(G,n)) = 2n.|A|.

Proof. Let A be the minimum generating set of G. We show the set
B={(1,a,j),(i,a,1)la€A1<i<n1<j<n}
is the minimum generating set for B(G,n). For (i, g, j) € B(G,n) we have

(i: g)_]) = (17 al: 1)'(15a25 1)'(1)a3) 1) LR (13am!j): (ai GA)l = 1)21 oo m)'

So B is a generating set for B(G,n). Let C be a generating set for B(G, n). Since
(i,a,1)=(i,a,1).(1,1,1)(a€A) and (1,1,j)=(1,1,1).(1,1, ). So we have B € C. Thus B is
the minimum generating set for B(G,n). We have r,(B(G,n)) = 2n.|A|.

Let D be a generating set for B(G,n) and assume that D is independent. Since D is
a generating set and B is the minimum generating set then B € D. Let (i’,g,j’) € D B.
Let g = ajay...aj(a; € A). Then (i,g,j') = (i’,a],1).(1,a3,1)(1,a3,1)...(1,a;,j'). This
contradicts with the assumption of D to be independent. So B is the unique independent
generating subset of B(G,n). Thus r3(B(G,n)) = 2n.|A|.

Let (i,g,j) € B(G,n). If i = j then (i,g,j).(i,g,j) = (i,g2%,j) # (i, g, j) unless g2 = g. If
i # j then (i, g,j).(i,g,j) = 0. So B(G,n) is not a band. Since ro(B(G,n)) #| B(G,n) | then
B(G,n) is not royal. (see [5]) So r;(B(G,n))=1. O

In the following theorem we determine r4(B(G, n)).
Theorem 4. Let B(G,n) be a Brandt semigroup. Let r4(G) = k. Then r4(B(G,n)) =k + 1.

Proof. Let U be the maximum independent subset of G. Since r4(G) =k then | U |= k. We
will show that U’ = {(1,u, 1)|u € U} U {0} is the maximum independent subset of B(G, n). Let
(1,u,1) =(1,uq,1).(1,usy, 1)(uy,uy € U). Then u = u;.u,. Since U is independent then u = u,
or u = u,. We obtain U’ is independent. Let U” C B(G,n) be another independent set. We
have U’ U (S\U’) =S =B(G,n). Lets € S\U’. Let

s=(i,g,j))(1<i<ngeG\U1<j<n).

Since g € G\U then g = g,.8(81,82 € G, &1 # &, 82 # §)- Wehave (1, 8,) = (i, 81,1)-(J, &2, J)
and U” = (U'u{oH)NnU")u(U”N(S\U")). Since the elements of S\(U’ U {0}) can be written
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as a product of two elements. So U” N (S\(U' U {0}) =0. Then U” = (U’ u{0})nU". So
U” € (U' U {0}). We obtain U’ U {0} is the maximum independent set.
So r4(B(G,n)) =k +1. O

The studies on finiteness conditions of semigroups and ranks of semigroups may be ex-

panded to different classes of semigroups as future work.
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