On a Proper Subclass of Primeful Modules Which Contains the Class of Finitely Generated Modules Properly

Hosein Fazaeli Moghimi*, Fatemeh Rashedi
${ }^{1},{ }^{2}$ Department of Mathematics, University of Birjand, P.O. Box 97175-615, Birjand, Iran

Abstract

Let R be a commutative ring with identity and M a unital R-module. Moreover, let $P \operatorname{Spec}(M)$ denote the primary-like spectrum of M and $\operatorname{Spec}(R / \operatorname{Ann}(M))$ the prime spectrum of $R / \operatorname{Ann}(M)$. We define an R-module M to be a ϕ-module, if $\phi: \operatorname{PSpec}(M) \rightarrow \operatorname{Spec}(R / \operatorname{Ann}(M)$) given by $\phi(Q)=\sqrt{(Q: M)} / \operatorname{Ann}(M)$ is a surjective map. The class of ϕ-modules is a proper subclass of primeful modules, called ψ-modules here, and contains the class of finitely generated modules properly. Indeed, ϕ and ψ are two sides of a commutative triangle of maps between spectrums. We show that if R is an Artinian ring, then all R-modules are ϕ-modules and the converse is true when R is a Noetherian ring.

2010 Mathematics Subject Classifications: 13C13, 13C99
Key Words and Phrases: Primary-like submodule, ϕ-module, Prime submodule, ψ-module

1. Introduction

Throughout this paper, all rings are commutative with identity and all modules are unital. For a submodule N of an R-module M, $(N: M)$ denotes the ideal $\{r \in R \mid r M \subseteq N\}$ and annihilator of M, denoted by $\operatorname{Ann}(M)$, is the ideal $(0: M)$. A submodule P of an R-module M is said to be prime (or p-prime) if $P \neq M$ and for $p=(P: M)$, whenever $r m \in P$ (where $r \in R$ and $m \in M$) then $m \in P$ or $r \in p[5,11,12]$. The collection of all prime (resp. p prime) submodules of M, denoted by $\operatorname{Spec}(M)$ (resp. $\operatorname{Spec}_{p}(M)$), is called the prime (resp. p-prime) spectrum of M. Also the intersection of all prime submodules of M containing a submodule N is called the radical of N and is denoted by rad N. In the ideal case, we denote the radical of an ideal I of R by \sqrt{I}. An R-module M is said to be a primeful module or a ψ-module if either $M=(0)$ or $M \neq(0)$ and the map $\psi: \operatorname{Spec}(M) \rightarrow \operatorname{Spec}(R / \operatorname{Ann}(M))$, defined by $\psi(P)=(P: M) / \operatorname{Ann}(M)$, is surjective [9]. If M / N is a ψ-module over R, then $\sqrt{(N: M)}=(\operatorname{rad} N: M)$ [9, Proposition 5.3]. A submodule Q of M is said to be primarylike if $Q \neq M$ and whenever $r m \in Q$ (where $r \in R$ and $m \in M$) implies $r \in(Q: M)$ or

[^0]$m \in \operatorname{rad} Q$ [7]. The primary-like spectrum $\operatorname{PSpec}(M)$ is defined to be the set of all primary-like submodules N of M such that M / N is a ψ-module over R. In [7, Lemma 2.1] it is shown that, if $Q \in P \operatorname{Spec}(M)$, then $(Q: M)$ is a primary ideal of R and so $p=\sqrt{(Q: M)}$ is a prime ideal of R. In this case, the primary-like submodule Q is also called a p-primary-like submodule of M.

Definition 1. We say that an R-module M is a ϕ-module if either $M=(0)$ or $M \neq(0)$ and the map $\phi: \operatorname{PSpec}(M) \rightarrow \operatorname{Spec}(R / \operatorname{Ann}(M))$ defined by $\phi(Q)=\sqrt{(Q: M)} / \operatorname{Ann}(M)$ is surjective.

The saturation of a submodule N of an R-module M with respect to a prime ideal p of R is the contraction of N_{p} in M and designated by $S_{p}(N)$. It is known that [4, 10]

$$
S_{p}(N)=\{m \in M \mid r m \in N \text { for some } r \in R \backslash p\} .
$$

If $p \in \operatorname{Spec}(R)$ and N is a submodule of an R-module M such that $(N: M) \subseteq p$ and M / N is a ψ-module over R, then $S_{p}(N+p M)$ is a p-prime submodule of M [9, Proposition 4.4]. Therefore $\rho: \operatorname{PSpec}(M) \rightarrow \operatorname{Spec}(M)$ defined by $\rho(Q)=S_{p}(Q+p M)$ is a well-defined map, where $p=\sqrt{(Q: M)}$. It is easy to see that $\phi=\psi \circ \rho, \psi$ composed with ρ. Thus, if ϕ is a surjective map, so is ψ. This means that every ϕ-module is a ψ-module. We give an example of a ψ-module module which is not a ϕ-module (Example 1). An R-module M is said to be multiplication module if every submodule N of M is of the form $I M$ for some ideal I of R [6]. We show that the multiplication ψ-modules, finitely generated modules, free modules (of finite or infinite rank), faithful projective modules over domains and modules over Artinian rings are ϕ-modules (Theorem 1, Corollary 1, Theorem 2, Theorem 3 and Theorem 4).

2. ϕ-Modules

We will use \mathscr{X}, X_{p} and \mathscr{X}_{p} to represent $\operatorname{PSpec}(M), \operatorname{Spec}_{p}(M)$ and $\{Q \in \operatorname{PSpec}(M) \mid \sqrt{(Q: M)}=p\}$ respectively. Also $V(\operatorname{Ann}(M))$ will be the set of all prime ideals containing $\operatorname{Ann}(M)$. We begin with a lemma which will be referred to in the rest of this section.

Lemma 1 (cf. [9, Theorem 2.1]). Let M be a non-zero R-module. Then the following statements are equivalent.
(1) M is a ψ-module;
(2) $X_{p} \neq \emptyset$ for every $p \in V(\operatorname{Ann}(M))$;
(3) $p M_{p} \neq M_{p}$ for every $p \in V(\operatorname{Ann}(M))$;
(4) $S_{p}(p M)$ is a p-prime submodule for every $p \in V(\operatorname{Ann}(M))$.

Theorem 1. Every ϕ-module M over a ring R is a ψ-module, and the converse is true in each of the following cases.
(1) M is a multiplication R-module.
(2) M is a non-zero faithfully flat (or in particular a projective) R-module.
(3) $M / S_{p}(p M)$ is a ψ-module over R for every $p \in V(\operatorname{Ann}(M))$.

Proof. Since $\phi=\psi \circ \rho$, every ϕ-module is a ψ-module. (1) Let $p \in V(\operatorname{Ann}(M))$. Then there exists a prime submodule P such that $(P: M)=p$. Since M is a multiplication module $P=p M$. Suppose $q \in \operatorname{Spec}(R)$ and $p \subseteq q$. By Lemma 1, there exists a prime submodule P^{\prime} such that $\left(P^{\prime}: M\right)=q$. It follows that $P=p M \subseteq q M=P^{\prime}$. Hence M / P is a ψ-module and so $P \in P \operatorname{Spec}(M)$. Now from $\phi(P)=p / \operatorname{Ann}(M)$, we conclude that ϕ is surjective, i.e., M is a ϕ-module. (2) Let $p \in V(\operatorname{Ann}(M))$ and $(P: M)=p$. If M is a projective module, then $p M$ is a prime submodule of M by [1, Corollary 2.3]. Also if M is a faithfully flat module, then $p M$ is a prime submodule by [3, Corollary 2.6]. On the other hand $M / p M$ is a ψ-module and $(p M: M)=p$ by [9, Corollary 4.3 and Proposition 4.5]. Consequently $p M \in \mathscr{X}_{p}$. Thus M is a ϕ-module. (3) Since M is a ψ-module, $S_{p}(p M)$ is a p-prime submodule of M by Lemma 1. Hence $S_{p}(p M) \in \mathscr{X}_{p}$. Thus M is a ϕ-module.

The following example shows that a ψ-module is not necessarily a ϕ-module.
Example 1 (cf. [9, Example 1]). Let Ω be the set of all prime integers, $M=\prod_{p \in \Omega} \frac{\mathbb{Z}}{p \mathbb{Z}}$ and $M^{\prime}=\bigoplus_{p \in \Omega} \frac{\mathbb{Z}}{p \mathbb{Z}}$, where p runs through Ω. Hence M is a faithful ψ-module over \mathbb{Z} and $\operatorname{Spec}(M)=\left\{M^{\prime}=S_{0}(0)\right\} \cup\{p M: p \in \Omega\}$. Now if ϕ is surjective, then there exists $N \in \mathscr{X}$ such that $\phi(N)=\sqrt{(N: M)}=0$. It follows that $(N: M)=0$. Since M / N is a ψ-module, we have $N \subseteq \cap_{p \in \Omega} p M=0$. But 0 is not prime and so is not primary-like because rad $0=0$. Hence $N \notin \mathscr{X}$, a contradiction. Thus M is not a ϕ-module.

Corollary 1. Every finitely generated R-module M is a ϕ-module, hence so is the factor module M / N of M by any submodule N of M.

Proof. Follows from Lemma 1 and Theorem 1.

Corollary 2. Let R be a ring of (Krull) dimension 0 and M be a non-zero R-module. Then the following statements are equivalent.
(1) $m M \neq M$ for every $m \in V(\operatorname{Ann}(M)) \cap \operatorname{Max}(R)$;
(2) M is a ψ-module;
(3) M is a ϕ-module.

Proof. (1) $\Leftrightarrow(2)$ follows from [9, Result 3].
(2) \Rightarrow (3) Suppose M is a ψ-module. We show that $M / S_{p}(p M)$ is a ψ-module for every $p \in V(\operatorname{Ann}(M))$. Assume $\left(S_{p}(p M): M\right) \subseteq q$ for a prime ideal q of R. Hence $p \subseteq q$. Since $\operatorname{dim}(R)=0$, then $p=q$. Hence $S_{q}(q M)$ is a q-prime submodule containing $S_{p}(p M)$. Thus M is a ϕ-module by Theorem 1 .
$(3) \Rightarrow(2)$ follows from Theorem 1.

Corollary 3. Let R be a domain which is not a field. If a non-zero R-module M is either a divisible module or a faithful torsion module, then M is not a ϕ-module.

Proof. Use Theorem 1 and [9, Proposition 2.6].
Theorem 2. Every free module is a ϕ-module.
Proof. Suppose F is a free R-module and $\bar{p} \in \operatorname{Spec}(R / \operatorname{Ann}(F))$. It is easy to see that $p F$ is a prime, and hence a primary-like submodule, of F. Now we show that $F / p F$ is a ψ-module. Assume q is a prime ideal of R containing ($p F: F$). It follows from [13, Proposition 2.2] that $(q F: F)=q$ and hence $q F \neq F$. Thus $q F$ is a q-prime submodule of F containing $p F$ [11, Theorem 3]. It implies that $F / p F$ is a ψ-module.

Theorem 3. Let R be a domain and M be a faithful projective R-module. Then M is a ϕ-module.
Proof. Assume $M \neq(0)$ and $p \in \operatorname{Spec}(R)$. We show that $p M \in \mathscr{X}$. By [9, Corollary 3.4], M is a ψ-module and hence $p M \neq M$ by [9, Result 2]. It follows from [11, Theorem 3] that $p M$ is a p-prime, and hence a p-primary-like, submodule of M. It remains to show that $M / p M$ is a ψ-module. Suppose q is a prime ideal of R containing $p=(p M: M)$. Therefore $p M \subseteq q M$ and $q M \in X_{q}$. Thus $M / p M$ is a ψ-module and so M is a ϕ-module.

Proposition 1. Let M be a non-zero ϕ-module over a ring R. Then the following statements hold.
(1) Let I be a radical ideal of R. Then $(I M: M)=I$ if and only if $I \supseteq \operatorname{Ann}(M)$.
(2) $m M \in \mathscr{X}$ for every $m \in V(\operatorname{Ann}(M)) \cap \operatorname{Max}(R)$.
(3) If M is faithful, then M is flat if and only if M is faithfully flat.

Proof. (1) follows from [9, Proposition 3.1] and Theorem 1.
(2) By Theorem $1, M$ is a ψ-module. Hence by [9, Result 2], $m M \neq M$. Thus $m M$ is a m-prime, and hence m-primary-like, submodule of M. It remains to show that $M / m M$ is a ψ-module. Assume p is a prime ideal of R containing ($m M: M$). Since $m \in \operatorname{Max}(R)$, then $m=p$ and so $M / m M$ is a ψ-module. Thus $m M \in \mathscr{X}$.
(3) The sufficiency is clear. Suppose that M is flat. Hence by part (2), we have $m M \neq M$ for every $m \in \operatorname{Max}(R)$. This implies that M is faithfully flat.

We give an elementary example of a module which is not a ϕ-module.
Example 2. The \mathbb{Z}-module \mathbb{Q} is flat and faithful, but not faithfully flat. So, \mathbb{Q} is not a ϕ-module, by Proposition 1.

Proposition 2. Let M be a non-zero ϕ-module over a ring R. Then M_{p} is a non-zero ϕ-module over R_{p} for every $p \in V(\operatorname{Ann}(M))$.

Proof. Suppose M is a non-zero ϕ-module over R. Hence $M_{p} \neq(0)$ for every $p \in V(\operatorname{Ann}(M))$. Assume $q^{\prime} \in \operatorname{Spec}\left(R_{p} / \operatorname{Ann}\left(M_{p}\right)\right)$. We set $q=\left(q^{\prime}\right)^{c}$, the contraction of q^{\prime} in R. It is easy to check that q is a prime ideal of R. We show that there exists a q^{\prime}-primary-like submodule Q_{p} of M_{p} such that M_{p} / Q_{p} is a ψ-module. Since R_{p} is a local ring, $p_{p} \supseteq q^{\prime} \supseteq \operatorname{Ann}\left(M_{p}\right) \supseteq(\operatorname{Ann}(M))_{p}$. Taking the contraction of each term of this sequence of ideals in R, we have that

$$
p \supseteq q \supseteq \operatorname{Ann}\left(M_{p}\right) \cap R \supseteq S_{p}(\operatorname{Ann}(M)) \supseteq \operatorname{Ann}(M) .
$$

Hence $q \in \operatorname{Spec}(R / \operatorname{Ann}(M))$. Since M is a ϕ-module over R, there exists $Q \in \mathscr{X}$ such that $\sqrt{(Q: M)}=q$. Thus by [7, Theorem 3.8] Q_{p} is a q^{\prime}-primary-like submodule in M_{p} such that M_{p} / Q_{p} is a ψ-module and hence M_{p} is a ϕ-module over R_{p} for every $p \in V(\operatorname{Ann}(M))$.

Theorem 4. Let R be a ring. Consider the following statements.
(1) R is an Artinian ring.
(2) Every R-module is a ϕ-module.
(3) Every R-module is a ψ-module.
(4) $m M \neq M$ for every R-module M and $m \in V(\operatorname{Ann}(M)) \cap \operatorname{Max}(R)$.
(5) $\operatorname{dim}(R)=0$

Then $(1) \Rightarrow(2) \Rightarrow(3) \Rightarrow(4) \Rightarrow(5)$. Furthermore, if R is a Noetherian ring, then the above statements are equivalent.

Proof. (1) \Rightarrow (2) Let M be a non-zero R-module. Then $\operatorname{Ann}(M) \neq R$. Since R is Artinian, we have $R=R_{1} \times \cdots \times R_{n}$, where $n \in \mathbb{N}$ and each R_{i} is an Artinian local ring. First we assume that $n=1$, i.e., R is an Artinian local ring with maximal ideal m. Since $J(R)$, the Jacobson radical of R, equals to m and $J(R)$ is T-nilpotent, $m M \neq M$ by [8, Theorem 23.16]. Thus every R-module is a ϕ-module, by Corollary 2. Now assume $n \geq 2$ and let m_{i} be the maximal ideal of the local ring R_{i} for every $1 \leq i \leq n$. Let m be a maximal ideal of R containing $\operatorname{Ann}(M)$. Clearly m is the form $R_{1} \times \cdots R_{i-1} \times m_{i} \times R_{i+1} \times \cdots \times R_{n}$ for some i. Without loss of generality we may assume that $i=1$, i.e., $m=m_{1} \times R_{2} \times \cdots \times R_{n}$. Again, by Corollary 2 , it suffices to show that $m M=\left(m_{1} \times R_{2} \times \cdots \times R_{n}\right) M \neq M$. On the contrary, suppose that $\left(m_{1} \times R_{2} \times \cdots \times R_{n}\right) M=M$. Take $M_{1}=\left(R_{1} \times(0) \times \cdots \times(0)\right) M$. It is easy to verify that $R_{1} \cong R /(0) \times R_{2} \times \cdots \times R_{n}$ and hence M_{1} can be expressed as an R_{1}-module by defining $r_{1} x_{1}=r_{1}(1,0, \cdots, 0) x_{1}$ for $r_{1} \in R_{1}$ and $x_{1} \in M_{1}$. We may assume that $M_{1} \neq 0$, for otherwise we have

$$
R_{1} \times(0) \times \cdots \times(0) \subseteq \operatorname{Ann}(M) \subseteq m_{1} \times R_{2} \times \cdots \times R_{n},
$$

a contradiction. Thus $m_{1} M_{1} \neq M_{1}$ by using case $n=1$. On the other hand, for each $x \in M,(1,0, \cdots, 0) x \in M=\left(m_{1} \times R_{2} \times \cdots \times R_{n}\right) M$. Thus for each $x \in M$, $(1,0, \cdots, 0) x=\sum_{j=1}^{s}\left(p_{1 j}, r_{2 j}, \cdots, r_{n j}\right) x_{j}$ for some $s \in \mathbb{N}, x_{j} \in M, p_{1 j} \in M_{1}$ and $r_{i j} \in R$,
where $2 \leq i \leq n$ and $1 \leq j \leq s$. Multiplying the former equation by $(1,0, \cdots, 0)$, we get $(1,0, \cdots, 0) x \in\left(m_{1} \times(0) \times \cdots \times(0)\right) M$ for each $x \in M$. It follows that

$$
\left(R_{1} \times(0) \times \cdots \times(0)\right) M \subseteq\left(m_{1} \times(0) \times \cdots \times(0)\right) M
$$

and so $m_{1} M_{1}=M_{1}$, a contradiction.
$(2) \Rightarrow(3)$ follows from Theorem 1.
$(3) \Rightarrow(4)$ follows from [9, Result 2].
(4) \Rightarrow (5) Suppose p be a prime ideal of R and K the quotient field of R / p. We know that K is a non-zero divisible R / p-module. Let $0 \neq r+p \in R / p$. Then $(r+p) K=K$ implies that $\operatorname{Ann}(K)+R / p(r+p)=R / p$. Otherwise, if $\operatorname{Ann}(K)+R / p(r+p) \neq R / p$, then there is a maximal ideal m / p of R / p containing $\operatorname{Ann}(K)+R / p(r+p)$. Thus $K=(r+p) K \subseteq(m / p) K$ follows that $(m / p) K=K$, contradicting the assumption in (4). Now, let $\operatorname{Ann}(K) \neq(0)$. Take $r+p \in \operatorname{Ann}(K)$ and hence by the above argument $\operatorname{Ann}(K)=R / p$, i.e., $K=(0)$, a contradiction. Thus $\operatorname{Ann}(K)=(0)$. Hence $R / p(r+p)=R / p$ for any $0 \neq r+p \in R / p$. Thus $\operatorname{dim}(R)=0$.
$(4) \Rightarrow(5)$ follows from [2, Theorem 8.5].
The following is now immediate.
Corollary 4. Let R be a domain. Then the following statements are equivalent.
(1) Every R-module is a ϕ-module;
(2) Every R-module is a ψ-module;
(3) R is a field.

References

[1] M. Alkan and Y. Tiras. Projective Modules and Prime Submodules, Czechoslovak Mathematical Journal, 56(2), 601-611, 2006.
[2] M. F. Atiyah and I. G. McDonald. Introduction to Commutative Algebra, Addison Wesley Publishing Company, Inc., 1969.
[3] A. Azizi. Prime Submodules and Flat Modules, Acta Mathematica Sinica, English Series, 23, 147-152, 2007.
[4] N. Bourbaki. Algebre Commutative, Paris: Hermann, 1961.
[5] F. Callialp and U. Tekir. On Unions of Prime Submodules, The Southeast Asian Bulletin of Mathematics, 28, 213-218, 2004.
[6] Z. A. El-Bast and P. F. Smith. Multiplication Modules, Communications in Algebra, 16, 755-779, 1988.
[7] H. F. Moghimi and F. Rashedi. Primary-like Submodules Satisfying the Primeful Property, Transactions on Algebra and its Applications, 1:43-54, 2015.
[8] T. Y. Lam. A First Course in Noncommutative Rings, Graduate text in Math, SpringerVerlag, Berlin-Heidelberg-New York, 1991.
[9] C. P. Lu. A Module Whose Prime Spectrum Has the Surjective Natural Map, Houston Journal of Mathematics, 33, 125-143, 2007.
[10] C. P. Lu. Saturations of Submodules, Communications in Algebra, 31, 2655-2673, 2003.
[11] C. P. Lu. Prime Submodules of Modules, Commentarii Mathematici Universitatis Sancti Pauli, 33, 61-69, 1984.
[12] R. L. McCasland, M. E. Moore and P. F. Smith. On the Spectrum of a Module Over a Commutative Ring, Communications in Algebra, 25, 79-103, 1997.
[13] D. P. Yilmaz and P. F. Smith. Radicals of Submodules of Free Modules, Communications in Algebra, 27, 2253-2266, 1999.

[^0]: *Corresponding author.

 Email addresses: hfazaeli@birjand.ac.ir (HF. Moghimi), fatemehrashedi@birjand.ac.ir (F. Rashedi)

