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1. Introduction

Currently many mathematicians have worked in generalized mathematical notions, see
[1, 2, 4], also provided some characterizations of these notions, this is the case of Friday
Ifeanyi Michael K. [1] in the article “On semi open sets with respect to an ideal” in which it
generalizes the notion of semi open sets defined by Norman Levine in [3]. In this article the
author define the notion of I -semi open set as follows: let X be a topological space and I an
ideal on X , A⊆ X is said to be I -semi open set if there exists an open set U such that U \A∈ I
and A\ cl(U) ∈ I . In this article the following properties were proved:
Proposition 5. Let I be an ideal on a topological space X , where every subset of X is dense and
the collection of open subsets of X satisfies the finite intersection property:

1. - If A is I -semi open and A⊆ B, then B is I -semi open.

2. - If A is I - semi open, then so is A∪ B for any subset B of X .

3. - If both A and B are I -semi open, then so is A∩ B.
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Proposition 6. Under the condition of Proposition 5, we have that A is I -semi open if and only
if cl(A) is I -semi open.
If we analyze with more detail, the Proposition 6, observe the following example.

Example 1. Let X = {a, b, c, d} with topology τ = {X ,;, {a, c}, {a, b, c}} and I = {;}. Notice
that the collection of nonempty subsets of X satisfies the finite intersection property and every
nonempty open subset of X is dense. Now consider A= {b, c}, it is easy to see that cl(A) = X is
I-semi open but A is not I-semi open.

This example shows that the Proposition 6 given in [1] is not necessarily true. Using this
fact, our interest is to find some weaker condition of semi open set with respect to an ideal in
order to prove that: Let I 6= ; be an ideal, A ⊆ X satisfies the weaker condition if and only if
cl(A) satisfies the weaker condition.

2. Weakly Semi Open Sets with Respect to an Ideal

Let X be a topological space. Recall that A ⊂ X is a semi open set [3], if there exists an
open set U such that U ⊂ A⊂ cl(U).

Definition 1. A subset A of X is said to be weakly semi open set with respect to an ideal I (denoted
by weakly I-semi open) if A= ; or if A 6= ; there exists an open set U 6= ; such that U \ A∈ I .

Observe that

(i) for any ideal I any semi open set is weakly I -semi open.

(ii) For any ideal I , if A ⊆ X is I -semi open then A is weakly I -semi open. Observe that if
A∈ I not necessarily A is weakly I -semi open.

(iii) There exists weakly I -semi open sets that are neither semi open nor I -semi open.

Example 2. Let X = {a, b, c}, with topology τ= {;, X , {a}, {b, c}} and I = {;}. The set
A= {a, b} is weakly I-semi open but is neither semi open nor I-semi open.

Now we characterize the weakly I -semi open sets.

Theorem 1. Let A 6= ; a subset of X and I an ideal. A is weakly I-semi open if and only if there
exists an open set U and C ∈ I such that (U \ C) ⊂ A

Proof. Suppose that A 6= ; is weakly I -semi open, then there exists an open set U 6= ; such
that U \ A ∈ I . Take C = U \ A = U ∩ (X \ A). Then U \ C ⊂ A. Reciprocally suppose that
there exists an open set U and C ∈ I such that (U \ C) ⊂ A, then (U \ A) ⊂ C , follows that
U \ A∈ I .

Definition 2. A subset A of X is said to be weakly I-semi closed if X \ A is weakly I-semi open.

Theorem 2. Let (X ,τ) be a topological space, I an ideal and A⊆ X . If A is weakly I-semi closed
then A⊂ (K ∪ B) for some closed subset K of X and B ∈ I .
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Proof. If A is weakly I -semi closed, then X \A is weakly I -semi open. If X \A= ;, then A= X ,
in consequence, the ; is weakly I -semi closed. If X \A 6= ;, then there exists an open set U and
B ∈ I such that (U \B) ⊂ (X \A), follows that A⊂ X \ (U \B) = X ⊂ (U ∩ (X \B)) = (X \U)∩B.
Take K = (X ⊂ U) then A⊂ K ∪ B.

The converse of the above Theorem is not necessarily true, as we see in the following
example.

Example 3. Let X = {a, b, c, d} with topology τ = {;, X , {a, b}, {c, d}}. Take I = {;} and
A= {a, c}. If K = X and B = ;, A⊂ K ∪ B but A is not weakly I-semi closed, because X \ A is not
weakly I-semi open.

Theorem 3. The arbitrary union of weakly I-semi open sets is weakly I-semi open.

Proof. Let {Aα}α∈J be a collection of weakly I - semi open sets, then for each Aα with
α ∈ J , there exists Uα, α ∈ J such that Uα \ Aα ∈ I . Now if we take a fixed α′ in J then
U ′α \
⋃

α∈J
Aα ⊂ U ′α \ A′α ∈ I . In consequence,

⋃

α∈J
Aα is weakly I -semi open.

The intersection of weakly I -semi open sets is not necessarily weakly I -semi open as we
can see in the following example.

Example 4. Let X = {a, b, c} with topology τ = {X ,;, {a}, {c}, {a, c}} and I = {;}. Consider
A= {a, b} and B = {b, c}. It is easy to see that A and B are weakly I-semi open sets but A∩B = {b}
is not weakly I-semi open.

Remark 1. We denote by SOI(X ,τ) as the family of all weakly I-semi open sets in the topological
space X , then SOI(X ,τ) is a minimal structure that satisfies the Maki condition [4].

From Definition 1, we obtain that, if ; 6= A ⊂ B and A is weakly I-semi open, then B is also
weakly I-semi open in consequence we have the following corollary.

Corollary 1. If A is weakly I-semi open, then so is A∪B, for any subset B of X , in particular cl(A)
is weakly I-semi open.

The converse of the above Corollary is not necessarily true as we see in the following
example.

Example 5. Let X = {a, b, c, d} with topology τ= {;, X , {a, b}, {c, d}} and I any ideal such that
{b} /∈ I . Take A= {a}, cl(A) = {a, b} is weakly I-semi open but A is not weakly I- semi open.

The following theorem give to us a sufficient condition in order to obtain that
SOI(X ,τ) = P(X ).

Theorem 4. Let (X ,τ) be a topological space and I an ideal such that there exist an unitary set
that belongs to the topology and the ideal, then SOI(X ,τ) = P(X ).
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Proof. Suppose that the unitary set {a} ∈ I . Let {b} any unitary set in X , then
{b} ∈ SOI(X ,τ), because {a} \ {b} ∈ I . Now using Theorem 3, we obtain that any subset A of
X belongs to SOI(X ,τ).

At this point we want to determinate under what conditions, if A⊆ X is cl(A)weakly I -semi
open set then A is weakly I -semi open.

Observe the following facts:

(i) If cl(A) = X then A is not necessarily weakly I -semi open.

(ii) If there exists A ⊂ X , such that cl(A) is a clopen set then A is not necessarily weakly
I -semi open.

Example 6. Let X = {a, b, c, d} with topology τ= {;, X , {a, b}, {c, d}}.

(i) If we take I = {;} and A= {b, d}, cl(A) = X is weakly I-semi open but A is not.

(ii) If we take I = {;, {c}} and A= {a}, cl(A) = {a, b} is weakly I-semi open but A is not.

Theorem 5. Let X be a topological space and I an ideal such that the collection of open sets
satisfies the finite intersection property, if A and B are weakly I-semi open, then so is A∩ B.

Proof. Since A and B are weakly I -semi open sets, there exist open sets U , V such that
U \ A∈ I and V \ B ∈ I , therefore, (U ∩ V ) \ (A∩ B) = (U \ A)∩ V ∪ U ∩ (V \ B) ∈ I .

Remark 2. The following theorem characterizes the subsets A⊆ X such that the cl(A) is weakly
I- semi open under some conditions of the ideal and the collections of open sets of X .

Theorem 6. Let X be a topological space, I 6= ; an ideal on X and the collection of open subsets
of X satisfies the finite intersection property. If A⊂ X such that cl(A) 6= X . cl(A) is weakly I-semi
open if and only if A is weakly I-semi open.

Proof. If A is weakly I -semi open, then cl(A) is weakly I -semi open by Corollary 1. Con-
versely, suppose that cl(A) is weakly I -semi open, then cl(A) = ; or cl(A) 6= ;. If cl(A) = ;,
then A ∈ SOI(X ,τ). If cl(A) 6= ;, there exists an open set U 6= ; such that U \ cl(A) ∈ I ,
take the open set V = U \ cl(A). Using the hypothesis V 6= ; and V ∈ I . Observe that
V \ A= (U \ cl(A)) \ A= U \ cl(A) ∈ I . In consequence, A is weakly I -semi open.

Remark 3. Observe that if in the Theorem 6:

(i) I 6= ; and cl(A) 6= X are omitted, then the result may be false, (see Example 1).

(ii) If we change cl(A) 6= X by cl(A) = X , the result may be false. If in the Example 1,
I = {;, {c}} and A = {a, d}, then cl(A) is weakly I-semi open but A is not weakly I-semi
open.

(iii) The case I = ; and cl(A) 6= X never happens.
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