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Affine Subspaces of the Lie Algebra se(1,1)
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Abstract. We classify the full-rank affine subspaces (resp. parametrized affine subspaces) of the semi-
Euclidean Lie algebra se(1,1). The equivalence relations under consideration are motivated by the
study of invariant control affine systems. Exhaustive lists of equivalence representatives are obtained,
along with classifying conditions.
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1. Introduction

A left-invariant control affine system, evolving on a (real, finite-dimensional) Lie group,
consists of a family of left-invariant vector fields and a class of “admissible controls”. The
family of vector fields is affinely parametrized by the control values. A (typical) control is a
piecewise continuous curve u(-) in some control set R¢. Such a control system on a (matrix)
Lie group G is written, in classical notation, as (cf. [11, 16])

g=g(A+u1B1 +U2Bz+"'+UKBg), geG,UERZ. (1)

Here A, B4, ..., B, are elements of the Lie algebra g. These systems provide a fertile geometric
setting for various problems in mathematical physics, mechanics, elasticity, and differential
geometry [3, 8, 10].

There are two natural equivalence relations for left-invariant control affine systems, namely
state space equivalence and detached feedback equivalence (cf. [9, 15]). These equivalence
relations are significant in that they establish a one-to-one correspondence between the tra-
jectories of equivalent systems. Two systems are state space equivalent if one can smoothly
transform one system into the other, while keeping the controls fixed. For detached feed-
back equivalence (a weaker equivalence relation), invariant feedback transformations of the
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controls are also permitted. It turns out that these two equivalence relations can be entirely
characterized at the level of Lie algebras [4]. More precisely, two systems are state space equiv-
alent (resp. detached feedback equivalent) if and only if the associated parametrized affine
subspaces (resp. affine subspaces) are related by a Lie algebra isomorphism. (For a system
(1), the associated parametrized affine subspace is given by Il : u — A+ uB; + --- + By,
whereas the associated affine subspace is given by I' = A+ (By,...,B;).) Several classes of
systems have recently been classified under these equivalence relations [1, 2, 5-7].

In this paper we classify, under the aforementioned equivalence relations, the parametrized
affine subspaces (resp. affine subspaces) of the semi-Euclidean Lie algebra se(1,1). We clas-
sify first the affine subspaces of se(1, 1). Using these results, we then classify the parametrized
affine subspaces. Both classifications are organized by distinguishing between the homogene-
ity and dimension of the affine subspaces involved. Exhaustive lists of class representatives
are obtained, along with associated classifying conditions. A tabulation of the main results is
appended.

2. Affine Subspaces and Equivalence

An (-dimensional affine subspace of a Lie algebra g is written as
I=A+T°=A+(By,...,B) )

where A,B;,...,B; € g and By, ...,B, are linearly independent. If A € I'° we say that T is
homogeneous; otherwise, it is inhomogeneous. T is referred to as an (¢, 0)-affine subspace if it
is homogeneous, and as an (£, 1)-affine subspace, otherwise. We say that two affine subspaces
' and I are £-equivalent if there exists a Lie algebra automorphism ) such that)-T' =T". Note
that T =A+T° and I" = A’ + I'° are £-equivalent if and only if there exists an automorphism
1 suchthaty -T°=T"" and ¢ -A€T".

A related concept is that of a parametrized affine subspace, i.e., an (injective) affine g-
valued map. More precisely, an £-dimensional parametrized affine subspace is a map

M:R'—g, (ug,...,u))—A+u;B;+---+1u,B,

where By, ..., B, are linearly independent. Whenever convenient, we shall specify IT by simply
writing IT : A4+ u;B; + -+ u;B;. We say that two parametrized affine subspaces IT and I1’
are P-equivalent if there exists an automorphism v € Aut(g) such that ¢ o IT1 = IT’. Clearly
IT:A+uyBy +- - +uyBy is P-equivalent to I1" : A" +uy B} +- - - +u,B, if and only if there exists
an automorphism 1) such that v -A=A" and +) - B; = B.

An affine subspace is said to have full rank if it generates the entire Lie algebra. (For control
systems on Lie groups, the full-rank condition is necessary for controllability). Similarly, a
parametrized affine subspace has full rank if its image has full rank. The full-rank property is
invariant under both £-equivalence and B-equivalence. Throughout, we assume that all affine
subspaces (resp. parametrized affine subspaces) under consideration have full rank.
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3. Classification

The (real) three-dimensional semi-Euclidean Lie algebra

0O O O
s5¢(1,1) = X1 0 Xx3|:xp,X9,x3€ER
X5 x3 O
has standard basis
0 0O 0 0 O 0 0O
E,=|1 0 0|, E;,=|0 0 Of, E3=|0 0 1
0 0O 1 0 0 010

The commutator relations are given by
[Ey,Es]=—E;, [E3,E;]=E,, [E,E;]=0.

Remark. se(1,1) is the Lie algebra of the semi-Euclidean group. This matrix Lie group is the
group of motions of the Minkowski plane R%'. The signature (—1,1) for the Lorentz metric
corresponds to the standard basis (Eq, E,, E3), whereas the signature (1,—1) corresponds to the
(Bianchi-Behr) basis (E;, E5,—E3) [12-14].

With respect to the standard basis (E;, E,, E3), the group of automorphisms Aut (se(1,1))
takes the form

X y v
¢y ¢x wl:iv,wx,y €R,¢ce{—1,1}, x? # y?
0O 0 ¢

The subsets (E;, E,) and (E; + E5) U (E; — E,) are invariant.

We now classify, under £-equivalence (resp. B3-equivalence), all full-rank affine subspaces
(resp. parametrized affine subspaces) of se(1,1). We outline the approach followed in classi-
fying these objects. First, we distinguish between the dimension and the homogeneity of the
affine subspaces; this yields four types of affine subspaces. The invariant subsets allow us to
distinguish between various (families of) equivalence classes. In each case, we simplify an
arbitrary affine subspace (resp. parametrized affine subspace) by successively applying au-
tomorphisms. Finally, we verify that all the candidates for class representatives are distinct
and not equivalent. Families of representatives are typically parametrized by constants a > 0,

B =(B;) and v = (y;), where ; #0, y; € R.

Remark. On se(1,1) (in fact, on any three-dimensional Lie algebra), the full-rank condition for
an affine subspace (2) can be characterized as follows. No (1,0)-affine subspace has full rank.
A (1,1)-affine subspace has full rank if and only if A, By and [A,B;] are linearly independent,
whereas a (2,0)-affine subspace has full rank if and only if By, By and [By,B,] are linearly
independent. Also, it is clear that any (2, 1)-affine subspace or (3,0)-affine subspace has full
rank.
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3.1. Affine Subspaces

We begin by classifying the affine subspaces of se(1,1). Such a classification has been
obtained elsewhere [7]. However, for the sake of completeness, we include full proofs here.
We denote by E; the corresponding element of the dual basis.

Theorem 1. Any (1, 1)-affine subspace T = A+ T is £-equivalent to exactly one of the following
affine subspaces

IV =E +(Bs)  Ej(I°)#{0)
{r“ V= aFy+(E) EXT°)={0}.
Here a > 0, with different values of the parameter yielding distinct (non-equivalent) class repre-
sentatives.

Proof. Suppose that E3(I'°) # {0}. Then I' = a;E; + ayE, + (b1 E1 + byEy + E3) and

a1 as

——2 0
-} aj—a 1 0 —by -
_a2_2a2 az_laz 0 01 _bZ -I'= El + <E3) — 1"1 s ;
1 %2 17 %
0 0 1110 0 1

as I has full rank, we have a% 7+ ag. Thus T is £-equivalent to I‘(ll’l) .
Suppose E;(FO) = {O} ThenT = a]_E]_ + azEz + a3E3 + (b]_E]_ + szz) and

by b,
- 0 _a
sb2n(a2)b s nb(%a_)bb% Lo gg (1,1)
S T 0 0 1 —2| T=laslEs+(E) =Ty,
O 0 sgn(as) 00 1

where a = |as| > 0. Due to the full-rank assumption, we have b% # b%. Hence I is £-equivalent
(L,1)
o'y,
2,a

1,1) 1)

As (E;,E,) is an invariant subspace, Fg cannot be £-equivalent to 1"(21(’1 . It is easy to
show that th’xl) and Fg(’xl,) are L£-equivalent only if a = a’. O

If ' = (A, B) is a (2, 0)-affine subspace, then A+ (B) is a (1, 1)-affine subspace and hence is
£-equivalent to either 1“(1 Dorr al) Thus I' is £-equivalent to ( (11’1)> or ( it D) Accordingly,

we get the following class1ﬁcat10n of (2, 0)-affine subspaces.
Corollary 1. Any (2,0)-affine subspace is £-equivalent to T>0) = (E;, Es).

Theorem 2. Any (2, 1)-affine subspace T = A+T? is £-equivalent to exactly one of the following
affine subspaces

r(lll) = E, + (E1,E3) EX(T°) #{0}, Ey +E, ¢ T° and E; —E, ¢ IT°
TV = By + (E; + Ey, B5)  EX(T°) # {0}, Ey + Ey €T or E; —E, € T°
r(2 Y=aE; +(E,E)  EXT°)={0}.

Here a > 0, with different values of the parameter yielding distinct (non-equivalent) class repre-
sentatives.



D. Barrett, R. Biggs, C. Remsing / Eur. J. Pure Appl. Math, 7 (2014), 140-155 144
Proof. Suppose that E5(T°) # {0}, E; + E, ¢ T° and E; — E, ¢ T°. Then

with b% # b%. Hence

1 0 —C1
F/: 01 —Cy -1"=a1E1 +02E2+ <b1E1 +b2E2,E3>
0 0 1

where bya, —a, by # 0 (as T is inhomogeneous). Consequently

bi—b2 by __b
pop—— 0 o| | =z ~“mz ©
b2—p2 by é1 T/
0 —1 2_ 0 —T3 3 22
b1a2—a1 b2 bl b2 bl bZ
0 0 1 0 0 1
ab,—a,b b2 — b2
:—1 2 2 2E1+E2+ —1 2 E]_,EB
biay —a; by biaz—a; by

2,1
=Ey +(Ep, E3) = F(l ),

Thus T is £-equivalent to 1"(12’1).
On the other hand, suppose that E3(T°) # {0} and E; + E, € T°. Then

I'= a1E1 + azEz + <E1 :l:Ez, b1E1 + b2E2 + E3>

and
1 0 —b
I'=|0 1 —by| -T=ayE; +ayEy+ (E; £Ey, Es)
00 1

where a; F a, # 0 (as I is inhomogeneous). Therefore

zal 2 - za2 2 0
4174y a4y a, Fa
a a / 1 2
T af_zag + a%_lag 0| -I"'=E + < 2 a2 (E1 + Ep), £E3
1 2
0 0 +1

2,1
=Fy + (Ey + By, E3) = T3V,

Thus I is £-equivalent to 1"(22’1).
Lastly, suppose that E5(I'°) = {0}. Then T = a3E; + (Ey, E,) and

1 0 0
0 sgn(as) 0 ‘T = lag|Es + (Eq, sgn(as)Ey) = Fg&l)
0 0 sgn(as)
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(2,1)
3,a °

As (Eq,E,) and (E; + E,) U (E; — E,) are invariant subsets, no two of 1"(12’1), 1“(22’1) and
r@n (2,1) 1)

3,a 3,a 3,a’
a=a. O

where a = |az| > 0. Hence T' is £-equivalent to T

are £-equivalent. It is a simple matter to show that I' is £-equivalent to T’ only if

Remark. There is only one (3,0)-affine subspace, namely se(1, 1) itself.

3.2. Parametrized Affine Subspaces

When convenient, a parametrized affine subspace specified by

3 3 3 3
IT: ZaiEi + uq Z biEi +U2ZCiEi + U3ZdiEi
i=1 i=1 1 i=1

i=
will be represented (in matrix form) as

a | by ¢ dy
as | by ¢y dy
as | bs c3 ds

Since any automorphism 7 is identified with its matrix, the composition 1) o IT becomes a
matrix multiplication.
We begin by classifying the parametrized (1, 1)-affine subspaces.

Theorem 3. Let I1 be a parametrization of a (1, 1)-affine subspace T'.

(i) IfTis L£-equivalent to 1"(11’1), then Il is *P-equivalent to exactly one of the following parametrized
affine subspaces
1,1
H(l,a,g’ . E]. + Y1E3 + u(aEg).

(i) IfTis L£-equivalent to F(Zl(’xl), then I1 is P-equivalent to exactly one of the following parametrized
affine subspaces
1'[9(’11) : aE; +uk;.

Here a > 0 and v, € R, with different values of these parameters yielding distinct (non-equivalent)
class representatives.

Proof. LetII: Z?:l a;E;+u 2?21 b;E;. By Theorem 1, T is £-equivalent to 1“(11’1) =E;+(E3)
or F(Zi’ll) = aE;+ (E;).
(i) Suppose that I' is £-equivalent to F(ll’l). Then b; # 0 and

b
1 0 5 a; | by a;| 0
0 sgn(bs) —% a, | by | = aé 0

0 0 sgn(bs) as | by ay | |bs]
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(for some a},as,a; € R). Since T is £-equivalent to F(ll’l), we have a; # 0, a, # 0 and
(a))* # (a})*. Accordingly,

a al

@@y ~@ear O[] o 10
mcr=cadiice=coaNCH I e IR Rl B
a; )*—a a; )-—(a
1 0 2 1 0 2 1 aé |bs| v1 | @
where a = |b3| > 0 and y; = aj € R. Thus II is ‘B-equivalent to H(llali

(ii) Suppose that T' is £-equivalent to F(zi’xl). Then b; =0, a; # 0, b% # b% and

1 0 —Z_; a | by 0 by
0 sgn(as) _sgn(aags)az a, | by | = 0 | sgn(as)b,
0 0 sgn(as) az| O |as] 0
Furthermore,
b sgn(as)b
b%_lb2 — b%_3b§2 0 0 by 0]1
_sgnz(agszbz 2b1 . 0 0 Sgn(a3)b2 = 010
b2—p2 bi—b3 |as| 0 al|o0
0 o 1 °

(1,1
2, °
)

By Theorem 1, F(ll’l) and F(zi’xl) are not £-equivalent. Hence H%&l’r

where a = |as| > 0. Thus II is 3-equivalent to II
is not ‘PB-equivalent to
. su here exi A 1,1)) such th D =D Th

54 - Suppose there exists Y € Aut (se(1,1)) such that ¢ o = . Then

La,r Loy
x+vy; | va 1] 0
cy +wy; |wa | = 0] O
sr1 | sa Ty | o

(for some v,w € R, x2 # y? and ¢ € {—1,1}) which implies that a = o/, c =1 and y = 7’. If
Yo Hgl&l) = Hgl(’xl,) for some automorphism v, then

ya | x 0|1
walcy |=1] 010
ca| 0 a |0
and so a =a’. O

If IT : A4+ uyB 4+ u,C is a parametrized (2,0)-affine subspace, then u — B 4+ uC is a
parametrized (1,1)-affine subspace, and hence is ‘B-equivalent to H(llal,)f or Hggj). We use
this fact to arrive at the following classification of the parametrized (2, 0)-affine subspaces.
These representatives parametrize 10,
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Corollary 2. Let IT : Z?:l @E; +uy Z‘?:l b;E; + uy Zig:l ¢;E; be a parametrized (2,0)-affine
subspace. II is P-equivalent to exactly one of the following parametrized affine subspaces

2,0

H(l,a% :Y1E1 +v2E3 +ug(Eq + v3E3) tug(aks) c3 #0
2,0) . _
H(Z,a,’)’ . YlEl + '}/zEg + ul(aEg) + U.2E1 C3 = 0.

Here a > 0 and y1,72,Y3 € R, with different values of these parameters yielding distinct (non-
equivalent) class representatives.

We now proceed to the classification of the parametrized (2, 1)-affine subspaces.

Lemma 1. Let X = Z?zl x;E;, Y = 2?21 ¥;E; and Z = z3E; be linearly independent elements of
se(1,1) and let o € {—1,1}.

() Ifyl2 # yzz, then there exists 1 € Aut (se(1, 1)) such that

x] 1 0
Y-X=|oxy|, $-Y=| 0|, ¥-Z=| 0
X3 OYs 023

for some x7,x; €R.

(i) Ifyl2 = yzz and x% #* xg, then there exists p € {—1,1} and ¢ € Aut(se(1,1)) such that

x] 1 0
Y-X=| 0|, v Y=|po|, Yv-Z=| 0
OX3 OY3 023

for some x| €R.

(iii) Ify12 = y22 and x% = x%, then there exists p € {—1,1} and ¢ € Aut(se(1,1)) such that

1 1 0
vX=| - |, v-vy=| o |, v-z=| 0
oQoxX3 QY3 ofer

Proof. (i) Suppose that y? # y2. Then

Y1 __ Y 0 /
ylzgﬁfgz }élzﬂyg x; y; O xl/ 1 0
— 0 X 0| =]ox 0 0
vy yiy? 2 )2 2
0 0 o X3 Y3 23 OXxX3 O)y3 Oz3

(ii) Suppose that y? = y2 and x? # x2. Let yo = y; # 0. Then y, = +y, and

le 2 - 2X2 2 0 0 1 / 0
xl—xxz xlx—xz X1 Yo Yo
2 1 — /
q:x%_xé ixf—x% 0 X9 Eyo 0| = O Yo 0
0 0 +1 X3 Y3 23 *x3 +y3 =23
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Furthermore,
1
wy 0 0 1y, O x/ 1 0
/
0 :l:}%,) 0 0O Yy O0]|=|0 po O
0 0 =o +x3 +y3 *z3 OX3 0OYys 023

where p = £1. (The composition of these two automorphisms yields 1).)
(iii) Suppose that ylz = y§ and x% = xg. Let yo = y; # 0 and xy = x; # 0. Then (since X
and Y are linearly independent) y, = £y, and x5 = Fx,. We have

1
y_o O 0 XO yo 0 X(/)/ 1 0
0 5 0| |Fx ¥ O|=|-xg 1 0
0 0 +1||x3s y3 =23 tx3 Eys *z
Moreovet,
x4+1 xg—1
Zoxé 20x 0 x(/) 1 0 1 ! 0
oley1)  olxgt) ol|=x 1 0 |=]| o g 0
2x; 2x; x5 £y; £z, opx3 0RYys 0Qz3
0 0 o
where p = £1. D

Theorem 4. Let II : Z?:l a;E; +u; Z?:l b;E; + u, Zis:l c;E; be a parametrization of a (2,1)-
affine subspace T.

(1) IfTis L-equivalent to T
affine subspaces

{1‘[(2 Dy Ey + BrEy + YoEs + uy (Ey + 13Es) + ug(aEs) 3 #0

(1) , then I1 is P-equivalent to exactly one of the following parametrized

T
H(gzali V1B + BiEy +y2Es + uy(aEs) + uyEq c3=0.

(ii) IfT is L£-equivalent to 1“(2 D

affine subspaces

, then I1 is P-equivalent to exactly one of the following parametrized

ngﬁl)y B1E1+y1E3 +ui(Ey + Ex +72E3) +us(BaEs) ¢33 #0, (alcs_agcl) # (azcs_agcz)

2,1 = =
HE”})Y Ey—Ey+y1E3 +u (Ey + Ey + yoE3) +us(B1E3) c3 #0, (ach a3cl) _(a2c3 a3c2)
2,1 bs—azb bs—ash
H_E;,;)}, B1E1 + y1E3 + u1(B2Es) + up(E; + Ey) c3=0, (al = 1) #(az o 2)
2,1 bs—asb bs—asby \2
(6,,5} tEy—Ey +71E3 + w1 (B1E3) +up(Ey + Ey) g =0, (% 3b3a3 1) = (& 3b3a3 2)”.

(iii) IfT is £-equivalent to ng&l)’ then I1 is P-equivalent to exactly one of the following parametrized
affine subspaces

2,1
1_[(7 a,) 7 ﬂ1E3 + ul(YlEl + aEg) + qul C% ;é c%

H(Z V) BiEs +uy (BoEr) + up(Ey + Ep) 2= c§, b? # b3
(2 D BBy + 1y (Ey — Bo) +ug(Ey +Ey) 3 =cZ, b2=Db3.
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Here a > 0, f; # 0 and y; € R, with different values of these parameters yielding distinct (non-
equivalent) class representatives.

Proof. By Theorem 2, we have that T is £-equivalent to I‘(lz’l) = Ey + (E1, E3),
21 2,1
IV = By + (Ey + By, By) or IS = aEs + (Ey, Ey).
3

(i) Assume T is £-equivalent to F(lz’l). The affine subspace Z?zl b,E; + ( Zizl cl-Ei> has full
rank (as (Ej, E3) has full rank) and so the parametrized affine subspace

u— 23: b,E; + uzgzciEi
i=1 1

i=

(1,1) (1,1)
Lo,y or 1_[2,& ?

1)
lLa,B,r
when c; = 0. As I1 is inhomogeneous, f3; # 0.

is P-equivalent to TI by Theorem 3. It follows that IT is 3-equivalent to II
(2,1)

2,a,B,7
(i) Assume T is £-equivalent to F(Zz’l) (in this case bs # 0 or c3 # 0). Suppose that c3 # 0.

Then

when c5 # 0 and IT is 3-equivalent to II

10 _(C:_; a, bl C1 all bll 0
01 _z—i a2 bz C2 = aé bé 0
0 0 1 as | bs ¢ as | bs ¢

a;c3—asc a5C3—a3C: . . 2,1
= a, = 22 and b,b; € R. As T is £-equivalent to Fg ) we have

(b))?* = (b)*. Suppose (a})* # (ay)*. By the lemma (with X = a}E; + ayE, + a3Es,
Y = blE; + byEy + b3E; and Z = c3E3) there exists 1) € Aut(se(1,1)) such that

where a] =

a’1 b’1 0 pi11 O
Y - aé bé 0 | = O[1 O
as | by ¢ 1| Y2 B2

for some f;,8, # 0 and y;,7, € R. Therefore II is B-equivalent to H(szl)T. On the other

hand, suppose that (a})* = (a})?. By the lemma (with X, Y and Z as before) there exists
1 € Aut(se(1,1)) such that

a’1 b’1 0 1 1 O
Y- a; b; 0O |=|-1|1 o0
as | bs ¢ 71| Y2 B

for some f3; # 0 and y1,Y, € R. Hence II is 3-equivalent to ngkl)y .
Suppose that c3 = 0. Then b # 0 and

— L / /
bs a | by ¢ a; | 0 ¢

1 O
01 —32 ay | by ¢ |=1]ay| 0 ¢
00 1 az | by O as | bs 0O
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where a] = alb+3b1a3, a, = % and c},c; € R. Since I' is £-equivalent to ng,l , we have
(c})* = (c5)*. Suppose that (a;)* # (a})*. By the lemma (with X = a{E; + a}E, + a3Es,
Y =c1E; +c,E, and Z = b3 Ej), there exists 1) € Aut(se(1,1)) such that

)

a;| 0 ¢ Bl 0 1
Y-l ay| 0 ¢ |=[ 0|0 1
as | bs O 1By O

for some f3;, B # 0 and y; € R. Thus II is ®3-equivalent to H(szbl)y' On the other hand, suppose

that (a})* = (a})*. By the lemma (with X, Y and Z as before), there exists ¢ € Aut (se(1,1))
such that

a o 10 1
Y-l ay| 0 ¢ |=|-1|0 1
as | bs O 71 |B1 O

(2,1
6.6.r"

(ii1) Assume T is £-equivalent to ng(’;) (in this case, by = c3 = 0 and a5 # 0). We have

for some f3; # 0 and y; € R. Hence II is 3-equivalent to I1

10 _Z_; ag bl C1 0 bl C1
0 1 —Z_i as bz Cy = 0 b2 Co
00 1 a |0 0 a |0 0

Suppose that cf # cg. By the lemma (with X = bE; + byEy, Y = c1E; + ¢3E5 and Z = a3Es3),
there exists 1 € Aut(se(1, 1)) such that

0 b1 C1 0 Y1 1
7’0 . 0 b2 C2 = O a O
as 0 0 [51 0 0

(2,1)
17 .
NN
Suppose that cf = cg and b% # b%. By the lemma (with X = b1E; + byE,, Y = c1E; +¢,E,

and Z = a3E;), there exists ¢ € Aut(se(1, 1)) such that

for some a > 0, 8, # 0 and y; € R. Therefore II is P3-equivalent to

0 b]. Cq1 0 ﬁz 1
'l]b . 0 bz Cy = 0 0 1
as 0 0 ﬂl 0 0

for some 31, B, # 0. Thus IT is B-equivalent to ngi;),

Suppose that cf = c§ and b% = b%. By the lemma (with X = b;E; + byE,, Y = ¢1E; + c9Es
and Z = a3E;), there exists ¢ € Aut(se(1, 1)) such that

0|b o 01 1
/lp . 0 bz Cy = 0 -1 1
as 0 0 ﬁl 0 0
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for some f3; # 0. Hence II is ‘B-equivalent to 1'[(92;),

Clearly, parametrized affine subspaces corresponding to different (2, 1)-affine subspace
class representatives (I‘(2 1) F(2 D and I‘(z 1)) cannot be PB-equivalent. No two families in case
(1), case (ii) and case (iii) are ‘]3 equ1valent as the subsets (E;, E5) and (E; + Ey) U (E; — E5)
are invariant. For each family, it is straightforward to verify that two representatives are 33-
equivalent only if their parameters are equal. O

Suppose I1 : A+ u;B + u,C + u3D is a parametrization of a (3, 0)-affine subspace I'. We
shall denote by II the parametrization II : B 4+ u;C + u,D of the associated affine subspace
T'=B+(C,D). As Il is a parametrized (2, 1)-affine subspace, it is 93-equivalent to exactly one
of the representatives listed in Theorem 4. Accordingly, we get the following classification of
parametrized (3, 0)-affine subspaces (we again use Theorem 2, the classification of (2, 1)-affine
subspaces, to organize the results).

Corollary 3. LetIT : Z?Zl a;E;+u,y Zis=1 b;E;+u, Zis=1 ¢;Ej+ug Z?zl d;E; be a parametrization
of a (3, 0)-affine subspace T.

() IfTis L-equivalent to F(lz’l), then I1 is P-equivalent to exactly one of the following parametrized
subspaces

H(3 023 g 2uim ViBi t uy(y4Eqy + B1Ey + vsE3) + uy(Ey + v6Ey) +ug(aE;) ds #0
H(zsaoﬁ ’ Zl 1 YiEi +ui(v4Eq + B1Ey + vsE3) + up(aEs) + usEy ds =0

(ii) IfT is £-equivalent to ng’l), then I1 is P-equivalent to exactly one of the following parametrized
subspaces

( Hf’,f)T Z?zl ViEi +uy(BrEq + v4E3) + up(Ey + Eo + vsE3) +us(ByE;)
d3 ?é 0, (b1d3d—3b3d1 )2 7& (b2c13d—3b3d2 )2
1'[23,;))7 : 21-3:1 ViEi +uy(Ey — Ey + v4E3) + up(Ey + Ey + v5E3) + ug(fBE3)
T o0, (g ) = (g
Hogy: Duica YiEi +uy(B1Ey +74E3) + up(BoEs) + uz(E; + Es)
ds =0, (blcgc—sbgcl )2 ?é (b2536—3b3c2 )2
o . Z?Zl ViE; +uy(Ey — Ey + v4E3) + up(B1 Es) + ug(E; + Ep)

o ds=0 (bICS_b3C1 )2 _ (b2c3—b3c2 )2
\ 3=0, S = 5 .

(i) IfT is £-equivalent to ng&l)’ then I1 is *P-equivalent to exactly one of the following parametrized
subspaces
3
o r > VB w (BrEs) + ug(y4Ey + aBy) + uzEy  dF £ d2
3,0
Hé Bor Zl 1 YiEi +ur(BrE3) +uy(BoEqy) +us(Ey + Ey) d2 d2 C% # C%
H(3 ). Zl 1}/1E +u1(ﬂ1E3)+u2(E1 E2)+U3(E1 +E2) d2 d2 Cl _Cé.
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Here a > 0, f; # 0 and y; € R, with different values of these parameters yielding distinct (non-
equivalent) class representatives.

4, Final Remark

In this paper we classified, under £-equivalence (resp. ‘B-equivalence), the affine sub-
spaces (resp. parametrized affine subspaces) of the semi-Euclidean Lie algebra se(1,1). This
can be interpreted as a classification, under detached feedback equivalence (resp. state space
equivalence), of left-invariant control affine systems on the semi-Euclidean group SE(1,1)
(i.e., the connected matrix Lie group with Lie algebra se(1,1)). For instance, by corollary 1,
any two-input homogeneous system (1) on SE(1,1) is detached feedback equivalent to the
system ¢ = g(u;E; + uyE;). Likewise, by Corollary 2, any homogeneous two-input system on
SE(1,1) is state space equivalent to exactly one of the systems

¢ =g (v1E1 +72E3 + uy(Ey + v3E3) + uy(akEs))
¢ =g (v1E1 +12E3 + uy(aE3) + uyEy).
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Table 1: Classification of affine subspaces and parametrized affine subspaces

Appendix

Type | Affine subspaces

Parametrized affine subspaces

110
Eq + (E3) 0|0
Y1 | @
1,1
(1,1) o1
alo0
[yl 1 o] [ri]l0 1]
(2,0) (E1,E3) 0|0 O 0[O0 O
| 2|13 a [ [ r2]a O
[y l1 o] [y |0 1]
E; + (Eq, E3) B0 O B0 O
| 2|13 a | [ r2]a O]
B;l1 ol 1]1 o
O[1 O —-1|11 O
1| Y2 B2 1| v2 B
Ey +(E;y + Ey, E3) 1r
2,1) pi110 1 1|0 1
0|0 1 —-1]10 1
71| B2 0] [ n By O
0y 1] 0B 1
O|la O 0|0 1
B0 O B1]10 O
aEs + (Eq,E -
s+ (E1 o) o1 s
0[|—-1 1
B 0 O

a>0:ﬂi7éOJYi€R
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Table 2: Classification of parametrized (3, 0)-affine subspaces IT: A+ u;B + u,C + u3D

Classifying conditions

Parametrized affine subspaces

1 0 01
E;‘((C,D)) + {0} Y1 |74 o o Y1 |74 o 0
Ey+Ey, E{ — Ey & (C,D) Y2 | B T2 | B
prem e A T3 |vs Ye @ r3|rs a O
ri|Bi 1 0] [mn|1 1 0
Y21 0 1 0 Yo | =1 1 0
E;({C, D)) # {0} Y3lYa ¥s Ba | L V3| 7ve vs B
E,+E, €(C,D) ry1|B; 0 1 y1/]1 0 1
Yo/ 0 0 1 Y2 |—1 0 1
Y3 |vs B2 O 1 LY3| 74 By O
1|0 rs 1 11 110 By 1
Y| 0O a O Yo 0 0 1
EX((C.D)) = {0} 3P O O [r3|B1 O O
s ri] o 1 1
Y2 0 -1 1
rs|B O O

a>0,5#0,7,€R

155



