EUROPEAN JOURNAL OF PURE AND APPLIED MATHEMATICS Vol. 7, No. 4, 2014, 429-436 ISSN 1307-5543 – www.ejpam.com

Regularity of the Rees and Associated Graded Modules

Naser Zamani

Faculty of Mathematical Sciences, University of Mohaghegh Ardabili, Ardabil, Iran

Abstract. Let *A* be a Noetherian ring and b be an ideal of *A*. Let *E* be a finitely generated *A*-module. It is shown that there is a close relationship between the cohomological invariants of the associated graded module of *E* with respect to b and the Rees module of *E* associated to b. Also a formula for the regularity of the Rees module of *E* associated to b will be given.

2010 Mathematics Subject Classifications: 13A99, 13D45

Key Words and Phrases: associated graded rings and modules, graded local cohomology, reduction number, filter regular sequence

1. Introduction

Let $S = \bigoplus_{n \ge 0} S_n$ be a finitely generated standard graded algebra over a Noetherian commutative ring S_0 . We denote by $S_+ = \bigoplus_{n \ge 1} S_n$ the ideal generated by the homogeneous elements of positive degree of S. For a graded S-module L, the homogeneous part of degree n of L, is denoted by L_n , and L(t) is the same module L shifted by t. The end of L is defined by $end(L) = \max\{n : L_n \ne 0\}$, and $end(0) = -\infty$ by convention. For each $i \ge 0$, the *i*th local cohomology module $H_{S_+}^i(L)$ of a graded S-module L supported in S_+ is also a graded S-module in a natural way and $H_{S_+}^i(L)_n$ is a finitely generated S_0 -module for all $i \ge 0$ and all n, and it is zero for for large values of n (see [1, Chapter 15]). Following [3], we put $a_i(L) = end(H_{S_+}^i(L))$. Then the regularity of L is defined by $reg(L) = \max\{a_i(L) + i : i \ge 0\}$.

Let *A* be a Noetherian commutative ring and \mathfrak{b} an ideal of *A*. Let *E* be a finitely generated *A*-module. We denote by $R_{\mathfrak{b}}(E) = \bigoplus_{n \ge 0} \mathfrak{b}^n E$ the Rees module of *E* associated to \mathfrak{b} and by $G_{\mathfrak{b}}(E) = \bigoplus_{n \ge 0} \mathfrak{b}^n E/\mathfrak{b}^{n+1}E = R_{\mathfrak{b}}(E)/\mathfrak{b}R_{\mathfrak{b}}(E)$ the associated graded module of *E* with respect to \mathfrak{b} . In the case E = A, these modules are denoted by $R(\mathfrak{b})$ and $G(\mathfrak{b}) = R(\mathfrak{b})/\mathfrak{b}R(\mathfrak{b})$ respectively.

Recall from [2, Definition 4.6.4] that an ideal $\mathfrak{a} \subseteq \mathfrak{b}$ is called a reduction of \mathfrak{b} with respect to *E* if $R_{\mathfrak{b}}(E)$ is a finitely generated $R(\mathfrak{a})$ -module, or equivalently, if $\mathfrak{b}^{r+1}E = \mathfrak{a}\mathfrak{b}^{r}E$ for some

http://www.ejpam.com

© 2014 EJPAM All rights reserved.

Email address: naserzaka@yahoo.com

 $r \ge 0$. The least such *r* is denoted by $r_{\mathfrak{a}}(\mathfrak{b}, E)$.

This paper is divided into 3 sections. In section 2 we prepare some results related to the Castelnuovo regularity of a graded module, from which we prove in theorem 1 that reg(L) can be characterized in terms of a minimal reduction of S_+ with respect to L, which is generated by an S_+ -filter regular sequence of homogeneous elements of degree 1, for L. In section 3, using the ideas of [5], we will show that there is a close relationship between the invariants $a_i(R_{\mathfrak{b}}(E))$ and $a_i(G_{\mathfrak{b}}(E))$, from which we can easily derive the formula $reg(R_{\mathfrak{b}}(E)) = reg(G_{\mathfrak{b}}(E))$. Also we give a formula for the number $reg(R_{\mathfrak{b}}(E))$ in Corollary 4.

2. Preliminaries

From now on assume that *L* is finitely generated. Let $\mathbf{f} = f_1, \ldots, f_h$ be a sequence of homogeneous elements of *S*. We call f_1, \ldots, f_h an S_+ -filter regular sequence for *L* if for all $i = 1, \ldots, h$

$$f_i \notin \bigcup_{\mathfrak{p} \in \operatorname{Ass}_S(L/(f_1, \dots, f_{i-1})L) \setminus V(S_+)} \mathfrak{p}$$

where $V(S_+)$ is the set of all prime ideals of *S* containing S_+ and for an *S*-module *X*, $Ass_S(X)$ denotes the set of all associated prime ideals of *X*. We define

$$e(\mathbf{f}, L) = \sup\{end(((f_1, \dots, f_{i-1})L : L f_i)/(f_1, \dots, f_{i-1})L) : i = 1, \dots, h\}.$$

Then by [1, 18.3.8], f_1, \ldots, f_h is an S_+ -filter regular sequence on L if and only if $e(\mathbf{f}, L) < \infty$.

It will be crucial to understand how the invariants $a_i(L)$ behave with respect to S_+ -filter regular sequences for L. This relationship was illuminated by Trung in the following lemma. Because of its importance in our argument, we supply the proof along the statement.

Lemma 1 ([6, Lemma 2.3]). Let $f \in S_1$ be a homogeneous S_+ -filter regular element for L. Then for all $i \ge 0$,

$$a_{i+1}(L) + 1 \le a_i(L/fL) \le \max\{a_i(L), a_{i+1}(L) + 1\}.$$

Proof. Note that by the statement after the definition of an S_+ -filter regular sequence for L, $H_{S_+}^0(0:_L f) = (0:_L f)$ and hence $H_{S_+}^i(0:_L f) = 0$ for all $i \ge 1$. Then from the exact sequence

$$0 \longrightarrow (0:_L f) \longrightarrow L \longrightarrow L/(0:_L f) \longrightarrow 0,$$

we see that $H_{S_{\perp}}^{i}(L) \cong H_{S_{\perp}}^{i}(L/(0:_{L}f))$ for all $i \ge 1$. Now, from the exact sequence

$$0 \longrightarrow L/(0:_L f) \stackrel{f}{\longrightarrow} L(1) \longrightarrow L(1) \longrightarrow 0,$$

we obtain the exact sequence

$$H^{i}_{S_{+}}(L)_{n+1} \to H^{i}_{S_{+}}(L/fL)_{n+1} \to H^{i+1}_{S_{+}}(L)_{n} \to H^{i+1}_{S_{+}}(L)_{n+1}$$

for each $i \ge 0$ and $n \in \mathbb{Z}$. Analyzing these sequences easily yields the desired inequalities. \Box

431

Lemma 2. Let $\mathbf{f} = f_1, \dots, f_h$ be an S_+ -filter regular sequence of homogeneous elements of degree 1 for *L*. Then:

- (i) $e(\mathbf{f}, L) = \max\{a_i(L) + i : i = 0, \dots, h-1\},\$
- (ii) for all $0 \le t \le h$,

$$\max\{a_i(L)+i: i=0,...,t\} = \max\{end(((f_1,...,f_t)L: S_+)/(f_1,...,f_t)L): i=0,...,t\}.$$

Proof. (i) We prove by induction on $h \ge 1$. Since $(0:_L f_1) \subseteq \bigcup_{n \ge 1} (0:_L S_+^n)$ and

$$f_1 H^0_{S_+}(L)_{a_0(L)} \subseteq H^0_{S_+}(L)_{a_0(L)+1} = 0,$$

thus $e(f_1, L) = a_0(L)$ and the case h = 1 is immediate. So let h > 1. Let $\overline{L} = L/f_1L$ and $\overline{f} = \overline{f_2}, \dots, \overline{f_h}$ in $\overline{S} = S/(f_1)$. By induction and using Lemma 1, we have

$$\begin{split} \max\{a_i(L) + i : i = 1, \dots, h-1\} \leq & e(\hat{\mathbf{f}}, \bar{L}) = \max\{a_i(L/f_1L) + i : i = 0, \dots, h-2\} \\ \leq & \max\{a_i(L) + i : i = 0, \dots, h-1\}. \end{split}$$

Now since $e(\mathbf{f}, L) = \max\{e(f_1, L), e(\bar{\mathbf{f}}, \bar{L})\}$, the result follows.

(ii) Using Lemma 1 repeatedly, we deduce that

$$a_i(L) + i \le a_0(L/(f_1, \dots, f_i)L) \le \max\{a_i(L) + j : j = 0, \dots, i\}.$$

From this it follows that for $t \leq h$,

$$\max\{a_i(L) + i : i = 0, \dots, t\} = \max\{a_0(L/(f_1, \dots, f_i)L) : i = 0, \dots, t\}.$$

Set $a = a_0(L/(f_1, ..., f_i)L)$. We have

$$H^{0}_{S_{+}}(L/(f_{1},\ldots,f_{i})L) = \bigcup_{n\geq 1}((f_{1},\ldots,f_{i})L:_{L}S_{+}^{n})/(f_{1},\ldots,f_{i})L.$$

Therefore

$$H^{0}_{S_{\perp}}(L/(f_{1},\ldots,f_{i})L)_{a} \subseteq ((f_{1},\ldots,f_{i})L:_{L}S_{+})/(f_{1},\ldots,f_{i})L \subseteq H^{0}_{S_{\perp}}(L/(f_{1},\ldots,f_{i})L)$$

Hence $a(((f_1, \ldots, f_i)L :_L S_+)/(f_1, \ldots, f_i)L) = a$, and the result follows.

The following corollary generalizes [5, Corollary 2.3] to the module case.

Corollary 1. Let $g = grade(S_+, L)$. Then:

(i)
$$a_i(L) = -\infty$$
 for $i < g$.

(ii)
$$a_g(L) \geq -g$$
.

(iii) If $H^1_{S_+}(L) \neq 0$, then $a_1(L) \geq -1$.

Proof. We may assume that the base ring S_0 is local with infinite residue field. Then from the graded version of prime avoidance theorem (see for example [2, Proposition 1.5.12]) there exists an *L*-sequence f_1, \ldots, f_g of homogeneous elements of S_1 . Since

$$(f_1, \ldots, f_g)L :_L S_+ = (f_1, \ldots, f_g)L$$

for i = 1, ..., g; hence Lemma 2(ii) implies that $\max\{a_j(L) + j : j = 1, ..., i-1\} = -\infty$. Hence $a_i(L) = -\infty$ for i = 0, ..., g-1. As a consequence,

$$a_g(L) + g = \max\{a_i(L) + i : i = 0, \dots, g\} = a(((f_1, \dots, f_g)L) : LS_+)/(f_1, \dots, f_g)L) \ge 0.$$

Therefore, $a_g(L) \ge -g$ and (i) and (ii) have been proved.

To prove (iii), set $\bar{S} = S/H^0_{S_+}(S)$ and $\bar{L} = L/H^0_{S_+}(L)$. Then it is easy to see that $grade(\bar{S}_+, \bar{L}) \ge 1$ and $H^1_{\bar{S}_+}(\bar{L}) \cong H^1_{S_+}(L) \ne 0$. Therefore $a_1(L) = a_1(\bar{L}) \ge -1$ by (ii).

Theorem 1. Let $\mathbf{f} = f_1 \in S_1, \dots, f_h \in S_1$ be an S_+ -filter regular sequence for L. Let $\mathfrak{b} = (f_1, \dots, f_h)$ be a reduction of S_+ with respect to L. Then

$$reg(L) = \max\{e(\mathbf{f}, L), r_{\mathfrak{b}}(S_+, L)\}.$$

Proof. By Lemma 2 we have

$$e(\mathbf{f}, L) = \max\{end(((f_1, \dots, f_i)L :_L S_+)/(f_1, \dots, f_i)L) : i = 0, \dots, h-1\}.$$

Furthermore, $r_{\mathfrak{b}}(S_+, L) = end(L/\mathfrak{b}L) = end(((f_1, \dots, f_h)L :_L S_+)/(f_1, \dots, f_h)L)$. Therefore

$$\max\{e(\mathbf{f}, L), r_{\mathfrak{b}}(S_{+}, L)\} = \max\{end(((f_{1}, \dots, f_{i})L) : L S_{+})/(f_{1}, \dots, f_{i})L) : i = 0, \dots, h\}$$
$$= \max\{a_{i}(L) + i : i = 0, \dots, h\}.$$

Since $reg(L) = \max\{a_i(L) + i : i \ge 0\}$, it is enough to show that $H^i_{S_+}(L) = 0$ for all i > h. If h = 0, then L is annihilated by some power of S_+ and so $H^i_{S_+}(L) = 0$ for all i > 0. So let $h \ge 1$. By induction, we have $H^i_{S_+}(L/f_1L) = 0$ for all i > h - 1. Hence $a_i(L/f_1L) = -\infty$ for all i > h - 1. By Lemma 1, this implies $a_{i+1}(L) = -\infty$ and $H^{i+1}_{S_+}(L) = 0$ for all i > h. \Box

3. Regularity results

In this section, using the ideas of [5], we will show that there is a close relationship between the invariants $a_i(R_{\mathfrak{b}}(E))$ and $a_i(G_{\mathfrak{b}}(E))$, from which we can easily derive the formula reg(R(E)) = reg(G(E)) which is a generalization of that of Ooishi [4] and [5, Theorem 3.1]. For simplicity we shall denote $R_{\mathfrak{b}}(E)$ by R(E), $G_{\mathfrak{b}}(E)$ by G(E), $R(\mathfrak{b})_+$ by R_+ and $G(\mathfrak{b})_+$ by G_+ .

Theorem 2. Let the notation be as in above. Then:

- (i) For each $i \neq 1$, $a_i(R(E)) \leq a_i(G(E))$.
- (*ii*) $a_i(R(E)) = a_i(G(E))$ if $a_{i+1}(G(E)) \le a_i(G(E))$, $i \ne 1$.
- (iii) If $H^1_{G_i}(G(E)) \neq 0$ or if $\mathfrak{b} \subseteq \sqrt{(0:AE)}$, the statements (i) and (ii) hold for i = 1.
- (iv) If $H^1_{G_+}(G(E)) = 0$ and $\mathfrak{b} \not\subseteq \sqrt{(0:_A E)}$ then $a_1(R(E)) = -1$.

Proof. We consider the exact sequence

$$0 \longrightarrow R(E)_{+} \longrightarrow R(E) \longrightarrow E \longrightarrow 0, \tag{1}$$

where E is considered as a graded R-module concentrated in degree zero.

Since $H^0_{R_+}(E)_n = 0$ for $n \neq 0$ and $H^i_{R_+}(E) = 0$ for $i \ge 1$, so from the exact sequence (1) we deduce that $H^i_{R_+}(R(E)_+)_n \cong H^i_{R_+}(R(E))_n$ for $n = 0, i \ge 2$, and for $n \neq 0, i \ge 0$. Since $H^i_{G_+}(G(E)) = H^i_{R_+}(G(E))$, the exact sequence

$$0 \longrightarrow R(E)_{+}(1) \longrightarrow R(E) \longrightarrow G(E) \longrightarrow 0,$$
(2)

induces the exact sequence

$$H^{i}_{R_{+}}(R(E)_{+})_{n+1} \to H^{i}_{R_{+}}(R(E))_{n} \to H^{i}_{R_{+}}(G(E))_{n} \to H^{i+1}_{R_{+}}(R(E)_{+})_{n+1}.$$
(3)

Replacing $H_{R_+}^i(R(E)_+)_{n+1}$ by $H_{R_+}^i(R(E))_{n+1}$ and setting $H_{R_+}^i(G(E)) = 0$ whenever that is possible, we get an epimorphism $H_{R_+}^i(R(E))_{n+1} \rightarrow H_{R_+}^i(R(E))_n$ for all $n \ge \max\{0, a_i(G(E)) + 1\}$ if i = 0, 1, and for $n \ge a_i(G(E)) + 1$ if $i \ge 2$. Since $H_{R_+}^i(R(E))_n = 0$ for large values of n, so we deduce that

 $H_{R_{\perp}}^{i}(R(E))_{n}=0$

for $n \ge \max\{0, a_i(G(E)) + 1\}$ if i = 0, 1 and for $n \ge a_i(G(E)) + 1$ if $i \ge 2$. From the above formula immediately we have $a_i(R(E)) \le a_i(G(E))$ for $i \ge 2$.

For i = 0 we consider two cases. If $H^0_{R_+}(G(E)) = 0$, then $a_0(G(E)) = -\infty$. Therefore by (4) $H^0_{R_+}(R(E))_n = 0$ for all $n \ge 0$. From this it follows that $H^0_{R_+}(R(E)) = 0$. Hence $a_0(R(E)) = -\infty = a_0(G(E))$. If $H^0_{R_+}(G(E)) \ne 0$, $a_0(G(E)) \ge 0$. Hence $H^0_{R_+}(R(E))_n = 0$ for $n \ge a_0(G(E)) + 1$ by (4), which implies $a_0(R(E)) \le a_0(G(E))$. So (i) is proved.

If $H_{R_+}^1(G(E)) \neq 0$, then $a_1(G(E)) \geq -1$ by Corollary 1(iii). Hence by (4) $H_{R_+}^1(R(E))_n = 0$ for $n \geq a_1(G(E))$ which implies $a_1(R(E)) \leq a_1(G(E))$. If $\mathfrak{b} \subseteq \sqrt{(0:_A E)}$, then $H_{R_+}^i(R(E)) = 0$ and $H_{R_+}^i(G(E)) = 0$ for all $i \geq 1$. Hence $a_1(R(E)) = a_1(G(E)) = -\infty$. So the first part of (iii) is proved.

Now we prove (ii) and the second part of (iii). It is sufficient to show that $a_i(G(E)) \le a_i(R(E))$ for $i \ge 0$. We may assume that $a_i(G(E)) \ne -\infty$. For i = 0, we have either $a_1(R(E)) \le -1$ or $a_1(R(E)) \le a_1(G(E))$ by (4). For $i \ge 1$, we have $a_{i+1}(R(E)) \le a_{i+1}(G(E))$ by (i). Hence the assumption $a_{i+1}(G(E)) \le a_i(G(E))$ implies that $a_{i+1}(R(E)) \le a_i(G(E))$. Put $n = a_i(G(E))$. Then $H_{R_+}^{i+1}(R(E)_+)_{n+1} \cong H_{R_+}^{i+1}(R(E))_{n+1} = 0$. Using this in the exact sequence (3), we get an epimorphism

$$H^i_{R_+}(R(E))_n \longrightarrow H^i_{R_+}(G(E))_n.$$

Since $H_{R_+}^i(G(E))_n \neq 0$, so $H_{R_+}^i(R(E))_n \neq 0$. Therefore, $a_i(G(E)) \leq a_i(R(E))$.

To prove (iv) we assume that $H_{R_+}^1(G(E)) = 0$. Then $a_1(G(E)) = -\infty$. Hence $a_1(R(E)) \le -1$ by (4). If $a_1(R(E)) < -1$, $H_{R_+}^1(R(E))_{-1} = 0$. Since $H_{R_+}^0(G(E))_{-1} = 0$, from the exact sequence (2) we can deduce that $H_{R_+}^1(R(E)_+)_0 = 0$. Now, using the exact sequence (1) we get the exact sequence

$$H^0_{R_+}(R(E)_+)_0 \longrightarrow H^0_{R_+}(R(E))_0 \longrightarrow H^0_{R_+}(E) \longrightarrow 0.$$

But since $(R(E)_+)_0 = 0$, so $H^0_{R_+}(R(E)_+)_0 = 0$. Furthermore, $H^0_{R_+}(R(E))_0 = H^0_{\mathfrak{b}}(E)$ and $H^0_{R_+}(E) = E$. Therefore, $H^0_{\mathfrak{b}}(E) = E$ which is equivalent to the condition $\mathfrak{b}^t E = 0$ for some $t \ge 1$. Thus if, $\mathfrak{b} \not\subseteq \sqrt{(0:_A E)}$, we must have $a_1(R(E)) = -1$. Now, the proof of the theorem is complete.

Corollary 2. Let $\ell := \max\{i : H^i_{G_+}(G(E)) \neq 0\}$. Then:

(i)
$$a_{\ell}(R(E)) = a_{\ell}(G(E)),$$

(ii) If
$$\mathfrak{b} \subseteq \sqrt{(0:AE)}$$
 or $\ell \ge 1$, then $\ell = \max\{i: H_{R}^{i}(R(E)) \neq 0\}$.

Proof. For $i \ge \ell$, we have $a_i(G(E)) \ge a_{i+1}(G(E)) = -\infty$. Therefore, $a_i(R(E)) = a_i(G(E))$ if $i \ne 1$ by Theorem 2(ii). Hence (i) and(ii) are obvious if $\ell > 1$. It remains to show that $a_1(R(E)) = a_1(G(E))$ if $\ell = 1$ or if $\ell = 0$ and $\mathfrak{b} \subseteq \sqrt{(0:AE)}$. But this follows from Theorem 2(iii).

Corollary 3. With the notation as in above we have

$$reg(R(E)) = reg(G(E)).$$

Proof. By Theorem 2(i) we have $a_i(R(E)) + i \le a_i(G(E)) + i$ for $i \ne 1$. By Theorem 2(iii) and (iv), either $a_1(R(E)) + 1 \le a_1(G(E)) + 1$ or $a_1(R(E)) + 1 = 0 \le reg(G(E))$. Therefore,

$$reg(R(E)) = \max\{a_i(R(E)) + i : i \ge 0\} \le \max\{a_i(G(E)) + i : i \ge 0\} = reg(G(E)).$$

To prove $reg(G(E)) \le reg(R(E))$, let *i* be maximal such that $reg(G(E)) = a_i(G(E)) + i$. Then $H^i_{G_+}(G(E)) \ne 0$ and $a_{i+1}(G(E)) < a_i(G(E))$. Now, using Theorem 2(ii),(iii), we get $a_i(R(E)) = a_i(G(E))$. Hence $reg(G(E)) = a_i(R(E)) + i \le reg(R(E))$.

In the following we consider R(b) as a subring of the polynomial ring A[t].

REFERENCES

Proposition 1. Let f_1, \ldots, f_h be a sequence of elements of \mathfrak{b} . Then $\mathbf{f} := f_1 t, \ldots, f_h t$ is an $R(\mathfrak{b})_+$ -filter regular sequence for R(E) if and only if for all large $n \ge 1$,

$$[(f_1, \dots, f_{i-1})\mathfrak{b}^n E :_E f_i] \cap \mathfrak{b}^n E = (f_1, \dots, f_{i-1})\mathfrak{b}^{n-1}E \text{ for } i = 1, \dots, h.$$
(4)

If this is the case, then $e(\mathbf{f}, R(E))$ is the least integer r such that (4) holds for all $n \ge r + 1$.

Proof. The sequence $\mathbf{f} = f_1 t, \ldots, f_h t$ is an $R(\mathfrak{b})_+$ -filter regular sequence for R(E) if and only if $[(f_1 t, \ldots, f_{i-1} t)R(E) :_{R(E)} f_i t]_n$ is equal to $[(f_1 t, \ldots, f_{i-1} t)R(E)]_n$ for all large $n \ge 1$ and all $i = 1, \ldots, h$. But the first module is equal to $[(f_1, \ldots, f_{i-1})\mathfrak{b}^n E :_E f_i] \cap \mathfrak{b}^n E$ and the second is equal to $(f_1, \ldots, f_{i-1})\mathfrak{b}^{n-1}E$. We note that $e(\mathbf{f}, R(E))$ is the least integer r such that the equality $[(f_1 t, \ldots, f_{i-1} t)R(E) :_{R(E)} f_i t]_n = [(f_1 t, \ldots, f_{i-1} t)R(E)]_n$ holds for all $n \ge r + 1$. \Box

Corollary 4. Let $a = (f_1, ..., f_h)$ be a reduction of b with respect to E. Suppose that $\mathbf{f} = f_1 t, ..., f_h t$ is an $R(b)_+$ -filter regular sequence for R(E). Then

$$reg(R(E)) = min\{r \ge 0 : r \ge r_{\mathfrak{q}}(\mathfrak{b}, E) \text{ and } (4) \text{ holds for all } n \ge r+1\}.$$

Proof. Let $Q = (f_1 t, ..., f_h t)$. Since a is a reduction of b relative to *E*, then *Q* is a reduction of $R(\mathfrak{b})_+$ relative to R(E). Moreover if $\mathfrak{ab}^n E = \mathfrak{b}^{n+1}$, then $QR(\mathfrak{b})^n_+R(E) = R(\mathfrak{b})^{n+1}_+R(E)$ and $r_\mathfrak{a}(\mathfrak{b}, E) = r_Q(R(\mathfrak{b})_+, R(E))$. By Theorem 1,

$$reg(R(E)) = \max\{e(\mathbf{f}, R(E)), r_{\mathfrak{q}}(\mathfrak{b}, E)\}.$$

Therefore, the result follows from Proposition 1.

Similarly as for Proposition 1, we can prove the following characterization of a homogeneous $G(\mathfrak{b})_+$ filter regular sequence of degree 1 for G(E). If $x \in A$ then x^* denotes the initial form of x in $G(\mathfrak{b})$.

Proposition 2. Let f_1, \ldots, f_h be elements of \mathfrak{b} . Then $\mathbf{f}^* = f_1^*, \ldots, f_h^*$ is an $G(\mathfrak{b})_+$ -filter regular sequence for G(E) if and only if for large values of n,

$$[(f_1,\ldots,f_{i-1})\mathfrak{b}^n E + \mathfrak{b}^{n+2}E]:_E f_i \cap \mathfrak{b}^n E = ((f_1,\ldots,f_{i-1})\mathfrak{b}^{n-1}E + \mathfrak{b}^{n+1}E)$$

for i = 1, ..., s. If this is the case, $e(\mathbf{f}^*, G(E))$ is the least number r such that the above equality holds for $n \ge r + 1$.

References

- [1] M Brodmann and R Sharp. *Local Cohomology: An Algebraic Introduction with Geometric Applications*. Cambridge University Press, Cambridge, 1998.
- [2] W Bruns and J Herzog. *Cohen-Macaulay Rings*. Cambridge University Press, Cambridge, 1993.

- [3] S Gote and K Watanabe. Graded rings I. *Journal of the Mathematical Society of Japan* 30:179-213, 1978.
- [4] A Ooishi. Genera and arithmetic genera of commutative rings. *Hiroshima Mathematical Journal*. 17:47-66, 1987.
- [5] N V Trung. The castelnuovo regularity of the Rees Algebra and the associated graded ring. *Transactions of the American Mathematical Society*, 350: 2813-2832, 1998.
- [6] N V Trung. Reduction exponents and degree bound for the defining equations of graded rings. *Proceedings of the American Mathematical Society*. 101:229-236, 1987.