EUROPEAN JOURNAL OF PURE AND APPLIED MATHEMATICS Vol. 7, No. 4, 2014, 437-441 ISSN 1307-5543 – www.ejpam.com

Some Remarks on Semi Open Sets with Respect to an Ideal

Carlos Carpintero¹, Alvaro Muñoz², Jackeline Pacheco³, Ennis Rosas⁴*

^{1,4} Departamento de Matemáticas, Universidad de Oriente, Núcleo de Sucre Cumaná, Venezuela and Universidad del Atlántico, Facultad de Ciencias Básicas, Barranquilla, Colombia ^{2,3} Programa de Matemáticas, Facultad de Ciencias Básicas, Universidad del Atlántico, Barranquilla, Colombia

Abstract. In this article we introduce the notions of weakly semi open sets with respect to an ideal, characterize them and find some properties

2010 Mathematics Subject Classifications: 54C10

Key Words and Phrases: weakly semi open set with respect to an ideal, semi open set with respect to an ideal, semi open set

1. Introduction

Currently many mathematicians have worked in generalized mathematical notions, see [1, 2, 4], also provided some characterizations of these notions, this is the case of Friday Ifeanyi Michael K. [1] in the article "On semi open sets with respect to an ideal" in which it generalizes the notion of semi open sets defined by Norman Levine in [3]. In this article the author define the notion of *I*-semi open set as follows: let *X* be a topological space and *I* an ideal on *X*, $A \subseteq X$ is said to be *I*-semi open set if there exists an open set *U* such that $U \setminus A \in I$ and $A \setminus cl(U) \in I$. In this article the following properties were proved:

Proposition 5. Let *I* be an ideal on a topological space X, where every subset of X is dense and the collection of open subsets of X satisfies the finite intersection property:

- 1. If *A* is *I*-semi open and $A \subseteq B$, then *B* is *I*-semi open.
- 2. If A is I- semi open, then so is $A \cup B$ for any subset B of X.
- 3. If both *A* and *B* are *I*-semi open, then so is $A \cap B$.

http://www.ejpam.com

© 2014 EJPAM All rights reserved.

^{*}Corresponding author.

Email addresses: carpintero.carlos@gmail.com (C. Carpintero), almuoz@hotmail.com (A. Muñoz), jackelinepacheco25@gmail.com (J. Pacheco), ennisrafael@gmail.com (E. Rosas)

C. Carpintero, A. Muñoz, J. Pacheco, E. Rosas / Eur. J. Pure Appl. Math, 7 (2014), 437-441

Proposition 6. Under the condition of Proposition 5, we have that *A* is *I*-semi open if and only if cl(A) is *I*-semi open.

If we analyze with more detail, the Proposition 6, observe the following example.

Example 1. Let $X = \{a, b, c, d\}$ with topology $\tau = \{X, \emptyset, \{a, c\}, \{a, b, c\}\}$ and $I = \{\emptyset\}$. Notice that the collection of nonempty subsets of X satisfies the finite intersection property and every nonempty open subset of X is dense. Now consider $A = \{b, c\}$, it is easy to see that cl(A) = X is *I*-semi open but A is not *I*-semi open.

This example shows that the Proposition 6 given in [1] is not necessarily true. Using this fact, our interest is to find some weaker condition of semi open set with respect to an ideal in order to prove that: Let $I \neq \emptyset$ be an ideal, $A \subseteq X$ satisfies the weaker condition if and only if cl(A) satisfies the weaker condition.

2. Weakly Semi Open Sets with Respect to an Ideal

Let *X* be a topological space. Recall that $A \subset X$ is a semi open set [3], if there exists an open set *U* such that $U \subset A \subset cl(U)$.

Definition 1. A subset A of X is said to be weakly semi open set with respect to an ideal I (denoted by weakly I-semi open) if $A = \emptyset$ or if $A \neq \emptyset$ there exists an open set $U \neq \emptyset$ such that $U \setminus A \in I$.

Observe that

- (i) for any ideal *I* any semi open set is weakly *I*-semi open.
- (ii) For any ideal *I*, if $A \subseteq X$ is *I*-semi open then *A* is weakly *I*-semi open. Observe that if $A \in I$ not necessarily *A* is weakly *I*-semi open.
- (iii) There exists weakly I-semi open sets that are neither semi open nor I-semi open.

Example 2. Let $X = \{a, b, c\}$, with topology $\tau = \{\emptyset, X, \{a\}, \{b, c\}\}$ and $I = \{\emptyset\}$. The set $A = \{a, b\}$ is weakly I-semi open but is neither semi open nor I-semi open.

Now we characterize the weakly *I*-semi open sets.

Theorem 1. Let $A \neq \emptyset$ a subset of X and I an ideal. A is weakly I-semi open if and only if there exists an open set U and $C \in I$ such that $(U \setminus C) \subset A$

Proof. Suppose that $A \neq \emptyset$ is weakly *I*-semi open, then there exists an open set $U \neq \emptyset$ such that $U \setminus A \in I$. Take $C = U \setminus A = U \cap (X \setminus A)$. Then $U \setminus C \subset A$. Reciprocally suppose that there exists an open set *U* and $C \in I$ such that $(U \setminus C) \subset A$, then $(U \setminus A) \subset C$, follows that $U \setminus A \in I$.

Definition 2. A subset A of X is said to be weakly I-semi closed if $X \setminus A$ is weakly I-semi open.

Theorem 2. Let (X, τ) be a topological space, I an ideal and $A \subseteq X$. If A is weakly I-semi closed then $A \subset (K \cup B)$ for some closed subset K of X and $B \in I$.

C. Carpintero, A. Muñoz, J. Pacheco, E. Rosas / Eur. J. Pure Appl. Math, 7 (2014), 437-441

Proof. If *A* is weakly *I*-semi closed, then $X \setminus A$ is weakly *I*-semi open. If $X \setminus A = \emptyset$, then A = X, in consequence, the \emptyset is weakly *I*-semi closed. If $X \setminus A \neq \emptyset$, then there exists an open set *U* and $B \in I$ such that $(U \setminus B) \subset (X \setminus A)$, follows that $A \subset X \setminus (U \setminus B) = X \subset (U \cap (X \setminus B)) = (X \setminus U) \cap B$. Take $K = (X \subset U)$ then $A \subset K \cup B$.

The converse of the above Theorem is not necessarily true, as we see in the following example.

Example 3. Let $X = \{a, b, c, d\}$ with topology $\tau = \{\emptyset, X, \{a, b\}, \{c, d\}\}$. Take $I = \{\emptyset\}$ and $A = \{a, c\}$. If K = X and $B = \emptyset$, $A \subset K \cup B$ but A is not weakly I-semi closed, because $X \setminus A$ is not weakly I-semi open.

Theorem 3. The arbitrary union of weakly I-semi open sets is weakly I-semi open.

Proof. Let $\{A_{\alpha}\}_{\alpha \in J}$ be a collection of weakly *I*- semi open sets, then for each A_{α} with $\alpha \in J$, there exists $U_{\alpha}, \alpha \in J$ such that $U_{\alpha} \setminus A_{\alpha} \in I$. Now if we take a fixed α' in *J* then $U'_{\alpha} \setminus \bigcup_{\alpha \in J} A_{\alpha} \subset U'_{\alpha} \setminus A'_{\alpha} \in I$. In consequence, $\bigcup_{\alpha \in J} A_{\alpha}$ is weakly *I*-semi open.

The intersection of weakly *I*-semi open sets is not necessarily weakly *I*-semi open as we can see in the following example.

Example 4. Let $X = \{a, b, c\}$ with topology $\tau = \{X, \emptyset, \{a\}, \{c\}, \{a, c\}\}$ and $I = \{\emptyset\}$. Consider $A = \{a, b\}$ and $B = \{b, c\}$. It is easy to see that A and B are weakly I-semi open sets but $A \cap B = \{b\}$ is not weakly I-semi open.

Remark 1. We denote by $SO_I(X, \tau)$ as the family of all weakly *I*-semi open sets in the topological space *X*, then $SO_I(X, \tau)$ is a minimal structure that satisfies the Maki condition [4].

From Definition 1, we obtain that, if $\emptyset \neq A \subset B$ and A is weakly I-semi open, then B is also weakly I-semi open in consequence we have the following corollary.

Corollary 1. If A is weakly I-semi open, then so is $A \cup B$, for any subset B of X, in particular cl(A) is weakly I-semi open.

The converse of the above Corollary is not necessarily true as we see in the following example.

Example 5. Let $X = \{a, b, c, d\}$ with topology $\tau = \{\emptyset, X, \{a, b\}, \{c, d\}\}$ and I any ideal such that $\{b\} \notin I$. Take $A = \{a\}$, $cl(A) = \{a, b\}$ is weakly I-semi open but A is not weakly I- semi open.

The following theorem give to us a sufficient condition in order to obtain that $SO_I(X, \tau) = P(X)$.

Theorem 4. Let (X, τ) be a topological space and I an ideal such that there exist an unitary set that belongs to the topology and the ideal, then $SO_I(X, \tau) = P(X)$.

C. Carpintero, A. Muñoz, J. Pacheco, E. Rosas / Eur. J. Pure Appl. Math, 7 (2014), 437-441

Proof. Suppose that the unitary set $\{a\} \in I$. Let $\{b\}$ any unitary set in X, then $\{b\} \in SO_I(X, \tau)$, because $\{a\} \setminus \{b\} \in I$. Now using Theorem 3, we obtain that any subset A of X belongs to $SO_I(X, \tau)$.

At this point we want to determinate under what conditions, if $A \subseteq X$ is cl(A) weakly *I*-semi open set then *A* is weakly *I*-semi open.

Observe the following facts:

- (i) If cl(A) = X then A is not necessarily weakly *I*-semi open.
- (ii) If there exists $A \subset X$, such that cl(A) is a clopen set then A is not necessarily weakly *I*-semi open.

Example 6. Let $X = \{a, b, c, d\}$ with topology $\tau = \{\emptyset, X, \{a, b\}, \{c, d\}\}$.

- (i) If we take $I = \{\emptyset\}$ and $A = \{b, d\}$, cl(A) = X is weakly I-semi open but A is not.
- (ii) If we take $I = \{\emptyset, \{c\}\}$ and $A = \{a\}$, $cl(A) = \{a, b\}$ is weakly I-semi open but A is not.

Theorem 5. Let X be a topological space and I an ideal such that the collection of open sets satisfies the finite intersection property, if A and B are weakly I-semi open, then so is $A \cap B$.

Proof. Since *A* and *B* are weakly *I*-semi open sets, there exist open sets U, V such that $U \setminus A \in I$ and $V \setminus B \in I$, therefore, $(U \cap V) \setminus (A \cap B) = (U \setminus A) \cap V \cup U \cap (V \setminus B) \in I$.

Remark 2. The following theorem characterizes the subsets $A \subseteq X$ such that the cl(A) is weakly *I*-semi open under some conditions of the ideal and the collections of open sets of *X*.

Theorem 6. Let X be a topological space, $I \neq \emptyset$ an ideal on X and the collection of open subsets of X satisfies the finite intersection property. If $A \subset X$ such that $cl(A) \neq X$. cl(A) is weakly I-semi open if and only if A is weakly I-semi open.

Proof. If *A* is weakly *I*-semi open, then cl(A) is weakly *I*-semi open by Corollary 1. Conversely, suppose that cl(A) is weakly *I*-semi open, then $cl(A) = \emptyset$ or $cl(A) \neq \emptyset$. If $cl(A) = \emptyset$, then $A \in SO_I(X, \tau)$. If $cl(A) \neq \emptyset$, there exists an open set $U \neq \emptyset$ such that $U \setminus cl(A) \in I$, take the open set $V = U \setminus cl(A)$. Using the hypothesis $V \neq \emptyset$ and $V \in I$. Observe that $V \setminus A = (U \setminus cl(A)) \setminus A = U \setminus cl(A) \in I$. In consequence, *A* is weakly *I*-semi open.

Remark 3. Observe that if in the Theorem 6:

- (i) $I \neq \emptyset$ and $cl(A) \neq X$ are omitted, then the result may be false, (see Example 1).
- (ii) If we change $cl(A) \neq X$ by cl(A) = X, the result may be false. If in the Example 1, $I = \{\emptyset, \{c\}\}$ and $A = \{a, d\}$, then cl(A) is weakly I-semi open but A is not weakly I-semi open.
- (iii) The case $I = \emptyset$ and $cl(A) \neq X$ never happens.

References

- [1] F Ifeanyi and K Michael. On semi open sets with respect to an ideal. *European Journal of Pure and Applied Mathemetics*, 6(1):53-58, 2013.
- [2] S Jafari and N Rajesh. Generalized closed sets with respect to and ideal. *European Journal of Pure and Applied Mathemetics*, 4(2):147-151, 2011.
- [3] N Levine. Semi open sets and semi continuity in topological spaces. *American Mathematical Monthly*, 70:36-41, 1963.
- [4] H Maki, R Chandrasekhara, and A Nagoor Gani. On generalizing semi-open sets and preopen sets. *Pure and Applied Mathematical Sciences*, 49:17-29, 1999.