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Using Two-dimensional Differential Transform to Solve Second
Order Complex Partial Differential Equations
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Abstract. In this study, second order complex equations were solved by using two dimensional differen-
tial transform. Firstly these equations were separated to real and imaginer parts. Thus, two equalities
were obtained. Later, real and imaginary parts of solution were obtained by using two dimensiona
differential transform method.
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1. Introduction

The concept of differential transform (one dimension) was first proposed and applied to
solve linear and non linear initial value problems in electric circuit analysis by Zhou [6]. By
using one dimensional differential transform method, nonlinear differential equations were
solved in [5]. Solving partial differential equations by two dimensional differential transform
method (DTM) was proposed by Cha’o Kuang Chen and Shing Huei Ho [3]. Partial differential
equations was solved by using two dimensional DTM in [1, 3]. System of differential equation
was solved using two dimensional DTM in [2]. Eigen value problems was solved by using this
method in [4].

DTM consist of computing the coeffient of Taylor series of solution by using initial value.
Moreover this method is an iterative method for obtain solution of Taylor series of differential
equation.

Let w = w(z,%) be a complex function. Here z = x +iy, w(z,2) = u(x,y) +iv (x,y).
Derivative according to z and z of w(z,2) is defined as follows:

ow 1(ow Jdw
EZE(E—IE) M
dw 1(dw ow
EZE(E—HE) (2)
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Similarly second order derivative of w(z,%) are defined as following:
2 2 2 2
3W:1 8w_2iaw_8w )
dz2 4\ dx2 dxdy Jdy?
2 2 2 2
awzl 3w+2iaw_8w ©
07> dx2 dxdy 0dy2
2w _1 2w 4 22w . EAW e
0207 4\ 9x2 dy2) 4~

2. Two Dimensional Differential Transform

Definition 1. Two dimensional differential transform of function f (x, y) is defined as follows

k+h
F(k,h) = — [a f(x’y)] ®)
x=0,y=0

k!.h! dxkoyh
In Equation (8), f (x, y) is original function and F (k,h) is transformed function, which is
called T-function is brief.
Definition 2. Differential inverse transform of F (k,h) is defined as follows

Fley) =30kt ©

kOhO

ak+h
fxy) ZZ kLAl |:3xkayhf(x ;V)] X<y (10)

k=0h= x=0,y=0
Equation (10) implies that the concept of two dimensional differential transform is derived
from two dimensional Taylor series expansion.

Theorem 1 ([1, 3]). Ifw(x,y)=u(x,y)+v(x,y) then W (k,h) = U (k,h) £ V (k,h).
Theorem 2 ([1, 3]). Ifw(x,y) = Au (x y) then W (k,h) = AU (k, h).

Theorem 3 ([1, 3. Ifw(x,y) = 20 then w (k,h) = (k + 1)U (k + 1, h).

Theorem 4 ([1, 3]). Ifw(x,y) = a“(" Y) then W, h = (h+ 1)U (k,h + 1).
Theorem 5 ([1, 3]). Ifw(x,y) = %S;sy) then

W(k,h)=(k+1)(k+2)...(k+r)(h+1)(h+2)...(h+s)U(k+r,h+s).
Theorem 6 ([1,3]). If w (x,y) = u(x,y) v (x,y) then W (k,h) = ZI:ZO Z?:o U(r,h—s)V (k—r,s).
Theorem 7 ([1, 3]). Ifw(x,y) =x"y" then W (k,h) = 6 (k —m,h—n).
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3. Using Two-dimensional Differential Transform to Solve Second Order
Complex Partial Differential Equations.

To demonstrate how to use two-dimensional transform to solve complex partial equations
are solved in this section.

Example 1

Solve the following initial value problem

22w
= 11
020z 4’ (11)
with the initial conditions
w(x,0) =5x2 +3x + 2 (12)
oW (2.0)=i (2x—1). (13)
dy
Since w = u + iv and equation (11) we obtain that
1(u 0% u 0% _, (14)
4\ 9x2 "9x2 8y? dy2)
Therefore
2%u 9%u
—+—=16 15
Jdx2 * Jy? (15)
2%u d%u
ox% 0y2 (16)
From differential transform of (15) and (16) we find following equality:
(k+1D)(k+2)U(k+2,h)+(h+1)(h+2)U(k,h+2) =166 (k,h) a7
k+1D)(k+2)V(k+2,h)+(h+1)(h+2)V(k,h+2)=0 (18)

From (12) equality is obtained that:

U(0,0)=2,U(1,0)=1,U(2,0)=5,U(i,0)=0(i =3,4,5,...),V(i,0)=0(i=0,1,2,...)
(19)
Similarly from (13) equality is obtained that:

V(0,1)=-1,V(1,1)=2,V(i,1)=0(i=2,3,4,...),U(i,1)=0(i =0,1,2,...)  (20)
If we write h = 0 in equality (17) we get that

(k+1)(k+2)U(k+2,0)+2U (k,2) =166 (k,0) 2n
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If we write k = 0 in equality (21) we get that
2U (2,0) +2U(0,2) = 16
From equalities (19) and (22) we get
U(0,2)=3
If k > 0, then from in equality (21) U (k +2,0) =0, so we have
U(k,2)=0
If we write h = 1 in equality (17) we get that:
(k+1D)(k+2)U(k+2,1)+6U(k,3)=0
From equalities (20) and (25) for every k e N
U(k,3)=0
Similarly if we write h = 2 in equality (17) we get that:
(k+1D)(k+2)U(k+2,2)+12U (k,4)=0
From in equalities (24) and (27) for every k € N

U(k,4)=0

By continuing the operations it is seen that all the other components of U are zero.

If we write h = 0 in equality (18) we get that
(k+1D)(k+2)V(k+2,00+2.V(k,2)=0.
From equalities (19) and (29) we have that for every k € N
V(k,2)=0.
If we write h = 1 in equality (18) we get that
k+1D)(k+2)V(k+2,1)+6.V(k,3)=0.
From equalities (20) and (31) we have that for every k € N
V(k,3)=0.
If we write h = 2 in equality (18) we get that

k+1D)(k+2)V(k+2,2)+12.V (k,4)=0.
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From equality (30) we have that for every k € N
V (k,4)=0. 34)

It is easy to see that all other components of V are zero.
Thus, we find that
u(x,y)=5x2+3y2+x+2 (35)

and
v(x,y)=2xy—y. (36)
From (35) and (36) equalities we get that
w(x,y) =u (x,y) +iv (x,y)
=5x2+3y2+x+2+i(2xy—y)
=x?—y*+2ixy +4x* +4y* +x —iy +2

=22+ 42z +7Z + 2. 37)
Example 2
Solve the following initial value problem
22w ow _
— +3—==122+18z+9, 38
0z2 0z z z (38)
with the initial conditions
w(x,0) =2x2 + 3x% + 8x (39)
d
% (x,0) =i (6x* —6x +2). (40)

From (38) equation we obtain following equation:

1 (82W _ 0w azw) 3(3W ow

- - | =+tiz—|=12 i 18(x —i 1
322 laxé’y 3y? 7 ax-i—lay) (x+iy)+18(x—iy)+9 (41)

4

Since w = u+iv, (41) equation equivalent following equation:

1[32u 0%y ( 2%u ,azv) 2%u ,821/]

4 3x2+18x2_21 8x3y+18x3y _8y2_13y2
+§(@+i@+i@_@)

2\dx 9Ix Jdy OJdy
=30x+9—6iy. 42)

From (42) equation we obtain following equations:

Ou , 9% 2% Ou_ OV _ . i0ts36 (43)
dx2 Jdxdy dy2 dx dy
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%y d%u %y av du
-2 - +6—+6-——=—2
dx2 Jdxdy dy? dx Jy w (“44)

From differential transform of (43) and (44) equations we obtain that

k+1D)(k+2)U(k+2,h)+2(k+1D)(h+1)V(k+1,h+1)—(h+1)(h+2)U(k,h+2)
+6(k+1)U(k+1,h)—6(h+1)V(k,h+1)=1206(k—1,h)+ 366 (k,h) (45)

(k+1D)(k+2)V(k+2,h)—2(k+1)(h+1)U(k+1,h+1)—(h+1)(h+2)V (k,h+2)
+6(k+1)V(k+1,h)+6(h+1)U(k,h+1)=—-246(k,h—1) (46)

From (39) equation we obtain that

U(0,0)=0,U(1,0)=,U(2,0)=3,U(3,0)=2,

U(l,o) = 0(1 =4,5,6,),V(1’O) =O(l 20,1,2,“.)_ @
Clearl
early N
= => "> h[U (kh) +iV (k, )] x*y"? s
Y k=0h=1

From equalities (40) and (48) equation

V(0,1)=2,V(1,1)=—6,V(2,1) =6,
V(i,1)=0(i=3,4,5,...),U(i,1)=0(i=0,1,2,...). (49)

If we write h = 0 in equality (45) we get that:

(k+1D)(k+2)U(k+2,0)+2(k+1)V(k+1,1)—2U(k,2)
+6(k+1)U(k+1,0)—6V(k,1)
=1206 (k—1,0) + 366 (k,0). (50)

If we write k = 0 in equality (50) we get
2U (2,0) + 2V (1,1)—2U(0,2) + 6U (1,0)— 6V (0,1) = 36 (51)
By using equalities (47) and (49) from equality (51) we get
U(0,2)=-3 (52)
If we write k = 1 in equality (50) we get
6U(3,1)+4V (2,1)—2U(1,2) + 12U (2,0)—6V (1,1) = 120 (53)
By using equalities (47) and (49) from equality (53) we get

U(1,2)=6. (54)
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If we write k = 2 in equality (50) we get
12U (4,0) + 6V (3,1)—2U (2,2) + 18U (3,0)— 6V (2,1) = 0. (55)
By using equalities (47) and (49) from equality (55) we get
U(2,2)=0. (56)
For k>3 since U(k+2,0)=V (k+1,1)=U(k+1,0)=V (k,1) = 0 we have that
U(k,2)=0. (57)
If we write h = 0 in equality (46) we get that:

(k+1D)(k+2)V(k+2,00—2(k+1)U(k+1,1)
—2V(k,2)+6(k+1)V(k+1,0)+6U(k,1)
=0. (58)

By using equalities (47) and (49) from equality (58) we get for every k € N
V(k,2)=0. (59)
If we write h = 1 in equality (46) we get that:

(k+1D)(k+2)V(k+2,1)—4(k+1)U(k+1,2)
-6V (k,3)+6(k+1)V(k+1,1)+12U (k,2)
=—2468 (k,0). (60)

If we write k = 0 in equality (60) we get
2V (2,1)—4U(1,2) — 6V (0,3) + 6V (1,1) + 12U (0, 2) = —24. 61)
By using equalities (49), (52) and (54) from equality (61) we get that:
V(0,3) =—2. (62)
If we write k = 1 in equality (60) we get
6V (3,1)—8U(2,2)—6V(1,3)+12V(2,1)+ 12U (1,2) = 0. (63)
By using equalities (49), (54) and (56) from equality (63) we get that:
V(1,3)=0. (64)
Fork>2since V(k+2,1)=U(k+1,2) =V (k+1,1)=U (k,2) = 0 we have that

V(k,3)=0. (65)
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If we write h = 1 in equality (45) we get

(k+1D)(k+2)U(k+2,1)+4(k+1)V(k+1,2)
—6U(k,3)+6(k+1)U(k+1,1)—12V (k,2)
=0 (66)

By using equalities (49), (59) for every k € N we get that
U(k,3)=0 (67)
If we write h = 2 in equality (45) we get

(k+1D)(k+2)U(k+2,2)+6(k+1)V(k+1,3)
—12U (k,4)+6(k+1)U(k+1,2)—18V (k,3)
=0 (68)

If we write k = 0 in equality (68) we get
2U(2,2)+6V (1,3)—12U(0,4) + 6U (1,2)— 18V (0,3) =0 (69)
By using equalities (54), (56), (62) and (64) from equality (69) we get that:

U(,4)=0 (70)
Fork>1since U(k+2,2)=V (k+1,3)=U(k+1,2)=V(k,3) =0 we have that
U(k,4) = 0. (71)

If we write h = 2 in equality (46) we get
(k+1D)(k+2)V(k+2,2)—6(k+1)U(k+1,3)
—12V (k,4)+6(k+1)V (k+1,2)+ 18U (k,3)
=0 (72)
For every k > 0, since V (k+2,2)=U(k+1,3)=V (k+1,2)=U (k,3) = 0 we get that:
V(k,4)=0 (73)

It is clear that all other components of U and V are zero.
Thus we find that
u(x,y) = 2x> +3x% + 8x —3y% —6xy? (74)

and
v(x,y)=2y—6xy+6x2_y—2y3 (75)

From (74) and (75) equalities we get that
w(x,y) =u (x,y) +iv (x,_y)
=2x3 4+ 3x2 +8x —3y2—6xy% +i (2y —6xy +6x2y —2y3)
=2(x3 +3ix2y—3xy2—iy3)+3(x2—2ixy—y2) +5(x +iy) +3(x—iy)
=22%+3(2)* + 52 + 3%.
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Example 3

Solve the following initial value problem

2w
=0 6
Jz20% (76)
with the initial conditions
w(x,0) =e3* + ¢~ 77)
2—1;: (x,0) =i (Be3x — ex) (78)
Since w = u + iv and equation (9) we obtain that
1(%u 0% o 0%]) _, 79)
4\ 9x2 "9x2 9y2 dy2)
Therefore,
2%u d%u
ox% 0y2 (80)
2%u 2%u
—+—=0. 81
dx2 0y2 (81)
From differential transforms of equalities (80) and (81) we get that:
(k+1D)(k+2)U(k+2,h)+(h+1)(h+2)U(k,h+2)=0 (82)
(k+1D)(k+2)V(k+2,h)+(h+1)(h+2)V(k,h+2)=0. (83)
We know that:
oo o0
w(x,y) = ZZW(k,h)xkyh
k=0h=0
From (77) it is seen that
o
Z W (k,0)xK = e3* +¢* (84)
k=0
From (84)
iuko Vot =SB xS st 85
[U(k,0)+iV (k,0)* = > =2+ > o= > (F—x 85)
k=0 k=0 k=0 k=0
From (85) we get for every k € N
k
Uk0)= 1 v(k0)=0. 86)

k!~
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From (78) it is seen that

ZW(k, Dxk=i (e3x —ex)
k=0

From (87)
S k iV (k B0 Sk G sk
Z[U( , D) +iV (K, 1)]x —lZT—le—!—lZ( .
k=0 k=0 k=0 k=0

From (88) we get for every k € N

3k—1
k'

U(k,1)=0,V (k,1)=

If we write h = 0 in equality (82) we get
(k+1D)(k+2)U(k+2,0)+2U (k,2)=0.

From (86) and (90) we see
3k+2 +1

U(k,2)=— 1Kl

If we write h = 1 in equality (82) we get
(k+1D)(k+2)U(k+2,1)+6U (k,3)=0.

From (89) and (92) we see
U(k,3)=0.

If we write h = 2 in equality (82) we get
(k+1D)(k+2)U(k+2,2)+12U (k,4)=0

From (91) and (94) we have
3k+4 41

41 k!
It is easy to see that we obtained following equation for every k,n €N,

U(k,4) =

gk+2n 4 1
U(k,2n+1)=0,U (k,2n) = (—1)" 2k
Similarly, if we write h = 0 in equality (83) we get

(k+1)(k+2)V(k+2,0)+2V (k,2)=0.
From (86) and (97) we get for every k € N

V(k,2)=0.

188
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If we write h = 1 in (83) we get that

(k+1D)(k+2)V(k+2,1)+6V (k,3)=0.

From (89) and (99) we get for every k € N

3k+2_1
3!1.k!

v (k,3)=—

If we write h = 2 in (83)

(k+1D)(k+2)V(k+2,2)+12V (k,4) =

From (98) and (101) we get for every k € N
V(k,4)=

It is clearly we obtain following equation for every k,n € N,

k+2n
V(k,2n) =0,V (k,2n +1) = (—1)" —

From equalities (96) and (103) we get that
w(x,y) =u (x,y) +1iv (x,y)

=2, 2 UGk ) +iV (k)] "

kOhO

-1
k'(2n+ 1)

189

99)

(100)

(101)

(102)

(103)

—ZZ[U(k 2h) +iV (k, 2h)] x* 2"+ZZ[U(k,2h+1)+iV(k,2h+1)]xky2h+1

kOhO kOhO

3k +2h +1 3k+2h 1
_ZZ(_ 1" (2h)1k! xkyZh“ZZ(— 0% ki2h+ 1™

k=0 h=0 k=0h=0

o (3x)"
=2 Zﬂ
B 2 hl 2h+1
+Z Il Z(_ ) m—lz(— ) (2h+1)'

S B! per (3y)H1
(Z( Vo Z( o (2h+1)')

k,,2h+1
y

=e3x (cos 3y +i s1n3y) +e¥(cosy —siny) = e3*.e3Y X .7V

:eS(x+ly) 4 XLy

— 32+ez
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