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Abstract. Let p : Y — X be a smooth map between two smooth compact manifolds. We define the
relative differential K-theory group K*(p) and show that it fits into a six-term exact sequence. We
define K*(p,R/Z), the K-theory of p with R/Z coefficients. It turns out that K*(p, R/Z) is isomorphic
to the group of homomorphisms from the relative K-homology of p [8] to R/Z up to a degree-shift by
one.
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1. Introduction

Differential K-theory is a generalized differential cohomology theory introduced by Freed
and Hopkins [5] as a refinement of topological K-theory for a concrete description of RR-fields
in string theory. This theory encode geometric as well as topological information. Roughly
speaking, differential K-theory combines topological K-theory with differential forms [3-7, 9].
Benameur and Maghfoul [2] pointed out the relevance to differential K-characters of a de-
scription of differential flat K-theory. The group of differential K-characters on a smooth
compact manifold X is defined as the K-theoretic version of the group of Cheeger-Simons
differential characters on X using the (M, E, f )-picture of Baum-Douglas for K-homology. Re-
call that a geometric K-cycle of Baum-Douglas over X is a triple (M, E, f) such that: M is a
smooth compact Spin® manifold without boundary, E is a Hermitian vector bundle over M
with a fixed Hermitian connection V¥, and f : M — X is a smooth map. Let C,(X) be the
semigroup for the disjoint union of equivalence classes of K-cycles over X generated by di-
rect sum and vector bundle modification [1]. A differential K-character on X is a semigroup
homomorphism h : C,(X) — R/Z such that its restriction to the boundaries is given by the
following formula:

h(OW, elaw, glow) 3=J g*(w)Ch(e)Td(W) mod Z,
w
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where w is a closed differential form on X with integer K-periods [2], Ch(¢) is the Chern form
of the connection V¢ on ¢, and Td(W) is the Todd form of the tangent bundle of W.

The purpose of this paper is to construct K*(p), the relative differential K-theory of a
smooth map p : Y — X between two smooth compact manifolds. To motivate our construc-
tion, the group K*(p) must recovers the usual non-relative group of differential K-characters
on X. We define the K-theory of p : Y — X with R/Z coefficients and show that it is isomor-
phic to the group of homomorphisms from the relative K-homology of p [8] to R/Z up to a
degree-shift by one.

The paper is organized as follows:

In Section 2, we recall the definition of the group of differential K-characters and study some
of its properties. In Section 3, we define the relative differential K-theory of a smooth map
p 1Y — X between two smooth compact manifolds and show that it fits into a six-term exact
sequence. Finally, section 4 is concerned with the definition of the K-theory of a smooth map
p : Y — X with R/Z coefficients and the construction of an isomorphism between this group
and the group of homomorphisms from the relative K-homology of p [8] to R/Z.

2. Differential K-characters

In this section, we give the construction of the group of differential K-characters following
[2]. As mentioned in the introduction, in this construction we use the (M, E, f)-picture of
Baum-Douglas for K-homology [1].

Definition 1. Let X be a smooth compact manifold. A K-chain over X is a triple (W, ¢, g) such
that

e W is a smooth compact Spin® manifold;
e ¢ is a Hermitian vector bundle over W with a fixed Hermitian connection V¢; and
e g:W — X is a smooth map.

There are no connectedness requirements made upon W, and hence the bundle € can have different
fibre dimensions on the different connected components of W. It follows that disjoint union

W,e,g)u(W',e',g"):=(WuW' eue, gug)
is a well-defined operation on the set of K-chains over X.

Isomorphism. Two K-chains (W, ¢,g) and (W', €', g") over X are isomorphic if there exists a
diffeomorphism h : W — W’ such that

o h preserves the Spin° structures;

e h*e' = ¢; and
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o the diagram

w— W
g 7/
y

X
commutes.

A K-cycle is a K-chain (M, E, f ) without boundary; that is M = 0. The boundary (W, ¢, g)
of a K-chain (W, ¢, g) is the K-cycle (OW, €|, &law)-

We are going to construct an Abelian group from the set of isomorphism classes of K-cycles
over X so as to obtain the geometric K-homology group of X. In order to define the relation in
this group we need to introduce several kinds of relations involving K-cycles.

Vector bundle modification. Let (W, ¢, g) be a K-chain over X and let H be a Spin® Euclidean
vector bundle over W with even-dimensional fibers. Let 1y, denote the trivial real line bundle over
W. We denote by W := S(H & 1y), the unit sphere bundle of H ® 1y,. Let m: W — W be the
bundle projection. The Spin® structures on TW and H induce a Spin® structure on TW. Let
S =S_@®S, be the Z,-graded bundle of Clifford modules over W associated with the Spin®
structure on H. We denote by Hy and Hy the pullbacks of S_ and S, respectively, to H by the

bundle projection H — W. Then H acts on Hy and H; by Clifford multiplication map: H, S H 1-

The manifold W can be thought of as formed of two copies, Bo(H) and B,(H), of the unit ball
bundle of H (carrying opposite Spin® structures) glued together by the identity map of S(H):

W = Bo(H) Ug(syy By (H).

The vector bundle H over W is obtained by putting H, over Bo(H) and H; over By(H) and then
clutching these two vector bundles along S(H) by the isomorphism o. The process of obtaining
the K-chain (W, H ® m*e, go)from (W, e, g) is called vector bundle modification.
Note that o

d(W,H®n*e,gom)=(0W,Hlsw ® " (elow), glow © |5 )-

Definition 2. We define the set C.(X) as the quotient of the set of isomorphism classes of K-cycles
over X by the equivalence relation ~ generated by the relations of

o direct sum: if E = E; ® E,, then (M,E{, f)U(M,Eq, f)~ (M,E; ® E,, f); and
e vector bundle modification.
An operation on C,(X) is given by disjoint union,
(M,E,f)u(M"E',f):==(MuM',EUE’, fuf’).

This operation turns C.(X) into an Abelian semigroup. Since the relation ~ preserves the par-
ity of the dimension of M in K-cycles (M, E, f), one can define the subsemigroup Co(X) (resp.
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C1(X)) consisting of classes of K-cycles (M, E, f) for which all connected components of M are of
even (resp. odd) dimension. Then C,(X) = Cy(X) ® C;(X) has a natural Z,-grading.

Bordism. Two K-cycles (M, E, f) and (M’,E’, f’) over X are bordant if there exists a K-chain
(W, e,g) such that the two K-cycles d(W,¢e,g) and (M,E,f) U (—M’,E’, f’) are isomorphic,
where —M’ denotes M’ with the Spin® structure on its tangent bundle TM’ reversed [1].

The bordism relation induces a well-defined equivalence relation ~; on C,(X). This rela-
tion is compatible with the semigroup structure, and then the quotient set C,(X)/ ~; turns
out to be an Abelian semigroup. The Abelian semigroup C,(X)/ ~}, is in fact an Abelian group.
The additive inverse of the class of a K-cycle is obtained by reversing the Spin® structure:

_[M,E,f] = [_M,E,f]

The neutral element is represented by the empty manifold, or any K-cycle bordant to the
empty manifold.

Definition 3. The quotient group C.(X)/ ~y is denoted by K.(X) and called the geometric K-
homology group of X. It has a natural Z,-grading:

K.(X) =Ky(X) ® K;(X).

The geometric construction of K-homology is functorial. If p : Y — X is a smooth map
between two smooth compact manifolds, then the induced homomorphism

px t Ki(Y) = K (X)
of Z,-graded Abelian groups is given on classes of K-cycles [M,E, f] € K.(Y) by

P«[M,E,f]:=[M,E,pof].

Since vector bundles over M extend to vector bundles over M x [0, 1], it follows by bordism
that K,(p) := p, depend only on the smooth homotopy classes of p.

Let X be a smooth compact manifold. Let L,(X) be the quotient of the set of isomorphism
classes of K-chains over X by ~. Note that the boundary map on the set of K-chains over X
descends to a boundary map

9 :L(X) = C1(X) C L1 (X).

Let Q*(X) be the graded algebra of real-valued differential forms on X. Let
¢ : Q"(X) — Hom(L,(X),R) be the map defined by

ow(W,€e,8) = f g"(w)Ch(e)Td(W),
w

where Ch(¢) is the Chern form of the connection V¢ on ¢ and Td(W) is the Todd form of the
tangent bundle of W. The set of K-periods of a real-valued differential form w € Q*(X) is the
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subset ¢,,(C.(X)) of R. The Abelian group of closed real-valued differential forms on X with
integer K-periods is denoted by €(X). It has a natural Z,-grading:

Q5(X) = Q5" (X) & QM (X).

Example 1. Let X be a smooth compact manifold. Let F be a Hermitian vector bundle over X
with a Hermitian connection V. An example of a form with integer K-periods is given by the
Atiyah-Singer index theorem applied to the positive part of the Dirac operator associated to the
Spin structure on a Spin‘ compact manifold M in K-cycles (M, E, f ) with coefficients in EQ f “F:

Ind([DT(E® f*F)]) =J F*(Ch(V))Ch(E)Td(M) € Z.
M

Definition 4. (i) Let X be a smooth compact manifold. A differential K-character on X is a
homomorphism of semigroups
h:C,(X)—>R/Z

such that its restriction to the boundaries is given by the following formula:

h(d(W,¢,g)) :ZJ g*(w)Ch(e)Td(W) mod Z,
w

where w is a closed real-valued differential form on X with integer K-periods.

(ii) The set of differential K-characters on X is denoted by K*(X). It is an Abelian group which
has a natural Z,-grading:
K*X)=KR°X) @ K (X).

The differential form w associated to h, indicated above, is unique. It will be denoted by
0¢(h). Thus we have a homomorphism

5o : K*(X) — 571 (0.

Note that a differential form v € Q*(X) determines a differential K-character &, on X by
setting

©,(M,E,f) :=f F*(V)Ch(E)Td(M) mod Z.
M

It is easy to see that 5,({p,) = dv.

We can measure the size of K* by inserting it in a certain exact sequence.
We have the short exact sequence

_ 5
0 — Hom(K,(X),R/Z) — K*(X) = Q1 (X) - 0.
This, together with the fact that the only K-cycles on pt are (pt,Ck, idy, ), implies that

R°(pt)=R/Z and K} (pt) = Z.
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The construction of K*(X) is functorial. If p : Y — X is a smooth map between two smooth
compact manifolds, then the induced homomorphism

p* 1 K*(X) —» K*(Y)
of Z,-graded Abelian groups is given on differential K-characters on X by
p"(M(M,E, f) :=h(p.(M,E, f)) for all (M, E, f) € C.(X).
It is obvious that 6y(p*(h)) = p*(6(h)).

Let X be a smooth compact manifold. Let i be the inclusion pt < X. Set

RH(X) = ker[R*(X) 5 B*(p0)].
Since the short exact sequence
0 - B*(X) o R*(X) 5 R*(pt) = 0
is split, we obtain isomorphisms

R =KR°X)®R/Z and K}(X) = KY(X) @ Z.

3. Relative Differential K-theory

In this section, we define the relative differential K-theory of a smooth map between two
smooth compact manifolds and show that it fits into a six-term exact sequence.

Let X be a smooth compact manifold. Let A C R be a subring of the reals. A K-cochain over
X with coefficients in A is a semigroup homomorphism from L,(X) to A. The set of K-cochains
over X with coefficients in A is denoted by L*(X,A). The set L*(X,A) is an Abelian group and
a coboundary map on L*(X,A) is defined by transposition:

6h(W,e,g) :=h(d(W, e, g)).
We set
L*(X) =L"(X,2) x L" (X, R) x Q5(X),
and define a coboundary map & : L*(X) — L**1(X) by the formula:
5(c,h,w) :=(=6&¢c,—¢,, +c+ 6h,0).

Let p : Y — X be a smooth map between two smooth compact manifolds. We define the
set of relative K-cochains L*(p) as the direct product L*(X) x L*~1(Y). A coboundary map
6 : L*(p) — L**1(p) is given by setting

5(S,T):=(8S,p*S —6T).

Elements of ker[L*(p) LA L**1(p)] are called K-cocycles and those of img[L*"1(p) LA L*(p)]
are called K-coboundaries. Let Z*(p) be the set of K-cocycles and B*(p) the set of K-coboundaries.
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Definition 5. We define the relative differential K-theory group K*(p) as the quotient group
Z*(p)/B*(p).
The construction of relative differential K-theory is functorial. If

Y/ L‘X’

P
Y —X

is a commutative diagram of smooth maps between smooth compact manifolds, then the
homomorphism

(f,8)" : K*(p) = K*(p")
of Z,-graded Abelian groups is given on classes of K-cocycles [S, T] € K*(p’) by

(f,8)°([S, TD == [f"S,8"T].

Exact Sequence

Let (S,T) € Z*(p). If we set S = (c,,h,,w,) and T = (cy,hy,w,), then the equality
5(S,T)=0 implies that:

pc, =—6bc¢
5c, =0 Y
{ @Cx  Sh.4c and { p*hy=-¢, +0h,+c,
Wy x x P*Wx =0

It follows that the natural homomorphism R — R/Z composed with the restriction of h, to
C._1(X), denoted by E, is a differential K-character on X. Let j : Z*(p) — K*~1(X) be the
map given by j(S,T) := E It is obvious that j(é (8, T)) = 0. Then we obtain a homomor-
phism from K*(p) to K*~1(X), also denoted by j.

Now, let h € K*(Y). Since R is divisible, there is a real K-cochain h’ with R =h. Set
Uy = @s,n) — OH'.
It is obvious that uy € L*71(Y,Z). On the other hand, we have
Sup = g5, — (8 08 =0.

Therefore, [0, (i, h’, 5,(h))] € K*(p). We claim that [0, (uy, k', 6,(h))] is independent of the
choice of h’. In fact if h” is another lift of h, then h”” —h’ = 0 so that h” = h’ +c + &y for same
c € L*(Y,Z) and y € L*"1(Y,R). Thus we finally get

(O: (uh/” h//: 6O(h))) = (O, (uh': h/, 60(h))) - 5(0) (C7 Y 0))
We define a homomorphism 6 : K*(Y) — K*(p) by setting
e(h) = [O) (uh/: hla 5O(h))] .
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Theorem 1. The following six-term sequence

RO(0) 2 RO(Y) —2- k(p)
J’] J'L
Ki(p) <2 R(V) <2 R(x)

is exact.

Proof. Exactness at K'(p). It is evident that j o 6 = 0.
Let [S,T] € K'(p) with S = (¢,,h,,w,) and T = (cy,hy,wy). Assume that j[S,T] = 0.
Then we have w, = 0, ¢, = —6h,, and there exist g € L'(X,R) and u € L°(X,Z) such that
h, = 6g +u. Since

(S, T) = (09 (Cy - P*u; hy - P*g; Wy)) + 5((1,[, 8, O)) 0)

and [0, (c, — p*u,hy, — p*g,w,)] lies in the image of 6, we get [S, T] € img(0).

Exactness at K*(X). For any [S,T] € K°(p) with (S, T) = ((cy, hy, W), (cy,hy,wy)), the
equality 6(S, T) = 0, together with the fact that w, € did(Y), implies that

p*ojlS,T1(0) = =y, (0) +h,(80) =0 forall o € Cy(Y).
Now, let h € ker[R°(X) 2 RO(Y)]. First, we have p*(5,(h)) = 0. Furthermore, we can find
f € LY(Y,R) and ¢ € LO(Y, Z) such that
p*h' =6f +cand p*u = —6c¢.

It is easy to check that R := ((uy,H’,5,(h)),(c, f,0)) defines an element in K'(p) with
J([RD =h.

Exactness at K°(Y). For every h € K°(X),

0 0 p*(h) = [0, Wy, o™, p*56(M)] = [6((up, i, 50(h)),0)] = 0.

If f € KO(Y) such that 6(f) = 0, then there exists ((cy, hy,w,),(c,,h,,w,)) € L*(p) with
coboundary (O, (ug, f ’,80(f))). Therefore, we have the equations

Sc,=0 pie+ocy =up
{<Px=6h Lo, and | Pty —0hy —cy=f
e = O T pwe = 50(f)

which imply that h, is a differential K-character on X with 54(h,) = w, and p*(h,)=f. O

Remark 1. Let X be a smooth compact manifold. Let i be the inclusion pt < X. The above
exact sequence, together with the fact that i* : K*"}(X) — K*~(pt) is surjective, implies that
j:K*(i) = K*Y(X) is injective with img(j) = ker(i*). Thus we get an isomorphism

K*(i) =2 K1(X).
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4. R/Z Relative K-theory

This section is concerned with the definition of the K-theory of a smoothmap p : ¥ — X
with R/Z coefficients and the construction of an isomorphism between this group and the
group of homomorphisms from the relative K-homology of p [8] to R/Z.

Let p : Y — X be a smooth map between two smooth compact manifolds. We write
L*(p,R/Z) for the set of relative K-cochains of the form ((c,,h,,0), (cy,hy,0)). The set

L*(p,R/Z) is in fact an Abelian subgroup of L*(p). Note that the image of the restriction
of & : L*(p) — L*t1(p) to L*(p,R/Z) is included in L*+1(p,R/Z).

The Kernel of & : L*(p,R/Z) — L**(p,R/Z) is denoted by Z*(p,R/Z) and the image of
5: L Yp,R/Z) — L*(p,R/Z) is denoted by B*(p,R/Z).

Definition 6. We define the relative K-theory of p with R/Z coefficients, denoted by K*(p,R/Z),
as the quotient group Z*(p,R/Z)/B*(p,R/Z).

It is obvious that K*(p, R/Z) is an Abelian subgroup of K*(p).
Let us recall the six-term exact sequence in section 3:

p*

RO(X) RO(Y) —2~k%p)
f] jl
Kl (p) <2 KI(¥) <C— R'(x)

Note that the image of the restriction of j to K*(p,R/Z) is included in Hom(K,_;(X),R/Z),
and the image of the restriction of 6 to Hom(K,(Y),R/Z) is included in K*(p,R/Z).
Let K*(X,R/Z), the K-theory of X with R/Z coefficients. We have the six-term exact sequence

KO(X, R/Z) 2~ KO(Y, R/Z) —= KO(p, R/ 7)

l -

K'(p,R/Z) <2— K\(Y,R/Z) <2— K (X,R/Z)

obtained from the above exact sequence and after identification of the groups K*(X,R/Z) and
Hom(K,.(X),R/Z) following [2].

Now, we show that the group K*(p,R/Z) can be identified with the group of homomor-
phisms from the relative K-homology group K,(p) [8] to R/Z.

Let us recall the construction of the group K, (p) following [8].
We set

L*(p) =L, (X) % L*—l(Y)
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and define a boundary map 0 : L,(p) — L,_;(p) by the formula:

o(a,B):=(da+p.B,~3B).

Let C,(p) denote the kernel of 3. There is a well-defined operation on C,(p) given by disjoint
union of K-chains,

(a,B)+ (', ) :=(alia’,BUL.

Bordism. Two elements (a, ) and (a’, /) in q*(p) are bordant if there exists
(U) T) € L*+1(p) such that (an /3) + (_a/9 _[3/) = 3(0‘, T)'

Definition 7. We define the relative K-homology group K.(p) as the group obtained from quoti-
enting C,(p) by the equivalence relation of bordism.

We denote by K*(p,R/Z) the group of homomorphisms from K,(p) to R/Z.
For every K-cocycle (S, T) in Z*(p,R/Z) with (S, T) = ((cy, hy, 0), (cy,hy,0)), we set

u(S, T)(@, B) := hy(a) + Ry (B) for all (a, ) € C._1(p).
If (S,T) € L*(p,R/Z) with (S, T) = ((cy, h,,0), (¢y,hy,0)), then for all (o, 7) € L.(p),
u(S, T3 (0, 7)) =u(S, TI 30 + p.7,~37)
=h,(00) +hy(p.7) —hy(7)
=5h,(0)+ (p*h, — 51, )(7)
=u(5(S, 7))o, 7).

It follows that u induces a well-defined homomorphism
K*(p,R/Z) - K" '(p,R/2),
also denoted by u.

Proposition 1. The homomorphism p : K*(p,R/Z) — K*~1(p,R/Z) turns out to be an isomor-
phism.

Proof. Let us recall the six-term exact sequence in [8, p. 8]:

RY(p,R/Z) ——K'(X,R/Z) —2—~ K\(Y,R/Z)

j )

KO(Y,R/Z) <2 — KOX,R/Z) —— R°(p, R/7)
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If we combine this six-term exact sequence with that given by Theorem 1, then we obtain the
following commutative diagram

*

o

K°(X,R/Z) K°(Y,R/Z) 0 K°(p,R/7)
j
K'(p,R/2) 5 K'(Y,R/Z) ‘p K'(X,R/Z)
K°(X,R/Z) b K°(Y,R/7) 2 RY(p,R/Z)
4
K°(p,R/Z) - K'(Y,R/Z) =

in which the rows are exact sequences. It follows from the five lemma that the homomorphism
u is an isomorphism. O
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