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1. Introduction

Semi-open sets, preopen sets, α-open sets, β-open sets and δ-open sets play an important role
in researching of generalizations of continuity in topological spaces. By using these sets many au-
thors introduced and investigated various types of noncontinuous functions and multifunctions. In
1970, Gentry and Hoyle III [9] defined a function f : X → Y to be c-continuous at a point x ∈ X
if for each open set V of Y containing f(x) and having compact complement, there exists an open
set U of X containing x such that f(U) ⊂ V . Some properties of c-continuous functions are
studied in [15], [16], [24] and other papers. Neubrunn [20] and Holá et al. [11] extended this no-
tion to the setting of multifunctions. In [14], Lipski introduced the notion of C -quasicontinuous
multifunctions as a generalization of C-continuous multifunctions and quasi-continuous multi-
functions [26]. Some properties of C-quasi-continuous multifunctions are studied in [36].

In this paper we introduce upper/lower C-m-continuous multifunctions as multifunctions de-
fined on a set satisfying some minimal conditions. We obtain some characterizations and sev-
eral properties of such multifunctions which turn out unify some results established in [11], [14]
and [36]. In the last section, we recall some types of modifications of open sets and point out the
possibility for new forms of C -continuous multifunctions.
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2. Preliminaries

Let (X, τ) be a topological space and A a subset of X . The closure of A and the interior of A
are denoted by Cl(A) and Int(A), respectively.

Definition 2.1. Let (X, τ) be a topological space. A subset A of X is said to be
α-open [22] (resp. semi-open [13], preopen [18], β-open [1] or semi-preopen [4], b-open

[5]) if A ⊂ Int(Cl(Int(A))) (resp. A ⊂ Cl(Int(A)), A ⊂ Int(Cl(A)), A ⊂ Cl(Int(Cl(A))),
A ⊂ Int(Cl(A)) ∪ Cl(Int(A))).

The family of all semi-open (resp. preopen, α-open, β-open, semi-preopen, b-open) sets in X
is denoted by SO(X) (resp. PO(X), α(X), β(X), SPO(X), BO(X)).

Definition 2.2. The complement of a semi-open (resp. preopen, α-open, β-open
, semi-preopen, b-open) set is said to be semi-closed [7] (resp. preclosed [8], α-closed [19],

β-closed [1], semi-preclosed [4], b-closed [5]).

Definition 2.3. The intersection of all semi-closed (resp. preclosed, α-closed, β-closed, semi-
preclosed, b-closed) sets of X containing A is called the semi-closure [7] (resp. preclosure [8],
α-closure [19], β-closure [2], semi-preclosure [4], b-closure [5]) of A and is denoted by sCl(A)
(resp. pCl(A), αCl(A), βCl(A), spCl(A), bCl(A).

Definition 2.4. The union of all semi-open (resp. preopen, α-open, β-open, semi-preopen, b-open)
sets of X contained in A is called the semi-interior (resp. preinterior, α-interior, β-interior, semi-
preinterior, b-interior) of A and is denoted by sInt(A) (resp. pInt(A), αInt(A), βInt(A), spInt(A),
bInt(A)).

Throughout the present paper, (X, τ) and (Y, σ) (briefly X and Y ) always denote topological
spaces and F : X → Y (resp. f : X → Y ) presents a multivalued (resp. single valued) function.
For a multifunction F : X → Y , we shall denote the upper and lower inverse of a subset B of a
space Y by F+(B) and F−(B), respectively, that is

F+(B) = {x ∈ X : F (x) ⊂ B} and F−(B) = {x ∈ X : F (x) ∩B 6= ∅}.

Definition 2.5. A multifunction F : (X, τ) → (Y, σ) is said to be

(1) upper semi-continuous (briefly u.s.c.) at a point x ∈ X if for each open set V containing
F (x), there exists an open set U of X containing x such that F (U) ⊂ V ,

(2) lower semi-continuous (briefly l.s.c.) at a point x ∈ X if for each open set V meeting
F (x), there exists an open set U of X containing x such that F (u) ∩ V 6= ∅ for each u ∈ U ,

(3) upper/lower semi-continuous on X if it has this property at each point of X .
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Definition 2.6. A multifunction F : (X, τ) → (Y, σ) is said to be

(a) upper C-continuous (briefly u.c.c.) [20] (resp. upper C-quasi-continuous (briefly u.c.q.c.)
[14], [36]) if for each open set V containing F (x) and having compact complement, there exists
an open (resp. semi-open) set U of X containing x such that F (U) ⊂ V ,

(2) lower C-continuous (briefly l.c.c.) [20] (resp. lower C-quasi-continuous (briefly l.c.q.c.)
[14], [36]) at a point x ∈ X if for each open set V meeting F (x) and having compact complement,
there exists an open (resp. semi-open) set U of X containing x such that F (u) ∩ V 6= ∅ for each
u ∈ U ,

(3) upper/lower C-continuous (resp. upper/lower C-quasi-continuous) on X if it has this prop-
erty at each point of X .

Remark 2.1. For the multifunctions defined above, the following implications hold:

u.s.c. ⇒ u.c.c. ⇒ u.c.q.c.; l.s.c. ⇒ l.c.c. ⇒ l.c.q.c.

3. C-m-continuous multifunctions

Definition 3.1. A subfamily mX of the power set P(X) of a nonempty set X is called a minimal
structure (briefly m-structure) [31], [33] on X if ∅ ∈ mX and X ∈ mX .

By (X, mX) (briefly (X, m)), we denote a nonempty set X with a minimal structure mX on
X and call it an m-space. Each member of mX is said to be mX -open (briefly m-open) and the
complement of an mX -open set is said to be mX -closed (briefly m-closed).

Remark 3.1. Let (X, τ) be a topological space. Then the families τ , SO(X), PO(X), α(X),
BO(X) and SPO(X) are all m-structures on X .

Definition 3.2. Let (X, mX) be an m-space. For a subset A of X , the mX -closure of A and the
mX -interior of A are defined in [17] as follows:

(1) mX -Cl(A) = ∩{F : A ⊂ F, X − F ∈ mX},
(2) mX -Int(A) = ∪{U : U ⊂ A,U ∈ mX}.

Remark 3.2. Let (X, τ) be a topological space and A be a subset of X . If mX = τ (resp. SO(X),
PO(X), α(X), BO(X), SPO(X)), then we have

(a) mX -Cl(A) = Cl(A) (resp. sCl(A), pCl(A), αCl(A), bCl(A), spCl(A)),

(b) mX -Int(A) = Int(A) (resp. sInt(A), pInt(A), αInt(A), bInt(A), spInt(A)).

Lemma 3.1. (Maki et al. [17]).
Let (X, mX) be an m-space. For subsets A and B of X, the following properties hold:
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(1) mX -Cl(X −A) = X −mX -Int(A) and mX -Int(X −A) = X −mX -Cl(A),

(2) If (X −A) ∈ mX , then mX -Cl(A) = A and
if A ∈ mX , then mX -Int(A) = A,

(3) mX -Cl(∅) = ∅,mX -Cl(X) = X ,
mX -Int(∅) = ∅ and mX -Int(X) = X ,

(4) If A ⊂ B, then mX -Cl(A) ⊂ mX -Cl(B) and
mX -Int(A) ⊂ mX -Int(B),

(5) A ⊂ mX -Cl(A) and mX -Int(A) ⊂ A,

(6) mX -Cl(mX -Cl(A)) = mX -Cl(A) and mX -Int(mX -Int(A)) = mX -Int(A).

Lemma 3.2. (Popa and Noiri [31]).
Let (X, mX) be an m-space and A a subset of X. Then x ∈ mX -Cl(A) if and only if U∩A 6= ∅

for every U ∈ mX containing x.

Definition 3.3. A minimal structure mX on a nonempty set X is said to have property B [17] if
the union of any family of subsets belonging to mX belongs to mX .

Lemma 3.3. (Popa and Noiri [33]).
For an m-structure mX on a nonempty set X , the following properties are equivalent:

(1) mX has property B;

(2) If mX -Int(A) = A, then A ∈ mX ;

(3) If mX -Cl(A) = A, then A is mX -closed.

Definition 3.4. Let (X, mX) be an m-space and (Y, σ) a topological space. A multifunction
F : (X, mX) → (Y, σ) is said to be

(1) upper C-m-continuous (briefly u.C.m.c.) at a point x ∈ X if for each open set V containing
F (x) and having compact complement,

there exists an mX -open set U containing x such that F (U) ⊂ V ,

(2) lower C-m-continuous (briefly l.C.m.c.) at a point x ∈ X if for each open set V meeting
F (x) and having compact complement, there exists an mX -open set U containing x such that
F (u) ∩ V 6= ∅ for each u ∈ U ,

(3) upper/lower C-m-continuous on X if it has this property at every point of X .
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Remark 3.3. Let (X, τ) and (Y, σ) be topological spaces.

(1) If mX = τ (resp. SO(X)) and is upper/lower C-m-continuous, then F is upper/lower
C-continuous (resp. upper/lower C-quasi-continuous).

(2) For mX = α(X), PO(X), SPO(X) or BO(X), we can define new types of modifications of
upper/lower C-continuous multifunctions. The definitions will be given in the last section.

Theorem 3.1. For a multifunction F : (X, mX) → (Y, σ), the following properties are equiva-
lent:

(1) F is u.C.m.c. at x ∈ X;

(2) x ∈ mX -Int(F+(V )) for each open set V containing F(x) and having compact comple-
ment;

(3) x ∈ F−(Cl(B)) for each subset B of Y having the compact closure such that x ∈ mX -
Cl(F−(B));

(4) x ∈ mX -Int(F+(B)) for each subset B of Y such that Y − Int(B) is compact and x ∈
F+(Int(B)).

Proof. (1) ⇒ (2): Let V be any open set of Y containing F (x) and having compact comple-
ment. There exists an mX -open set U containing x such that F (U) ⊂ V . Thus x ∈ U ⊂ F+(V ).
Since U ∈ mX , we have x ∈ mX -Int(F+(V )).

(2) ⇒ (3): Suppose that B is any subset of Y having the compact closure. Then Cl(B) is
closed and Y -Cl(B) is an open set having compact complement. Let x /∈ F−(Cl(B)). Then
x ∈ X −F−(Cl(B)) = F+(Y −Cl(B)). This implies F (x) ⊂ Y −Cl(B). Since Y −Cl(B) is
an open set having compact complement, by (2) we have

x ∈ mX -Int(F+(Y − Cl(B))) = mX -Int(X − F−(Cl(B))
= X −mX -Cl(F−(Cl(B))) ⊂ X −mX -Cl(F−(B)).

Hence x /∈ mX -Cl(F−(B)).

(3) ⇒ (4): Let B be any subset of Y such that Y -Int(B) is compact and let x /∈ mX -
Int(F+(B)). Then we have x ∈ X − mX -Int(F+(B)) = mX -Cl(X − F+(B)) = mX -
Cl(F−(Y −B)). By (3), we have x ∈ F−(Cl(Y −B)) = F−(Y − Int(B)) = X−F+(Int(B)).
Hence x /∈ F+(Int(B)).

(4) ⇒ (1): Let V be any open set of Y containing F (x) and having compact complement. We
have F+(V ) = F+(Int(V )) . Then Y − Int(V ) = Y − V which is compact and by (4) x ∈ mX -
Int( F+(V )). Therefore, there exists an mX -open set U containing x such that x ∈ U ⊂ F+(V ).
Thus F (U) ⊂ V . This shows that F is u.C.m.c. at x.
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Theorem 3.2. For a multifunction F : (X, mX) → (Y, σ), the following properties are equiva-
lent:

(1) F is l.C.m.c. at x ∈ X;

(2) x ∈ mX -Int(F−(V )) for each open set V containing F(x) and having compact comple-
ment;

(3) x ∈ F+(Cl(B)) for each subset B of Y having the compact closure such that x ∈ mX -
Cl(F+(B));

(4) x ∈ mX -Int(F−(B)) for each B of Y such that Y−Int(B) is compact and x ∈ F−(Int(B)).

Proof. The proof is similar to that of Theorem 3.1

Theorem 3.3. For a multifunction F : (X, mX) → (Y, σ), the following properties are equiva-
lent:

(1) F is u.C.m.c.;

(2) F+(V ) = mX -Int(F+(V )) for each open set V of Y having compact complement;

(3) F−(K) = mX -Cl(F−(K)) for every compact closed set K of Y;

(4) mX -Cl(F−(B)) ⊂ F−(Cl(B)) for every subset B of Y having the compact closure;

(5) F+(Int(B)) ⊂ mX -Int(F+(B)) for every subset B of Y such that Y − Int(B) is compact.

Proof. (1) ⇒ (2): Let V be any open set of Y having compact complement and x ∈ F+(V ).
Then F (x) ⊂ V and by Theorem 3.1, x ∈ mX -Int(F+(V )). By Lemma 3.1, we have mX -
Int(F+(V )) ⊂ F+(V ). Therefore, we obtain F+(V ) = mX -Int(F+(V )).

(2)⇒ (3): Let K be any compact closed set of Y . Then, by Lemma 3.1 we have X−F−(K) =
F+(Y −K) = mX -Int(F+(Y −K)) = mX -Int(X −F−(K)) = X −mX -Cl(F−(K)). There-
fore, we obtain F−(K) = mX -Cl(F−(K)).

(3) ⇒ (4): Let B be any subset of Y having the compact closure. By Lemma 3.1, we have
F−(B) ⊂ F−(Cl(B)) = mX -Cl(F−(Cl(B))). Hence mX -Cl(F−(B)) ⊂ mX -Cl(F−(Cl(B))) =
F−(Cl(B)).

(4) ⇒ (5): Let B be a subset of Y such that Y − Int(B) is compact. Then by Lemma 3.1 we
have

X −mX -Int(F+(B)) = mX -Cl(X − F+(B)) = mX -Cl(F−(Y −B)) ⊂
⊂ mX -Cl(F−(Y − Int(B))) ⊂ F−(Y − Int(B)) = X − F+(Int(B)).

Therefore, we obtain F+(Int(B)) ⊂ mX -Int(F+(B)).
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(5) ⇒ (1): Let x ∈ X and V be any open set of Y containing F (x) and having compact
complement. Then x ∈ F+(V ) = F+(Int(V )) ⊂ mX -Int(F+(V )). By Theorem 3.1, F is
u.C.m.c. at x.

Theorem 3.4. For a multifunction , the following properties are equivalent:

(1) F is l.C.m.c.;

(2) F−(V ) = mX -Int(F−V )) for each open set V of Y having compact complement;

(3) F+(K) = mX -Cl(F+(K)) is for every compact closed set K of Y;

(4) mX -Cl(F+(B)) ⊂ F+(Cl(B)) for every subset B of Y having the compact closure;

(5) F−(Int(B)) ⊂ mX -Int(F−(B)) for every subset B of Y such that Y − Int(B) is compact.

Proof. The proof is similar to that of Theorem 3.3.

Corollary 3.1. Let (X, mX) be an m-space and mX have property B. For a multifunction
F : (X, mX) → (Y, σ), the following properties are equivalent:

(1) F is u.C.m.c. (resp. l.C.m.c.);

(2) F+(V ) (resp. F−(V )) is mX -open for each open set V of Y having compact complement;

(3) F−(K) (resp. F+(K)) is mX -closed for every compact closed set K of Y.

Proof. This is an immediate consequence of Theorems 3.3 and 3.4 and Lemma 3.3.

Remark 3.4. Let (X, τ) and (Y, σ) be topological spaces. If mX = τ (resp. SO(X)) and is
upper/lower C-m-continuous, then by Theorems 3.3 and 3.4 and Corollary 3.1 we obtain the
results established in Proposition 1 of [11] (resp. Theorem 1 of [14], Theorems 3.3 and 3.4 of [36]).

Definition 3.5. A function f : (X,mX) → (Y, σ) is said to be
c-m-continuous if for each point x ∈ X and each open set V containing f(x) and having

compact complement, there exists an mX -open set U containing x such that f(U) ⊂ V .

Corollary 3.2. For a function f : (X,mX) → (Y, σ), the following properties are equivalent:

(1) f is c-m-continuous;

(2) f−1(V ) = mX -Int(f−1(V )) for each open set V of Y having compact complement;

(3) f−1(K) = mX -Cl(f−1(K)) for every compact closed set K of Y;
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(4) mX -Cl(f−1(B)) ⊂ f−1(Cl(B)) for every subset B of Y having the compact closure;

(5) f−1(Int(B)) ⊂ mX -Int(f−1(B)) for every subset B of Y such that Y −Int(B) is compact.

Remark 3.5. Let (X, τ) and (Y, σ) be topological spaces. If mX = τ and f : (X,mX) → (Y, σ)
is c-m-continuous, then by Corollary 3.2 we obtain the results established in Theorem 1 of [9] and
Theorems 2 of [15].

Corollary 3.3. A multifunction is u.C.m.c. (resp. l.C.m.c.) if F−(K) = mX -Cl(F−(K)) (resp.
F+(K) = mX -Cl(F+(K))) for every compact set K of Y.

Proof. Let G be any open set of Y having compact complement. Then Y − G is a compact
closed set. By the hypothesis, X − F+(G) = F−(Y − G) = mX -Cl(F−(Y − G)) = mX -
Cl(X − F+(G)) = X − mX -Int(F+(G)) and hence, F+(G) = mX -Int(F+(G)). It follows
from Theorem 3.3 that F is u.C.m.c. The proof of lower C-m-continuity is entirely similar.

Remark 3.6. (1) Let mX = τ (resp. SO(X)), then by Corollary 3.3 we obtain the results estab-
lished in Proposition 2 of [20] (resp. Corollary 3.3 of [36]).

(2) It is shown in Remark 4 of [11] that the converse of Corollary 3.3 is not true.

Definition 3.6. A subset A of a topological space (X, τ) is said to be

(1) α-paracompact [40] if every cover of A by open sets of X is refined by a cover of A which
consists of open sets of X and is locally finite in X ,

(2) α-regular [12] if for each a ∈ A and each open set U of X containing a, there exists an
open set G of X such that a ∈ G ⊂ Cl(G) ⊂ U .

Lemma 3.4. (Kovačević [12])
If A is an α-regular α-paracompact set of a topological space X and U is an open neighbor-

hood of A, then there exists an open set G of X such that A ⊂ G ⊂ Cl(G) ⊂ U .

For a multifunction F : (X, mX) → (Y, σ), by ClF : (X, mX) → (Y, σ) we denote a
multifunction defined as follows: (ClF )(x) = Cl(F (x)) for each point x ∈ X . Similarly, we can
define αClF , sClF , pClF , spClF , bClF .

Lemma 3.5. If is a multifunction such that F (x) is α-paracompact and α-regular for each x ∈ X ,
then for each open set V of Y F+(V ) = G+(V ), where G denotes ClF, αClF, sClF, pClF, bClF or
spClF.

Proof. The proof is similar to that of Lemma 3.3 of [30].

Theorem 3.5. Let be a multifunction such that F (x) is α-regular and
α-paracompact for each x ∈ X . Then the following properties are equivalent: (1) F is

u.C.m.c.; (2) ClF is u.C.m.c.; (3) αClF is u.C.m.c.; (4) sClF is u.C.m.c.; (5) pClF is u.C.m.c.; (6)
bClF is u.C.m.c.; (7) spClF is u.C.m.c.
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Proof. We set G = ClF , αClF , sClF , pClF , bClF or spClF . Suppose that F is u.C.m.c. Let
V be any open set of Y containing G(x) and having compact complement. By Lemma 3.5, we
have x ∈ G+(V ) = F+(V ) and by Theorem 3.1 there exists U ∈ mX containing x such that
F (U) ⊂ V . Since F (u) is α-paracompact and α-regular for each u ∈ U , by Lemma 3.4 there
exists an open set H such that F (u) ⊂ H ⊂ Cl(H) ⊂ V ; hence G(u) ⊂ Cl(H) ⊂ V for every
u ∈ U . Therefore, we obtain G(U) ⊂ V . This shows that G is u.C.m.c.

Conversely, suppose that G is u.C.m.c. Let x ∈ X and V be any open set of Y containing
F (x) and having compact complement. By Lemma 3.5, we have x ∈ F+(V ) = G+(V ) and
hence G(x) ⊂ V . By Theorem 3.1, there exists U ∈ mX containing x such that G(U) ⊂ V .
Therefore, we obtain U ⊂ G+(V ) = F+(V ) and hence F (U) ⊂ V . This shows that F is
u.C.m.c.

Lemma 3.6. If is a multifunction, then for each open set V of Y G−(V ) = F−(V ), where G =
ClF, αClF, sClF, pClF, bClF or spClF.

Proof. The proof is similar to that of Lemma 3.4 of [30].

Theorem 3.6. For a multifunction , the following properties are equivalent: (1) F is l.C.m.c.; (2)
ClF is l.C.m.c.; (3) αClF is l.C.m.c.; (4) sClF is l.C.m.c.; (5) pClF is l.C.m.c.; (6) bClF is l.C.m.c.;
(7) spClF is l.C.m.c.

Proof. By using Lemma 3.6 this is shown similarly as in Theorem 3.5.

Remark 3.7. Let (X, τ) and (Y, σ) be topological spaces and mX = SO(X). By Theorems 3.5
and 3.6, we obtain the results established in Theorems 3.5 and 3.6 of [36].

4. The set of points of m-c-discontinuity

For a multifunction F : (X, mX) → (Y, σ), the sets D+
mc(F ) and D−

mc(F ) are defined as
follows:

D+
mc(F ) = {x ∈ X : F is not upper C-m-continuous at x },

D−
mc(F ) = {x ∈ X : F is not lower C-m-continuous at x }.

Theorem 4.1. For a multifunction , the following properties hold:
D+

mc(F ) =
⋃

G∈cσ{F+(G)− [mX -Int(F+(G))]}
=

⋃
B∈ iP (Y ) {F+(Int(B))− [mX -Int(F+(B))]}

=
⋃

B∈ cP (Y ) {mX -Cl(F−(B))− F−(Cl(B))}
=

⋃
H∈ cF {mX -Cl(F−(H))− F−(H)},

where
cσ is the family of open set G having compact complement,
iP(Y ) is the family of subset B of Y such that Y − Int(B) is compact,
cP(Y ) is the family of subset B of Y with the compact closure and
cF is the family of closed compact subsets of Y.
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Proof. We shall show only the first equality and the last since the proof of any other equality
is similar to the first.

Let x ∈ D+
mc(F ). By Theorem 3.1, there exists an open set V of Y having compact comple-

ment such that x ∈ F+(V ) and x /∈ mX - Int(F+(V )). Therefore, we obtain x ∈ F+(V )− [mX -
Int(F+(V ))] ⊂ ⋃

G∈cσ{F+(G) − [mX -Int(F+(G))]}. Conversely, let x ∈ ⋃
G∈cσ{F+(G) −

[mX -Int(F+(G))]}. There exists V ∈ cσ such that x ∈ F+(V )− [mX -Int(F+(V ))]. By Theo-
rem 3.1, we obtain x ∈ D+

mc(F ).

We prove the last equality.⋃
H∈ cF {mX -Cl(F−(H))−F−(H)}⊂ ⋃

B∈ cP (Y ) {mX -Cl(F−(B))−F−(Cl(B))} = D+
mc(F ).

Conversely, by Lemma 3.1 we have
D+

mc(F ) =
⋃

B∈ cP (Y ) {mX - Cl(F−(B))− F−(Cl(B))}
⊂ ⋃

H∈ cF {mX -Cl(F−(H))− F−(H)}.

Theorem 4.2. For a multifunction , the following properties hold:
D−

mc(F ) =
⋃

G∈cσ{F−(G)− [mX -Int(F−(G))]}
=

⋃
B∈ iP (Y ) {F−(Int(B))− [mX -Int(F−(B))]}

=
⋃

B∈ cP (Y ) {mX -Cl(F+(B))− F+(Cl(B))}
=

⋃
H∈ cF {mX -Cl(F+(H))− F+(H)}.

Proof. The proof is similar to that of Theorem 4.1

Remark 4.1. If is a multifunction and mX = τ (resp. SO(X)), then the set of points of upper/lower
C-discontinuity (resp. c-quasi-discontinuity) is obtained.

Definition 4.1. Let (X, mX) be an m-space and A a subset of X . The mX -frontier of A [35],
denoted by mX -Fr(A), is defined as follows:

mX -Fr(A) = mX -Cl(A) ∩mX -Cl(X −A) = mX -Cl(A)−mX -Int(A).

Theorem 4.3. The set of all points x ∈ X at which a function is not u.C.m.c. (resp. l.C.m.c.)
is identical with the union of the mX -frontiers of the u.C.m.c. (resp. l.C.m.c.) inverse images of
open sets containing (resp. meeting) F(x) and having compact complement.

Proof. Suppose that F is not u.C.m.c. at x ∈ X . Then, there exists an open set V of Y
containing F (x) and having compact complement such that U ∩ (X − F+(V )) 6= ∅ for every
mX -open set U containing x. Hence, by Lemma 3.2 we have x ∈ mX -Cl(X − F+(V )). On the
other hand, we have x ∈ F+(V ) ⊂ mX -Cl(F+(V )) and hence x ∈ mX -Fr(F+(V )).

Conversely, suppose that V is an open set of Y containing F (x) and having compact com-
plement such that x ∈ mX -Fr(F+(V )). If F is u.C.m.c. at x ∈ X , then there exists U ∈ mX

containing x such that U ⊂ F+(V ) and hence, x ∈ mX -Int(F+(V )). This is a contradiction and
hence, F is not u.C.m.c. The proof for l.C.m.c. is similar.
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5. m-continuity and C-m-continuity

Definition 5.1. A multifunction is said to be

(1) upper m-continuous (briefly u.m.c.) at x ∈ X [34] if for each open set V containing F (x),
there exists U ∈ mX containing x such that F (U) ⊂ V ,

(2) lower m-continuous (briefly l.m.c.) at x ∈ X [34] if for each open set V such that
F (x) ∩ V 6= ∅, there exists U ∈ mX containing x such that F (u) ∩ V 6= ∅ for every u ∈ U ,

(3) upper/lower m-continuous on X if it has the properties at each point of X .

Remark 5.1. Let (X, τ) be a topological space and mX = τ (resp. SO(X), PO(X), α(X),
SPO(X), BO(X)). If a multifunction is upper/lower m-continuous, then F is upper/lower contin-
uous (resp. upper/lower semi-continuous [27] or upper/lower quasi-continuous [28], upper/lower
precontinuous [29], upper/lower α-continuous [21], upper/lower β-continuous [30], upper/lower
b-continuous or upper/lowerγ-continuous [3]).

A topological space (Y, σ) is called a KC-space [39] if every compact set of Y is closed.

Definition 5.2. A multifunction is said to be m-bounded at the point p ∈ X if there exists U ∈ mX

containing p and a compact set C of Y such that F (x) ⊂ C for each x ∈ U .

Theorem 5.1. Let (Y, σ) be a KC space and X a nonempty set with two minimal structures m1
X

and m2
X such that U ∩ V ∈ m2

X for every U ∈ m1
X and V ∈ m2

X . Then F : (X,m2
X) → (Y, σ)

is u.m.c. (resp. l.m.c.) at p ∈ X if the following conditions satisfy:

(1) F : (X,m1
X) → (Y, σ) is m-bounded at p ∈ X ,

(2) F : (X,m2
X) → (Y, σ) is u.C.m.c. (resp. l.C.m.c.) at p ∈ X .

Proof. We prove only the first case, the proof of the second being entirely analogous. Let
U ∈ m1

X containing p and C be a compact set of Y such that F (x) ⊂ C for each x ∈ U . Let V
be any open set of Y such that F (p) ⊂ V . Put G = V ∪ (Y − C). Then G is open and Y −G is
compact. By the condition (2), there exists W ∈ m2

X containing p such that F (x) ⊂ G for every
x ∈ W . Put H = W ∩ U , then H ∈ m2

X containing p and F (x) ⊂ G ∩ C for any x ∈ H . Then
F (x) ⊂ V for any x ∈ H . Therefore, F : (X, m2

X) → (Y, σ) is u.m.c. at p ∈ X .

Remark 5.2. If m1
X = m2

X = τ , then by Theorem 5.1 we obtain the result established in Propo-
sition 5 of [11].

Definition 5.3. An m-space (X, mX) is said to be m-saturated if for any x ∈ X the intersection
of all mX -open sets containing x is mX -open.

Theorem 5.2. Let (X, mX) be an m-saturated m-space and (Y, σ) a T1-space. If is u.C.m.c.,
then F is u.m.c.
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Proof. Suppose that F is not u.m.c. at some point x0 ∈ X . There exists an open set V of Y
such that F (x0) ⊂ V and F (U) ∩ (Y − V ) 6= ∅ for every U ∈ mX containing x0. Let U0 be the
intersection of all mX -open sets containing x0. Then U0 ∈ mX and there exists z1 ∈ U0 such that
F (z1) ∩ (Y − V ) 6= ∅. Hence there exists y ∈ F (z1) ∩ (Y − V ). The set Y − {y} is an open set
with compact complement. Since F (x0) ⊂ Y −{y} and F is u.C.m.c. at x0, there exists G ∈ mX

containing x0 such that for any x ∈ G we have F (x) ⊂ Y − {y}. This is a contradiction. Since
U0 ⊂ G, z1 ∈ G and F (z1) ⊂ Y − {y}. This contradicts that y ∈ F (z1).

Remark 5.3. If mX = τ , then by Theorem 5.2 we obtain the result established in Proposition 8
of [11].

Theorem 5.3. Let (X,mX) be an m-saturated m-space and (Y, σ) a locally compact Hausdorff
space. If is an u.C.m.c. and closed valued multifunction, then F is u.m.c.

Proof. Suppose that F is not u.m.c. at x0 ∈ X . Then, there exists an open set V of Y
such that F (x0) ⊂ V and F (U) ∩ (Y − V ) 6= ∅ for every U ∈ mX containing x0. Let U0 be
the intersection of all mX -open sets containing x0. Then U0 ∈ mX and there exists z1 ∈ U0

such that F (z1) ∩ (Y − V ) 6= ∅. Hence there exists y ∈ F (z1) ∩ (Y − V ). Since (Y, σ) is
locally compact Hausdorff, (Y, σ) is regular. Since F (x0) is a closed set and y /∈ F (x0), there
exists an open set W containing y such that Cl(W ) is a compact set and Cl(W ) ⊂ Y − F (x0).
Since F (x0) ⊂ Y − Cl(W ) and F is u.C.m.c. at x0, there exists an mX -open set G containing
x0 and F (x) ⊂ Y − Cl(W ) for each x ∈ G. This is a contradiction. Since z1 ∈ U0 ⊂ G,
F (z1) ⊂ Y − Cl(W ). This contradicts that F (z1) ∩ Cl(W ) 6= ∅.

Remark 5.4. If mX = τ , then by Theorem 5.3 we obtain the result established in Proposition 10
of [11].

Theorem 5.4. Let (X, mX) be an m-saturated m-space and (Y, σ) a KC space. If is l.C.m.c. and
for each x ∈ X there exists a compact set Cx such that F (x) ⊂ Cx, then F is l.m.c.

Proof. Suppose that F is not l.m.c. at x0 ∈ X . Then, there exists an open set V of Y
such that F (x0) ∩ V 6= ∅ and for each U ∈ mX containing x0 there exists u ∈ U such that
F (u) ∩ V = ∅. Let U0 be the intersection of all mX -open sets containing x0. Then U0 ∈ mX

and there exists x ∈ U0 such that F (x)∩ V = ∅. By the hypothesis, there exists a compact set Cx

such that F (x) ⊂ Cx. Therefore, we have F (x) ⊂ Cx − V and Cx − V is a compact set.The set
Y − (Cx − V ) is open and F (x0) ∩ (Y − (Cx − V )) 6= ∅. Since F is l.C.m.c. at x0, there exists
an mX -open set G containing x0 such that for any z ∈ G we have F (z) ∩ (Y − (Cx − V )) 6= ∅.
This is a contradiction because x ∈ U0 ⊂ G and F (x) ⊂ Cx − V .

Remark 5.5. If mX = τ , then by Theorem 5.4 we obtain the result established in Proposition 11
of [11].

6. Some properties

Definition 6.1. A multifunction is said to be upper C-m-rarely continuous at a point x ∈ X if
for each open set G of Y containing F (x) and having compact complement, there exists a rare
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set RG with Cl(RG) ∩ G = ∅ and an mX -open set U containing x such that F (U) ⊂ G ∪ RG.
A multifunction is said to be upper C-m-rarely continuous if it has this property at each point
x ∈ X .

Theorem 6.1. Let X be a nonempty set with two minimal structures m1
X and m2

X such that
U ∩ V ∈ m2

X for every U ∈ m1
X and V ∈ m2

X . Then F : (X,m2
X) → (Y, σ) is u.C.m.c. if

the following conditions satisfy:

(1) F : (X,m1
X) → (Y, σ) is upper C-m-rarely continuous and

(2) for each open set G containing F(x) and having compact complement, F−(Cl(RG)) is an
m2

X -closed set of X, where RG is the rare set of Definition 6.1.

Proof. Let x ∈ X and G be any open set of Y containing F (x) and having compact comple-
ment. By the condition (1), there exists V ∈ m1

X containing x and a rare set RG with Cl(RG) ∩
G = ∅ such that F (V ) ⊂ G ∪ RG. If we suppose that x ∈ F−(Cl(RG)), then Cl(RG) ∩G 6= ∅.
This is a contradiction. Thus x /∈ F−(Cl(RG)). Put U = V ∩ (X − F−(Cl(RG))) . Then
U ∈ m2

X and x ∈ U since x ∈ V and x ∈ X − F−(Cl(RG)). Let u ∈ U , then F (u) ⊂ G ∪ RG

and F (u) ∩ Cl(RG) = ∅. Therefore, we have F (u) ∩ RG = ∅ and hence, F (u) ⊂ G for each
u ∈ U . Since U ∈ m2

X containing x, it follows that F : (X, m2
X) → (Y, σ) is u.C.m.c.

Definition 6.2. For a multifunction , the graph G(F ) = {(x, F (x)) : x ∈ X} is said to be strongly
m-closed [32] if for each (x, y) ∈ (X × Y ) −G(F ), there exist an mX -open set U containing x
and an open set V of Y containing y such that [U × Cl(V )] ∩G(F ) = ∅.

Lemma 6.1. A multifunction has a strongly m-closed graph if and only if for each (x, y) ∈
(X × Y )−G(F ), there exist an mX -open set U containing x and an open set V of Y containing
y such that F (U) ∩ Cl(V ) = ∅.

Theorem 6.2. Let (Y, σ) be a locally compact Hausdorff space. If a multifunction is u.C.m.c.
and F (x) is closed for each x ∈ X , then G(F ) is strongly m-closed.

Proof. Let (x, y) ∈ (X×Y )−G(F ). Then y /∈ F (x). Since Y is locally compact Hausdorff,
Y is regular. Since F (x) is a closed set and y /∈ F (x), there exists an open set V in Y containing y
such that Cl(V ) is a compact set and Cl(V ) ⊂ X−F (x) and hence, F (x) ⊂ Y −Cl(V ). Since F
is u.C.m.c. at x and Y − Cl(V ) is an open set having compact complement, there exists U ∈ mX

containing x such that F (U) ⊂ Y −Cl(V ). This implies that F (U) ∩Cl(V ) = ∅ and by Lemma
6.1 G(F ) is strongly m-closed.

7. New modifications of C-continuous multifunctions

For modifications of open sets defined in Definition 2.1, the following relationships are known:

open ⇒ α-open ⇒ preopen
⇓ ⇓

semi-open ⇒ b-open ⇒ semi-preopen
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First, we can define the following modifications of upper/lower C -continuous multifunctions.

Definition 7.1. A multifunction F : (X, τ) → (Y, σ) is said to be

(1) upper C-α-continuous (resp. upper C-precontinuous, upper C-b-continuous, upper C-
sp-continuous) at a point x ∈ X if for each open set V containing F (x) and having compact
complement, there exists an α-open (resp. preopen, b-open, semi-preopen) set U containing x
such that F (U) ⊂ V ,

(2) lower C-α-continuous (resp. lower C-precontinuous, lower C-b-continuous, lower C-sp-
continuous) at a point x ∈ X if for each open set V meeting F (x) and having compact comple-
ment, there exists an α-open (resp. preopen, b-open, semi-preopen) set U containing x such that
F (u) ∩ V 6= ∅ for each u ∈ U ,

(3) upper/lower C-α-continuous (resp. upper/lower C-precontinuous, upper/lower C-b-continuous,
upper/lower C-sp-continuous) on X if it has this property at each x ∈ X .

For multifunctions defined in Definition 7.1, the following relationships hold:

upper C-con. ⇒ upper C-α-con. ⇒ upper C-precon.
⇓ ⇓

upper C-quasi-con. ⇒ upper C-b-con. ⇒ upper C-sp-con.

Remark 7.1. In the diagram above, ”con.” means continuity and the analogous diagram holds for
the case ”lower”.

Let define the further modifications of upper/lower C-continuous multifunctions. For the pur-
pose, we recall the definitions of the θ -closure and the δ-closure due to Veličko [38]. Let (X, τ)
be a topological space and A a subset of X . A point x ∈ X is called a θ-cluster (resp. δ-cluster)
point of A if Cl(V ) ∩A 6= ∅ (resp. Int(Cl(V )) ∩A 6= ∅) for every open set V containing x. The
set of all θ-cluster (resp. δ-cluster) points of A is called the θ-closure (resp. δ-closure) of A and
is denoted by Clθ(A) (resp. Clδ(A)) [38]. A subset A is said to be θ-closed (resp. δ-closed) if
Clθ(A) = A (resp. Clδ(A) = A). The complement of a θ-closed (resp. δ-closed) set is said to
be θ-open (resp. δ-open). The union of all θ-open (resp. δ-open) sets contained in the subset A is
called the θ-interior (resp. δ-interior) of A and is denoted by Intθ(A) (resp. Intδ(A)).

Definition 7.2. A subset A of a topological space (X, τ) is said to be
(1) δ-semiopen [25] (resp. θ-semiopen [6]) if A ⊂ Cl(Intδ(A)) (resp. A ⊂ Cl(Intθ(A))),
(2) δ-preopen [37] (resp. θ-preopen [23]) if A ⊂ Int(Clδ(A)) (resp. A ⊂ Int(Clθ(A))),
(3) δ-sp-open [10] (resp. θ-sp-open [23]) if A ⊂ Cl(Int(Clδ(A))) (resp. A ⊂ Cl(Int(Clθ(A)))).

By δSO(X) (resp. δPO(X), δSPO(X), θ SO(X), θPO(X), θSPO(X)), we denote the collec-
tion of all δ-semiopen (resp. δ-preopen, δ-sp-open, θ -semiopen, θ-preopen, θ-sp-open) sets of a
topological space (X, τ). These six collections are all m-structures with property B. It is known
that the families of all θ-open sets and δ-open sets of (X, τ) are topologies for X , respectively.
In [23] and [6], the following relationships are known:
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θ-open ⇒ δ -open ⇒ open ⇒ preopen ⇒ δ -preopen ⇒ θ-preopen
⇓ ⇓ ⇓ ⇓ ⇓ ⇓

θ-semiopen ⇒ δ-semiopen ⇒ semi-open ⇒ sp-open ⇒ δ-sp-open ⇒ θ-sp-open

Definition 7.3. A multifunction F : (X, τ) → (Y, σ) is said to be
(1) upper C-θ-continuous (resp. upper C-θ-precontinuous, upper C-θ-semi-continuous, upper

C-θ-sp-continuous) at a point x ∈ X if for each open set V containing F (x) and having compact
complement, there exists a θ-open (resp. θ-preopen, θ-semiopen, θ-sp-open) set U containing x
such that F (U) ⊂ V ,

(2) lower C-θ-continuous (resp. lower C-θ-precontinuous, lower C-θ-semi-continuous, lower
C-θ-sp-continuous) at a point x ∈ X if for each open set V meeting F (x) and having compact
complement, there exists a θ-open (resp. θ-preopen, θ-semiopen, θ-sp-open) set U containing x
such that F (u) ∩ V 6= ∅ for each u ∈ U ,

(3) upper/lower C-θ-continuous (resp. upper/lower C-θ-precontinuous, upper/lower C-θ-
semi-continuous, upper/lower C-θ-sp-continuous) on X if it has this property at each x ∈ X .

Definition 7.4. A multifunction F : (X, τ) → (Y, σ) is said to be
(1) upper C-δ-continuous (resp. upper C-δ-precontinuous, upper C-δ-semi-continuous, upper

C-δ-sp-continuous) at a point x ∈ X if for each open set V containing F (x) and having compact
complement, there exists a δ-open (resp. δ-preopen, δ-semiopen, δ-sp-open) set U containing x
such that F (U) ⊂ V ,

(2) lower C-δ-continuous (resp. lower C-δ-precontinuous, lower C-δ-semi-continuous, lower
C-δ-sp-continuous) at a point x ∈ X if for each open set V meeting F (x) and having compact
complement, there exists a δ-open (resp. δ-preopen, δ-semiopen, δ-sp-open) set U containing x
such that F (u) ∩ V 6= ∅ for each u ∈ U ,

(3) upper/lower C-δ-continuous (resp. upper/lower C-δ-precontinuous, upper/lower C-δ-semi-
continuous, upper/lower C-δ-sp-continuous) on X if it has this property at each x ∈ X .

For the multifunctions defined above, the following diagram hold, where c. means continuity.

u/l C.θ-c. ⇒ u/l C. δ-c. ⇒ u/l C.c. ⇒ u/l C.p.c. ⇒ u/l C.δ-p.c. ⇒ u/l C.θ -p.c.
⇓ ⇓ ⇓ ⇓ ⇓ ⇓

u/l C.θ-s.c. ⇒ u/l C.δ-s.c. ⇒ u/l C.q.c. ⇒ u/l C.sp.c. ⇒ u/l C.δ-sp.c. ⇒ u/l C.θ-sp.c.

Conclusion. We can apply the results established in Sections 3 - 6 to all multifunctions defined in
Definitions 7.1, 7.2 and 7.3.
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