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1. Introduction

Semi-open sets, preopen sets, a-open sets, -open sets and d-open sets play an important role
in researching of generalizations of continuity in topological spaces. By using these sets many au-
thors introduced and investigated various types of noncontinuous functions and multifunctions. In
1970, Gentry and Hoyle III [9] defined a function f : X — Y to be c-continuous at a point x € X
if for each open set V of Y containing f(x) and having compact complement, there exists an open
set U of X containing = such that f(U) C V. Some properties of c-continuous functions are
studied in [15], [16], [24] and other papers. Neubrunn [20] and Hol4 et al. [11] extended this no-
tion to the setting of multifunctions. In [14], Lipski introduced the notion of C' -quasicontinuous
multifunctions as a generalization of C'-continuous multifunctions and quasi-continuous multi-
functions [26]. Some properties of C'-quasi-continuous multifunctions are studied in [36].

In this paper we introduce upper/lower C-m-continuous multifunctions as multifunctions de-
fined on a set satisfying some minimal conditions. We obtain some characterizations and sev-
eral properties of such multifunctions which turn out unify some results established in [11], [14]
and [36]. In the last section, we recall some types of modifications of open sets and point out the
possibility for new forms of C' -continuous multifunctions.
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2. Preliminaries

Let (X, 7) be a topological space and A a subset of X. The closure of A and the interior of A
are denoted by CI(A) and Int(A), respectively.

Definition 2.1. Let (X, 7) be a topological space. A subset A of X is said to be

a-open [22] (resp. semi-open [13], preopen [18], B-open [1] or semi-preopen [4], b-open
[5]) if A C Int(Cl(Int(A))) (resp. A C Cl(Int(A4)), A C Int(Cl(A4)), A C Cl(Int(CL(A))),
A C Int(Cl(A)) U Cl(Int(A))).

The family of all semi-open (resp. preopen, a-open, F-open, semi-preopen, b-open) sets in X
is denoted by SO(X) (resp. PO(X), a(X), 5(X), SPO(X), BO(X)).

Definition 2.2. The complement of a semi-open (resp. preopen, a-open, G-open
, semi-preopen, b-open) set is said to be semi-closed [7] (resp. preclosed [8], a-closed [19],
B-closed [1], semi-preclosed [4], b-closed [5]).

Definition 2.3. The intersection of all semi-closed (resp. preclosed, a-closed, G-closed, semi-
preclosed, b-closed) sets of X containing A is called the semi-closure [7] (resp. preclosure [8],
a-closure [19], B-closure [2], semi-preclosure [4], b-closure [5]) of A and is denoted by sCI(A)
(resp. pCI(A), aCl(A), 3CI(A), spCI(A), bCI(A).

Definition 2.4. The union of all semi-open (resp. preopen, a-open, 3-open, semi-preopen, b-open)
sets of X contained in A is called the semi-interior (resp. preinterior, a-interior, 3-interior, semi-
preinterior, b-interior) of A and is denoted by sInt(A) (resp. pInt(A4), alnt(A), gInt(A), spInt(A),
blnt(A)).

Throughout the present paper, (X, 7) and (Y, o) (briefly X and Y') always denote topological
spaces and F': X — Y (resp. f : X — Y) presents a multivalued (resp. single valued) function.
For a multifunction F' : X — Y, we shall denote the upper and lower inverse of a subset B of a
space Y by F'*(B) and F~ (B), respectively, that is

Ft(By={ze€e X :F(z)CB}and F~(B)={z € X : F(z) N B # 0}.
Definition 2.5. A multifunction F' : (X, 7) — (Y, 0) is said to be

(1) upper semi-continuous (briefly u.s.c.) at a point x € X if for each open set V' containing
F(z), there exists an open set U of X containing = such that F'(U) C V,

(2) lower semi-continuous (briefly l.s.c.) at a point z € X if for each open set V' meeting
F(z), there exists an open set U of X containing x such that F'(u) N’V # () for each u € U,

(3) upper/lower semi-continuous on X if it has this property at each point of X.
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Definition 2.6. A multifunction F': (X, 7) — (Y, 0) is said to be

(a) upper C-continuous (briefly u.c.c.) [20] (resp. upper C-quasi-continuous (briefly u.c.q.c.)
[14], [36]) if for each open set V' containing F'(z) and having compact complement, there exists
an open (resp. semi-open) set U of X containing = such that F'(U) C V,

(2) lower C-continuous (briefly l.c.c.) [20] (resp. lower C-quasi-continuous (briefly l.c.q.c.)
[14], [36]) at a point = € X if for each open set V' meeting F'(x) and having compact complement,
there exists an open (resp. semi-open) set U of X containing x such that F'(u) NV # () for each
ue U,

(3) upper/lower C-continuous (resp. upper/lower C-quasi-continuous) on X if it has this prop-
erty at each point of X.

Remark 2.1. For the multifunctions defined above, the following implications hold:

u.s.c. = u.c.c. = u.c.q.c.; lLs.c.=lcc =lcg.c

3. C'-m~continuous multifunctions

Definition 3.1. A subfamily mx of the power set P(X) of a nonempty set X is called a minimal
structure (briefly m-structure) [31], [33] on X if ) € myx and X € mx.

By (X, mx) (briefly (X, m)), we denote a nonempty set X with a minimal structure mx on
X and call it an m-space. Each member of m x is said to be m x-open (briefly m-open) and the
complement of an m x-open set is said to be m x-closed (briefly m-closed).

Remark 3.1. Let (X, 7) be a topological space. Then the families 7, SO(X), PO(X), a(X),
BO(X) and SPO(X) are all m-structures on X.

Definition 3.2. Let (X, mx) be an m-space. For a subset A of X, the mx-closure of A and the
mx-interior of A are defined in [17] as follows:

(1) my-Cl(A) =n{F:AC F,X — F € mx},

2y mx-Int(A) =U{U : U C A,U € mx}.

Remark 3.2. Let (X, 7) be a topological space and A be a subset of X. If mx =7 (resp. SO(X),
PO(X), a(X), BO(X), SPO(X)), then we have

(a) mx-CI(A) = CI(A) (resp. sCI(A), pCl(A), aCI(A), bCI(A), spCl(A)),

(b) mx-Int(A) = Int(A) (resp. sInt(A), pInt(A), alnt(A), bint(A), spInt(A)).

Lemma 3.1. (Maki et al. [17]).
Let (X, mx) be an m-space. For subsets A and B of X, the following properties hold:
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(1) mx-Cl(X — A) = X —mx-Int(A) and mx-Int(X — A) = X — mx-Cl(A4),

(2)If (X — A) € mx, thenmx-Cl(A) = A and
if A € mx, then mx-Int(A) = A,

(3) mx-C1(0) = B, mx-Cl(X) = X,
mx-Int(0) = 0 and mx-Int(X) = X,

(4)If A C B, then mx-Cl(A) C mx-Cl(B) and
mx-Int(A) C mx-Int(B),

(5) A C mx-Cl(A) and mx-Int(A) C A,

(6) mx-Cl(mx-Cl(A)) = mx-Cl(A) and mx-Int(mx-Int(A)) = mx-Int(A).

Lemma 3.2. (Popa and Noiri [31]).
Let (X, mx) be an m-space and A a subset of X. Then x € mx-Cl(A) ifand only if UNA # ()
for every U € mx containing x.

Definition 3.3. A minimal structure mx on a nonempty set X is said to have property B [17] if
the union of any family of subsets belonging to mx belongs to mx.

Lemma 3.3. (Popa and Noiri [33]).
For an m-structure mx on a nonempty set X, the following properties are equivalent:

(1) mx has property B;
(2) If mx-Int(A) = A, then A € mx;

(3) If mx-Cl(A) = A, then A is mx-closed.

Definition 3.4. Let (X, mx) be an m-space and (Y, o) a topological space. A multifunction
F:(X,mx)— (Y,0) is said to be

(1) upper C-m-continuous (briefly u.C.m.c.) at a point x € X if for each open set V' containing
F(z) and having compact complement,
there exists an m x-open set U containing = such that F'(U) C V,

(2) lower C-m-continuous (briefly [.C.m.c.) at a point x € X if for each open set V' meeting
F(z) and having compact complement, there exists an mx-open set U containing = such that

F(uynV # () foreachu € U,

(3) upper/lower C-m-continuous on X if it has this property at every point of X.



T.Noiri, V.Popa / Eur. J. Pure Appl. Math, 1 (2008), (82-98) 86

Remark 3.3. Let (X, 7) and (Y, o) be topological spaces.

(1) f mx = 7 (resp. SO(X)) and is upper/lower C-m-continuous, then F' is upper/lower
C-continuous (resp. upper/lower C-quasi-continuous).

(2) For mx = a(X), PO(X), SPO(X) or BO(X), we can define new types of modifications of
upper/lower C'-continuous multifunctions. The definitions will be given in the last section.

Theorem 3.1. For a multifunction F : (X,mx) — (Y, 0), the following properties are equiva-
lent:

(1) Fisu.Cm.c. atx € X;

(2) x € mx-Int(F*(V)) for each open set V containing F(x) and having compact comple-
ment;

(3) x € F~(CIU(B)) for each subset B of Y having the compact closure such that x € mx-
CI(F—(B));

(4) x € mx-Int(FT(B)) for each subset B of Y such that Y — Int(B) is compact and © €
F*(Int(B)).

Proof. (1) = (2): Let V be any open set of Y containing F'(x) and having compact comple-
ment. There exists an m x-open set U containing z such that F(U) C V. Thusz € U C F* (V).
Since U € my, we have z € mx-Int(FT(V)).

(2) = (3): Suppose that B is any subset of Y having the compact closure. Then CI(B) is
closed and Y-CI(B) is an open set having compact complement. Let x ¢ F~(CI(B)). Then
xe€ X —F (CI(B)) = F*(Y — CI(B)). This implies F'(z) C Y — CI(B). Since Y — CI(B) is
an open set having compact complement, by (2) we have

2 € my-Int(F+ (Y — CI(B))) = my-Int(X — F~(CL(B))
= X — mx-CI(F~(CI(B))) C X — mx-CI(F~(B)).

Hence x ¢ mx-CI(F~(B)).

(3) = (4): Let B be any subset of Y such that Y -Int(B) is compact and let ¢ mx-
Int(F*(B)). Then we have x € X — mx-Int(F"(B)) = mx-Cl(X — F*(B)) = mx-
CI(F~ (Y —B)).By(3),wehavex € F~(CI(Y —B)) = F~ (Y —Int(B)) = X — F*(Int(B)).
Hence z ¢ F*(Int(B)).

(4) = (1): Let V be any open set of Y containing F'(z) and having compact complement. We
have F*(V) = F*(Int(V)) . Then Y — Int(V) = Y — V which is compact and by (4) x € m x-
Int( £+ (V)). Therefore, there exists an m x-open set U containing z such thatx € U C F (V).
Thus F'(U) C V. This shows that F'is u.C.m.c. at x.
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Theorem 3.2. For a multifunction F : (X,mx) — (Y, 0), the following properties are equiva-
lent:

(1) FislCm.c. atx € X;

(2) x € mx-Int(F~(V)) for each open set V containing F(x) and having compact comple-
ment;

(3) x € FT(CI(B)) for each subset B of Y having the compact closure such that x € mx-
CI(F*(B));

(4) x € mx-Int(F~(B)) for each B of Y such that Y —Int(B) is compact and x € F~ (Int(B)).
Proof. The proof is similar to that of Theorem 3.1

Theorem 3.3. For a multifunction F' : (X,mx) — (Y, 0), the following properties are equiva-
lent:

(1) Fisu.Cm.c.;

(2) FT(V) = mx-Int(F*(V)) for each open set V of Y having compact complement;
(3) F~(K) = mx-Cl(F~(K)) for every compact closed set K of Y;

(4) mx-Cl(F~(B)) C F~(Cl(B)) for every subset B of Y having the compact closure;

(5) F*(Int(B)) C mx-Int(F*(B)) for every subset B of Y such that Y — Int(B) is compact.

Proof. (1) = (2): Let V be any open set of Y having compact complement and z € F* (V).
Then F(z) C V and by Theorem 3.1, x € mx-Int(F™(V)). By Lemma 3.1, we have mx-
Int(F (V) € F*(V). Therefore, we obtain F+ (V) = mx-Int(F*(V)).

(2) = (3): Let K be any compact closed set of Y. Then, by Lemma 3.1 we have X —F~ (K) =
FH(Y —K)=mx-Int(F*(Y — K)) = mx -Int(X — F~(K)) = X —mx-CI(F~(K)). There-
fore, we obtain F'~ (K) = mx-Cl(F~(K)).

(3) = (4): Let B be any subset of Y having the compact closure. By Lemma 3.1, we have
F~(B) Cc F7(Cl(B)) = mx-CI(F~(Cl(B))). Hence mx-CI(F~(B)) C mx-CI(F~(Cl(B))) =
F~(CI(B)).

(4) = (5): Let B be a subset of Y such that Y — Int(B) is compact. Then by Lemma 3.1 we
have

X —mx-Int(F*(B)) = mx-Cl(X — F™(B)) = mx-Cl(F~(Y — B)) C
C mx-CLl(F~(Y — Int(B))) € F~(Y — Int(B)) = X — F*+(Int(B)).
Therefore, we obtain F'* (Int(B)) C mx-Int(F*(B)).
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(5) = (1): Let x € X and V be any open set of Y containing F'(x) and having compact
complement. Then z € FT(V) = FT(Int(V)) C mx-Int(F*(V)). By Theorem 3.1, F is
u.C.m.c. at x.

Theorem 3.4. For a multifunction , the following properties are equivalent:
(1) FislC.m.c.;
(2) F~ (V) = mx-Int(F~V)) for each open set V of Y having compact complement;
(3) FH(K) = mx-Cl(F*(K)) is for every compact closed set K of Y;
(4) mx-CI(F*(B)) C F™(CI(B)) for every subset B of Y having the compact closure;
(5) F~(Int(B)) C mx-Int(F~(B)) for every subset B of Y such that Y — Int(B) is compact.

Proof. The proof is similar to that of Theorem 3.3.

Corollary 3.1. Let (X, mx) be an m-space and mx have property B. For a multifunction
F:(X,mx) — (Y,0), the following properties are equivalent:

(1) Fisu.C.m.c. (resp. l.C.m.c.);
(2) FT(V) (resp. F~(V)) is mx-open for each open set V of Y having compact complement;
(3) F~(K) (resp. FT(K)) is mx-closed for every compact closed set K of Y.

Proof. This is an immediate consequence of Theorems 3.3 and 3.4 and Lemma 3.3.

Remark 3.4. Let (X,7) and (Y, o) be topological spaces. If mx = 7 (resp. SO(X)) and is
upper/lower C-m-continuous, then by Theorems 3.3 and 3.4 and Corollary 3.1 we obtain the
results established in Proposition 1 of [11] (resp. Theorem 1 of [14], Theorems 3.3 and 3.4 of [36]).

Definition 3.5. A function f : (X, mx) — (Y, 0) is said to be
c-m-continuous if for each point z € X and each open set V' containing f(x) and having
compact complement, there exists an m x-open set U containing x such that f(U) C V.

Corollary 3.2. For a function f : (X,mx) — (Y, 0), the following properties are equivalent:
(1) fis c-m-continuous;
(2) f~YV) = mx-Int(f~1(V)) for each open set V of Y having compact complement;

(3) fYK) = mx-Cl(f~Y(K)) for every compact closed set K of Y;
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(4) mx-Cl(f~Y(B)) C f~Y(CI(B)) for every subset B of Y having the compact closure;

(5) f~Y(Int(B)) C mx-Int(f~1(B)) for every subset B of Y such that Y —Int(B) is compact.

Remark 3.5. Let (X, 7) and (Y, o) be topological spaces. If mx = 7and f : (X,mx) — (Y, 0)
is c-m-continuous, then by Corollary 3.2 we obtain the results established in Theorem 1 of [9] and
Theorems 2 of [15].

Corollary 3.3. A multifunction is u.C.m.c. (resp. 1.C.m.c.) if F~(K) = mx-Cl(F'~ (K)) (resp.
FY(K) =mx-Cl(FT(K))) for every compact set K of Y.

Proof. Let GG be any open set of Y having compact complement. Then Y — G is a compact
closed set. By the hypothesis, X — FT(G) = F~ (Y — G) = mx-Cl(F~(Y — GQ)) = mx-
Cl(X — FT(G)) = X — mx-Int(F"(G)) and hence, F*(G) = mx-Int(F(G)). It follows
from Theorem 3.3 that F' is u.C.m.c. The proof of lower C-m-continuity is entirely similar.

Remark 3.6. (1) Let mx = 7 (resp. SO(X)), then by Corollary 3.3 we obtain the results estab-
lished in Proposition 2 of [20] (resp. Corollary 3.3 of [36]).

(2) It is shown in Remark 4 of [11] that the converse of Corollary 3.3 is not true.

Definition 3.6. A subset A of a topological space (X, 7) is said to be

(1) a-paracompact [40] if every cover of A by open sets of X is refined by a cover of A which
consists of open sets of X and is locally finite in X,

(2) a-regular [12] if for each a € A and each open set U of X containing a, there exists an
open set G of X such thata € G C CI(G) C U.

Lemma 3.4. (Kovacevié [12])
If A is an a-regular a-paracompact set of a topological space X and U is an open neighbor-
hood of A, then there exists an open set G of X such that A C G C C1(G) C U.

For a multifunction F' : (X,mx) — (Y,0), by CIF' : (X,mx) — (Y,0) we denote a
multifunction defined as follows: (C1F")(x) = CI(F(x)) for each point x € X. Similarly, we can
define aC1F, sCI1F, pClF, spCIF, bCIF'.

Lemma 3.5. If is a multifunction such that F (x) is a-paracompact and o-regular for each x € X,
then for each open set V of Y FT (V) = Gt (V), where G denotes CIF, aCIF, sCI1F, pCIE, bCIF or
spCLE.

Proof. The proof is similar to that of Lemma 3.3 of [30].

Theorem 3.5. Let be a multifunction such that F(x) is a-regular and

a-paracompact for each x € X. Then the following properties are equivalent: (1) F is
u.Cm.c.; (2) CIF is u.C.m.c.; (3) aClF is u.C.m.c.; (4) sCIF is u.C.m.c.; (5) pClF is u.C.m.c.; (6)
bCIF is u.C.m.c.; (7) spCIF is u.C.m.c.
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Proof. We set G = CIF', aCl1F, sCI1F, pCIF', bCLF or spClF. Suppose that F'is u.C.m.c. Let
V be any open set of Y containing G(z) and having compact complement. By Lemma 3.5, we
have z € GT(V) = FT(V) and by Theorem 3.1 there exists U € mx containing z such that
F(U) C V. Since F(u) is a-paracompact and a-regular for each u € U, by Lemma 3.4 there
exists an open set H such that F'(u) C H C CI(H) C V; hence G(u) C CI(H) C V for every
u € U. Therefore, we obtain G(U) C V. This shows that G is u.C.m.c.

Conversely, suppose that G is u.C.m.c. Let x € X and V be any open set of Y containing
F(z) and having compact complement. By Lemma 3.5, we have x € F*(V) = G*(V) and
hence G(z) C V. By Theorem 3.1, there exists U € mx containing = such that G(U) C V.
Therefore, we obtain U C G (V) = F*(V) and hence F(U) C V. This shows that F is
u.C.m.c.

Lemma 3.6. If is a multifunction, then for each open set V of Y G~ (V) = F~(V), where G =
C1F, aClE sCIF pCIlFE bCIF or spCIF.

Proof. The proof is similar to that of Lemma 3.4 of [30].

Theorem 3.6. For a multifunction , the following properties are equivalent: (1) F is [.C.m.c.; (2)
ClFisl.C.m.c.; (3) aClF is l.C.m.c.; (4) sCIF is [.C.m.c.; (5) pClF is . C.m.c.; (6) bClF is [.C.m.c.;
(7) spCIF is [.C.m.c.

Proof. By using Lemma 3.6 this is shown similarly as in Theorem 3.5.

Remark 3.7. Let (X, 7) and (Y, 0) be topological spaces and mx = SO(X). By Theorems 3.5
and 3.6, we obtain the results established in Theorems 3.5 and 3.6 of [36].

4. The set of points of m-c-discontinuity

For a multifunction F : (X, mx) — (Y,0), the sets D;\ (F) and D,,.(F) are defined as
follows:

Dt (F)={xz € X : F is not upper C-m-continuous at x },
D, .(F)={z € X : Fisnotlower C-m-continuous at z }.

mc

Theorem 4.1. For a multifunction , the following properties hold:
D35.o(F) = Ugeeo {F 7 (G) — Imx-Int(FH(G))]}
= Uge ip(v) {F (Int(B)) — [mx-Int(F*(B))]}
= Upe ep(v) {mx-Cl(F™ (B)) — F~(CL(B))}
=Upe er {mx-CUF~(H)) - F~(H)},
where
co is the family of open set G having compact complement,
iP(Y) is the family of subset B of Y such that Y — Int(B) is compact,
cP(Y ) is the family of subset B of Y with the compact closure and
cF is the family of closed compact subsets of Y.
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Proof. We shall show only the first equality and the last since the proof of any other equality
is similar to the first.

Let z € D;} .(F'). By Theorem 3.1, there exists an open set V of Y having compact comple-
ment such that z € F* (V) and z ¢ mx- Int(F*(V)). Therefore, we obtain z € F (V) — [mx-
Int(FT(V))] € Ugee{FT(G) — [mx-Int(F(G))]}. Conversely, let z € Uge {FT(G) —
[mx -Int(FT(G))]}. There exists V € co such thatz € F* (V) — [mx-Int(F*(V))]. By Theo-
rem 3.1, we obtain z € D}, .(F).

We prove the last equality.
Une er {mx-CU(F~(H))-F~(H)} C Upe cp(v) {mx-CUF ™~ (B))~F~(CUB))} = Dy..(F).
Conversely, by Lemma 3.1 we have
Dppe(F) =Upe er(y) {mx- CI(F~(B)) — F~(CI(B))}
C Une er {mx-CUF~(H)) — F~(H)}.

Theorem 4.2. For a multifunction , the following properties hold:
Dpo(F) = Ugeeo {F ™ (G) = [mx-Int(F~(G))]}
=Uge ir(v) {F (Int(B)) — [mx-Int(F~(B))]}
=Uge ep(v) {mx-Cl(F*(B)) — FF(CI(B))}
= Upe or {mx-CUFT(H)) — F*(H)}.

Proof. The proof is similar to that of Theorem 4.1

Remark 4.1. If is a multifunction and m x =7 (resp. SO(X)), then the set of points of upper/lower
C-discontinuity (resp. c-quasi-discontinuity) is obtained.

Definition 4.1. Let (X, mx) be an m-space and A a subset of X. The mx-frontier of A [35],
denoted by m x-Fr(A), is defined as follows:

mx-Fr(A) = mx-Cl(A) N mx-CI(X — A) = mx-CI(A) — mx-Int(A).

Theorem 4.3. The set of all points x € X at which a function is not u.C.m.c. (resp. .C.m.c.)
is identical with the union of the m x -frontiers of the u.C.m.c. (resp. .C.m.c.) inverse images of
open sets containing (resp. meeting) F(x) and having compact complement.

Proof. Suppose that F' is not u.C.m.c. at x € X. Then, there exists an open set V' of Y’
containing F'(x) and having compact complement such that U N (X — FT(V)) #  for every
mx-open set U containing x. Hence, by Lemma 3.2 we have x € mx-CI(X — F*(V)). On the
other hand, we have x € F*(V) C mx-CI(F*(V)) and hence x € mx-Fr(F*(V)).

Conversely, suppose that V' is an open set of Y containing F'(x) and having compact com-
plement such that x € mx-Fr(F*(V)). If F is u.C.m.c. at x € X, then there exists U € mx
containing x such that U C F'*(V) and hence, x € mx-Int(F*(V)). This is a contradiction and
hence, F' is not u.C.m.c. The proof for I.C.m.c. is similar.
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5. m~continuity and C'-m-continuity

Definition 5.1. A multifunction is said to be

(1) upper m-continuous (briefly u.m.c.) at x € X [34] if for each open set V' containing F'(x),
there exists U € mx containing x such that F'(U) C V,

(2) lower m-continuous (briefly L.m.c.) at x € X [34] if for each open set V such that
F(z) NV # 0, there exists U € mx containing = such that F'(u) N’V # ) for every u € U,

(3) upper/lower m-continuous on X if it has the properties at each point of X.

Remark 5.1. Let (X, 7) be a topological space and mx = 7 (resp. SO(X), PO(X), a(X),
SPO(X), BO(X)). If a multifunction is upper/lower m-continuous, then F' is upper/lower contin-
uous (resp. upper/lower semi-continuous [27] or upper/lower quasi-continuous [28], upper/lower
precontinuous [29], upper/lower a-continuous [21], upper/lower 3-continuous [30], upper/lower
b-continuous or upper/lowery-continuous [3]).

A topological space (Y, o) is called a KC-space [39] if every compact set of Y is closed.

Definition 5.2. A multifunction is said to be m-bounded at the point p € X if there exists U € mx
containing p and a compact set C' of Y such that F'(x) C C foreach z € U.

Theorem 5.1. Let (Y, 0) be a KC space and X a nonempty set with two minimal structures mﬁ(
and m% such that U NV € m% for every U € mY and V € m%. Then F : (X,m%) — (Y,0)
is u.m.c. (resp. Lm.c.) at p € X if the following conditions satisfy:

(1) F : (X,m%) — (Y,0) is m-bounded at p € X,

(2) F: (X,m%) — (Y,0) isu.C.m.c. (resp. .C.m.c.) atp € X.

Proof. We prove only the first case, the proof of the second being entirely analogous. Let
U € m) containing p and C be a compact set of Y such that F'(z) C C for eachz € U. Let V.
be any open set of Y such that F'(p) C V. Put G =V U (Y — (). Then G isopen and Y — G is
compact. By the condition (2), there exists W &€ m§( containing p such that F'(x) C G for every
z € W.PutH=WNU,then H € m% containing p and F(z) C G N C for any x € H. Then
F(z) C V forany x € H. Therefore, F' : (X, m%) — (Y,0) isu.m.c. atp € X.

Remark 5.2. If m.lx = m§< = 7, then by Theorem 5.1 we obtain the result established in Propo-

sition 5 of [11].

Definition 5.3. An m-space (X, mx) is said to be m-saturated if for any = € X the intersection
of all mx-open sets containing x is m x-open.

Theorem 5.2. Let (X, mx) be an m-saturated m-space and (Y,0) a Ti-space. If is u.C.m.c.,
then Fis u.m.c.
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Proof. Suppose that F' is not u.m.c. at some point xg € X. There exists an open set V of Y
such that F'(zg) C V and F(U) N (Y — V) # 0 for every U € mx containing xo. Let Uy be the
intersection of all m x-open sets containing xo. Then Uy € mx and there exists 21 € Uy such that
F(z1) N (Y — V) # (. Hence there exists y € F'(21) N (Y — V). The set Y — {y} is an open set
with compact complement. Since F'(zg) C Y —{y} and F'is u.C.m.c. at z, there exists G € mx
containing z such that for any © € G we have F'(x) C Y — {y}. This is a contradiction. Since
Uy C G,z € Gand F(z1) CY — {y}. This contradicts that y € F'(21).

Remark 5.3. If mx = 7, then by Theorem 5.2 we obtain the result established in Proposition 8
of [11].

Theorem 5.3. Let (X, mx) be an m-saturated m-space and (Y, o) a locally compact Hausdorff
space. If is an u.C.m.c. and closed valued multifunction, then F is u.m.c.

Proof. Suppose that F' is not u.m.c. at xyg € X. Then, there exists an open set V of Y
such that F(zg) C V and F(U) N (Y — V) # 0 for every U € mx containing zo. Let Uy be
the intersection of all mx-open sets containing xg. Then Uy € mx and there exists z; € U
such that F'(z1) N (Y — V) # (. Hence there exists y € F(z1) N (Y — V). Since (Y,0) is
locally compact Hausdorff, (Y, o) is regular. Since F'(xq) is a closed set and y ¢ F'(zg), there
exists an open set W containing y such that CI(1¥) is a compact set and CI(W) C Y — F(xg).
Since F(xg) C Y — CY(W) and F' is u.C.m.c. at xo, there exists an mx-open set G containing
xo and F(z) C Y — CI(W) for each € G. This is a contradiction. Since z; € Uy C G,
F(z1) C Y — CI(W). This contradicts that F'(z1) N CL(W) # (.

Remark 5.4. If mx = 7, then by Theorem 5.3 we obtain the result established in Proposition 10
of [11].

Theorem 5.4. Let (X, mx) be an m-saturated m-space and (Y, o) a KC space. If is I.C.m.c. and
for each x € X there exists a compact set Cy, such that F'(x) C Cy, then F is l.m.c.

Proof. Suppose that F' is not L.m.c. at xg € X. Then, there exists an open set V of Y
such that F(z9) NV # () and for each U € my containing x( there exists u € U such that
F(u) NV = (. Let Uy be the intersection of all m x-open sets containing zo. Then Uy € mx
and there exists = € Uy such that F'(z) NV = (). By the hypothesis, there exists a compact set C,,
such that F'(z) C C,. Therefore, we have F'(z) C C,, — V and C, — V is a compact set.The set
Y — (Cy — V) isopenand F(zo) N (Y — (Cy —V)) # 0. Since F' is L.C.m.c. at xo, there exists
an m x-open set G containing ¢ such that for any z € G we have F'(2) N (Y — (C, — V)) # 0.
This is a contradiction because x € Uy C G and F((z) C C, — V.

Remark 5.5. If mx = 7, then by Theorem 5.4 we obtain the result established in Proposition 11
of [11].

6. Some properties

Definition 6.1. A multifunction is said to be upper C-m-rarely continuous at a point x € X if
for each open set G of Y containing F'(x) and having compact complement, there exists a rare
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set R with CI(Rg) N G = () and an mx-open set U containing x such that F(U) C G U Rg.
A multifunction is said to be upper C-m-rarely continuous if it has this property at each point
e X.

Theorem 6.1. Let X be a nonempty set with two minimal structures mk and mg( such that
UNV € m% forevery U € my and V € m%. Then F : (X,m%) — (Y,0) is u.C.m.c. if
the following conditions satisfy:

(1) F: (X,m%) — (Y, 0) is upper C-m-rarely continuous and

(2) for each open set G containing F(x) and having compact complement, F~(Cl(Rg)) is an
mg(-closed set of X, where Rg is the rare set of Definition 6.1.

Proof. Let x € X and G be any open set of Y containing F'(z) and having compact comple-
ment. By the condition (1), there exists V' &€ m}( containing z and a rare set Rg with CI(Rg) N
G = D such that F(V) C G U Rg. If we suppose that x € F~(Cl(Rg)), then Cl(Rg) N G # (.
This is a contradiction. Thus x ¢ F~(Cl(Rg)). Put U = V N (X — F~(Cl(R¢g))) . Then
Uemiandz € Usincex € Vandz € X — F(Cl(Rg)). Letu € U, then F(u) C GU Rg
and F(u) N Cl(Rg) = (). Therefore, we have F(u) N R = () and hence, F(u) C G for each
u € U. Since U € m% containing z, it follows that F' : (X, m%) — (Y,0) is u.C.m.c.

Definition 6.2. For a multifunction , the graph G(F') = {(z, F(z)) : © € X } is said to be strongly
m-closed [32] if for each (z,y) € (X x Y) — G(F), there exist an m x-open set U containing x
and an open set V of Y containing y such that [U x CL(V)] N G(F) = (.

Lemma 6.1. A multifunction has a strongly m-closed graph if and only if for each (x,y) €

(X xY)—G(F), there exist an mx-open set U containing x and an open set V of Y containing
y such that F(U) N CL(V) = .

Theorem 6.2. Let (Y, 0) be a locally compact Hausdorff space. If a multifunction is u.C.m.c.
and F(z) is closed for each x € X, then G(F) is strongly m-closed.

Proof. Let (z,y) € (X xY)—G(F). Theny ¢ F(x). Since Y is locally compact Hausdorff,
Y is regular. Since F'(x) is aclosed setand y ¢ F(x), there exists an open set V' in Y containing y
such that C1(V) is a compact set and CI(V') C X — F(x) and hence, F'(x) C Y — Cl(V'). Since F
isu.C.m.c. at x and Y — CI(V) is an open set having compact complement, there exists U € mx
containing x such that F(U) C Y — C1(V'). This implies that F(U) N Cl(V') = () and by Lemma
6.1 G(F) is strongly m-closed.

7. New modifications of C'-continuous multifunctions
For modifications of open sets defined in Definition 2.1, the following relationships are known:
open = q-open = preopen

4 4

semi-open = b-open = semi-preopen
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First, we can define the following modifications of upper/lower C' -continuous multifunctions.

Definition 7.1. A multifunction F': (X, 7) — (Y, 0) is said to be

(1) upper C-a-continuous (resp. upper C-precontinuous, upper C-b-continuous, upper C-
sp-continuous) at a point x € X if for each open set V' containing F'(x) and having compact
complement, there exists an a-open (resp. preopen, b-open, semi-preopen) set U containing x
such that F(U) C V,

(2) lower C-a-continuous (resp. lower C-precontinuous, lower C-b-continuous, lower C-sp-
continuous) at a point z € X if for each open set V' meeting F'(z) and having compact comple-
ment, there exists an a-open (resp. preopen, b-open, semi-preopen) set U containing x such that
F(u) NV # () foreach u € U,

(3) upper/lower C-a-continuous (resp. upper/lower C-precontinuous, upper/lower C-b-continuous,
upper/lower C-sp-continuous) on X if it has this property at each x € X.

For multifunctions defined in Definition 7.1, the following relationships hold:

upper C'-con. = upper C-a-con. = upper C'-precon.

¢ 4

upper C'-quasi-con. = upper C-b-con. = upper C-sp-con.

Remark 7.1. In the diagram above, ’con.” means continuity and the analogous diagram holds for
the case "lower”.

Let define the further modifications of upper/lower C-continuous multifunctions. For the pur-
pose, we recall the definitions of the ¢ -closure and the d-closure due to Veli¢ko [38]. Let (X, 7)
be a topological space and A a subset of X. A point x € X is called a f-cluster (resp. d-cluster)
point of A if CI(V' ) NA # ) (resp. Int(C1(V)) NA # ) for every open set V containing x. The
set of all f-cluster (resp. d-cluster) points of A is called the 0-closure (resp. §-closure) of A and
is denoted by Cly(A) (resp. Cls(A)) [38]. A subset A is said to be O-closed (resp. d-closed) if
Cly(A) = A (resp. Cls(A) = A). The complement of a #-closed (resp. d-closed) set is said to
be A-open (resp. d-open). The union of all §-open (resp. d-open) sets contained in the subset A is
called the #-interior (resp. d-interior) of A and is denoted by Inty(A) (resp. Ints(A)).

Definition 7.2. A subset A of a topological space (X, 7) is said to be
(1) 6-semiopen [25] (resp. O-semiopen [6]) if A C Cl(Ints(A)) (resp. A C Cl(Int,(A))),
(2) 6-preopen [37] (resp. O-preopen [23]) if A C Int(Cls(A)) (resp. A C Int(Cly(A))),
(3) 9-sp-open [10] (resp. O-sp-open [23])if A C Cl(Int(Cl;5(A))) (resp. A C Cl(Int(Cl,(A)))).

By dSO(X) (resp. 0PO(X), ISPO(X ), 6 SO(X), PO(X), SPO(X)), we denote the collec-
tion of all §-semiopen (resp. d-preopen, §-sp-open, 6 -semiopen, 6-preopen, §-sp-open) sets of a
topological space (X, 7). These six collections are all m-structures with property 5. It is known
that the families of all #-open sets and d-open sets of (X, 7) are topologies for X, respectively.
In [23] and [6], the following relationships are known:
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f-open = ¢ -open = open = preopen =- J -preopen = f-preopen

I 4 4 4 4 4

f-semiopen = J-semiopen = semi-open = sp-open = J-sp-open = f-sp-open

Definition 7.3. A multifunction ' : (X, 7) — (Y, 0) is said to be

(1) upper C-0-continuous (resp. upper C-0-precontinuous, upper C-0-semi-continuous, upper
C-0-sp-continuous) at a point x € X if for each open set V' containing F'(z) and having compact
complement, there exists a #-open (resp. #-preopen, #-semiopen, #-sp-open) set U containing x
such that F(U) C V,

(2) lower C-0-continuous (resp. lower C-0-precontinuous, lower C-0-semi-continuous, lower
C-0-sp-continuous) at a point z € X if for each open set V' meeting F'(z) and having compact
complement, there exists a §-open (resp. f-preopen, §-semiopen, 6-sp-open) set U containing x
such that F'(u) NV # () for each u € U,

(3) upper/lower C-0-continuous (resp. upper/lower C-0-precontinuous, upper/lower C-0-
semi-continuous, upper/lower C-0-sp-continuous) on X if it has this property at each x € X.

Definition 7.4. A multifunction F' : (X, 7) — (Y, 0) is said to be

(1) upper C-§-continuous (resp. upper C-d-precontinuous, upper C-0-semi-continuous, upper
C-0-sp-continuous) at a point x € X if for each open set V' containing F'(z) and having compact
complement, there exists a d-open (resp. J-preopen, d-semiopen, d-sp-open) set U containing x
such that F(U) C V,

(2) lower C-§-continuous (resp. lower C-d-precontinuous, lower C-6-semi-continuous, lower
C-0-sp-continuous) at a point z € X if for each open set V' meeting F'(z) and having compact
complement, there exists a §-open (resp. §-preopen, d-semiopen, §-sp-open) set U containing x
such that F'(u) N’V # () for each u € U,

(3) upper/lower C-6-continuous (resp. upper/lower C-d-precontinuous, upper/lower C-3-semi-
continuous, upper/lower C-J-sp-continuous) on X if it has this property at each z € X.

For the multifunctions defined above, the following diagram hold, where c. means continuity.

u/l1C.0-c. = u/l1C.d-c. = uv/lCc. = wlCp.c. = ulC.d-pc. = wlC.h-p.c.

4 I 4 4 4 4
u/l C.6-s.c. = v/l C.9-s.c. = u/l C.q.c. = v/l C.sp.c. = w/l C.9-sp.c. = u/l C.0-sp.c.

Conclusion. We can apply the results established in Sections 3 - 6 to all multifunctions defined in
Definitions 7.1, 7.2 and 7.3.
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