EUROPEAN JOURNAL OF PURE AND APPLIED MATHEMATICS

Vol. 1, No. 1, 2008, (46-59) ISSN 1307-5543 – www.ejpam.com

Honorary Invited Paper

On the structure of regular $\widetilde{\mathcal{H}}$ -cryptogroups

Xiangzhi Kong ¹ , Yue Ding, K.P. Shum^{2,*,†}

Abstract. We introduce the concepts of Green \sim -relations on $\widetilde{\mathcal{H}}$ -abundant semigroups. By using the generalized strong semilattice of semigroups, we show that an $\widetilde{\mathcal{H}}$ -cryptogroup is a regular $\widetilde{\mathcal{H}}$ -cryptogroup if and only if it is an $\widetilde{\mathcal{H}}G$ -strong semilattice of completely $\widetilde{\mathcal{J}}$ -simple semigroups. This result not only extends a known result of Petrich from the class of completely regular semigroups to the class of semiabundant semigroups but also generalizes a well known result of Fountain on superabundant semigroups from the class of abundant semigroups to the class of semiabundant semigroups.

AMS subject classifications: 20M10

Key words: The Green \sim -relations; Homomorphisms of $\widetilde{\mathcal{H}}$ -abundant semigroups; $\widetilde{\mathcal{H}}$ -cryptogroups.

1. Introduction

It was proved by Clifford [1] that a regular semigroup is a union of groups if and only if it is a semilattice of completely simple semigroups. It is also known that if the set of all idempotents of a completely regular semigroup S is the center of S, then S can be expressed by a strong semilattice of groups (see [1]). Thus, we usually regard the completely regular semigroups as generalized groups. Moreover, by Petrich and Reilly, we call a completely regular semigroup S a normal cryptogroup if the Green relation \mathcal{H} on S is a normal band congruence on S. In particular, a completely regular semigroup S is a normal cryptogroup if and only if S can be expressed by a strong semilattice of completely simple semigroups (see [12] and [13]). This result was further generalized by Fountain by proving that an abundant semigroup S is a superabundant semigroup if and only if S is a semilattice of completely \mathcal{J}^* -simple semigroups [4]. The structure of superabundant semigroups whose set of idempotents forms a subsemigroup have been recently extensively investigated by Ren and Shum in [15] and [16].

The Green *-relations on a semigroup S were first defined by Pastijn [11] which can be regarded as the Green relations in some oversemigroups of S. These relations were formulated by

¹ School of Science, Jiangnan University, Wuxi, Jiangsu, 214122, China

² Department of Mathematics, The University of Hong Kong, Pokfulam Road, Hong Kong (SAR), China

^{*}Corresponding author. *Email addresses*: xiangzhikong@163.com (X. Kong), kpshum@maths.hku.edu.hk (K.P. Shum)

[†]The research of K.P. Shum is partially supported by a Wu Jiehyee Charitable foundation grant no. 7103084, 2006-07

Fountain [4] as follows:

$$\mathcal{L}^* = \{(a,b) \in S \times S : (\forall x, y \in S^1) ax = ay \Leftrightarrow bx = by\},$$

$$\mathcal{R}^* = \{(a,b) \in S \times S : (\forall x, y \in S^1) xa = ya \Leftrightarrow xb = yb\},$$

$$\mathcal{H}^* = \mathcal{L}^* \cap \mathcal{R}^*, \ \mathcal{D}^* = \mathcal{L}^* \vee \mathcal{R}^*.$$

Later on, El-Qallali further generalized the Green ∗-relations to Green ∼-relations [3] as follows:

$$\begin{split} \widetilde{\mathcal{L}} &= \{(a,b) \in S \times S : (\forall e \in E(S)) a e = a \Leftrightarrow b e = b\}, \\ \widetilde{\mathcal{R}} &= \{(a,b) \in S \times S : (\forall e \in E(S)) e a = a \Leftrightarrow e b = b\}, \\ \widetilde{\mathcal{H}} &= \widetilde{\mathcal{L}} \cap \widetilde{\mathcal{R}}, \ \widetilde{\mathcal{D}} = \widetilde{\mathcal{L}} \vee \widetilde{\mathcal{R}}. \end{split}$$

We can easily see that $\widetilde{\mathcal{L}}$ and $\widetilde{\mathcal{R}}$ are equivalent relations on S, however, the $\widetilde{\mathcal{L}}$ relation is not necessary to be right compatible with the semigroup multiplication and the $\widetilde{\mathcal{R}}$ relation is not necessary to be left compatible with the semigroup multiplication. We now denote the $\widetilde{\mathcal{L}}$ -class containing the element a of the semigroup S by \widetilde{L}_a and we observe that $\mathcal{L} \subseteq \mathcal{L}^* \subseteq \widetilde{\mathcal{L}}$. Among the usual Green relations or the above relations, \mathcal{L} - or the generalized \mathcal{L} -relations are duals of the corresponding \mathcal{R} -relations or generalized \mathcal{R} -relations. In what follows, we only discuss the properties which are related to the \mathcal{L} - relation and the generalized \mathcal{L} -relation, respectively. One can easily see that there is at most one idempotent of the semigroup S in each $\widetilde{\mathcal{H}}$ -class. If $e \in \widetilde{\mathcal{H}}_a \cap E(S)$, for some $a \in S$, then we simply denote the idempotent e by e0, for any e1. Clearly, for any e2. We have e3 with e4 so we have e5, we have e5 where e6 and e7.

If a semigroup S is regular, then every \mathcal{L} -class of S contains at least one idempotent, and so does every \mathcal{R} -class of S. If S is a completely regular semigroup, then every \mathcal{H} -class of S contains an idempotent. According to Fountain [4], a semigroup is abundant if every \mathcal{L}^* - and \mathcal{R}^* -class of S contains some idempotents. In other words, the term "abundant" means that the semigroup has plenty of idempotents. Clearly, we have $\mathcal{L}^* = \mathcal{L}$ on the set of all regular elements of a semigroup. Thus, regular semigroups are obviously special abundant semigroups. Thus, Fountain called such semigroup superabundant [4] if its every \mathcal{H}^* -classes contains an idempotent. Obviously, completely regular semigroups are special superabundant semigroups. Following El-Qallali [3], we call a semigroup S a semiabundant semigroup if every $\widetilde{\mathcal{L}}$ -class and every $\widetilde{\mathcal{R}}$ -class of S contain at least one idempotent. A semigroup S is called $\widetilde{\mathcal{H}}$ -abundant if every $\widetilde{\mathcal{H}}$ -class contains an idempotent of S. Clearly, the $\widetilde{\mathcal{H}}$ -abundant semigroups are generalizations of superabundant semigroups in the class of semiabundant semigroups. One can easily see that $\widetilde{\mathcal{L}} = \mathcal{L}$ on the set of regular elements in any $\widetilde{\mathcal{H}}$ -abundant semigroup.

Throughout this paper, we call a band B a regular band (right quasi normal band) if B satisfies the identity axya = axaya(xya = xaya). According to Petrich and Reilly [12], a completely regular semigroup S was called a regular cryptogroup if the Green relation \mathcal{H} on S is a regular band congruence on S. The structure of regular cryptogroup was investigated by Kong-Shum in [8] and [9]. In the class of abundant semigroups, Guo and Shum [5] called an abundant semigroup whose set of idempotents forms a regular band a cyber group. The semilattice structure of regular cyber groups have been recently investigated in [9].

Naturally, one would ask: can we establish an analogous result of superabundant semigroups [4] in the class of semiabundant semigroups or an analogous result of cryptogroups [12] in the

class of $\widetilde{\mathcal{H}}$ -abundant semigroups? In this paper, we will establish a theorem for $\widetilde{\mathcal{H}}$ -cryptogroups by using the Green \sim -relations and the $\mathcal{K}G$ -strong semilattice of semigroups, as described in [10]. We will show that an $\widetilde{\mathcal{H}}$ -cryptogroup is a regular $\widetilde{\mathcal{H}}$ -cryptogroup if and only if it is an $\widetilde{\mathcal{H}}G$ -strong semilattice of completely $\widetilde{\mathcal{J}}$ -simple semigroups. Our results in this paper also generalize and enrich the corresponding results given in [1], [4], [7], [8] and [13].

2. KG-strong semilattices

We now restate the concept of G-strong semilattice decomposition of semigroup S given by Kong and Shum in [8] and [9].

Let $S = (Y; S_{\alpha})$ be a semilattice of the semigroups S_{α} , where each S_{α} is a subsemigroup of the semigroup S and Y is a semilattice. We define the G-strong semilattice of semigroups by generalizing the well known *strong semilattice of semigroups* (see [9]).

Definition 2.1 Let $S = (Y; S_{\alpha})$ be a semigroup. Suppose that the following conditions S are satisfied:

- (i) $(\forall \alpha, \beta \in Y, \alpha \geqslant \beta)$, there exists a family of homomorphisms $\varphi_{d(\alpha,\beta)} : S_{\alpha} \longrightarrow S_{\beta}$, where $d(\alpha,\beta) \in D(\alpha,\beta)$ and $D(\alpha,\beta)$ is a non-empty index set.
- (ii) $(\forall \alpha \in Y)$, $D(\alpha, \alpha)$ is a singleton. Denote the element in $D(\alpha, \alpha)$ by $d(\alpha, \alpha)$. In this case, the homomorphism $\varphi_{d(\alpha,\alpha)}: S_{\alpha} \longrightarrow S_{\alpha}$ is the identity automorphism of the semigroup S_{α} .
- (iii) $(\forall \alpha, \beta, \gamma \in Y, \alpha \geqslant \beta \geqslant \gamma)$, if we write $\varphi_{\alpha,\beta} = \{\varphi_{d(\alpha,\beta)} : d(\alpha,\beta) \in D(\alpha,\beta)\}$ then $\varphi_{\alpha,\beta}\varphi_{\beta,\gamma} \subseteq \varphi_{\alpha,\gamma}$, where

$$\varphi_{\alpha,\beta}\varphi_{\beta,\gamma} = \{\varphi_{d(\alpha,\beta)}\varphi_{d(\beta,\gamma)} : \forall d(\alpha,\beta) \in D(\alpha,\beta), d(\beta,\gamma) \in D(\beta,\gamma)\}.$$

(iv) for each $\alpha, \beta \in Y$, there is a mapping from S_{α} into the set $\varphi_{\beta,\alpha\beta}$ whose value at any given element $a \in S_{\alpha}$ is denoted by $\varphi^a_{d(\beta,\alpha\beta)}$ such that for all $b \in S_{\beta}$,

$$ab = (a\varphi^b_{d(\alpha,\alpha\beta)})(b\varphi^a_{d(\beta,\alpha\beta)}).$$

Then the above semilattice of semigroups is called the generalized strong semilattice of semi-groups S_{α} and in brevity , the "G-strong semilattice" of semigroups S_{α} and denoted it by $S=G[Y;S_{\alpha},\varphi_{\alpha,\beta}]$.

The following definition is a more general version of G-strong semilattices.

Definition 2.2 Let \mathcal{K} be any equivalent relation on a G-strong semilattice of semigroups $S = G[Y; S_{\alpha}, \varphi_{\alpha,\beta}]$. Then, we call S a " $\mathcal{K}G$ -strong semilattice of semigroups S_{α} " if for every $\alpha, \beta \in Y$, the mapping $a \longmapsto \varphi^a_{\alpha(\beta,\alpha\beta)}$ has the property that $\varphi^a_{d(\beta,\alpha\beta)} = \varphi^b_{d(\beta,\alpha\beta)}$ whenever the elements $a, b \in S_{\alpha}$ are in the same \mathcal{K} -class of S.

Thus, it is clear that the G-strong semilattice of semigroups S can be determined by an equivalent

relation \mathcal{K} . We therefore call the above generalized strong semilattice of semigroups S_{α} a " $\mathcal{K}G$ -strong semilattice of semigroups S_{α} " and is denoted by $S = \mathcal{K}G[Y; S_{\alpha}, \varphi_{\alpha,\beta}]$, where \mathcal{K} is any one of the Green relations \mathcal{L} , \mathcal{R} , \mathcal{D} and \mathcal{H} , respectively.

Remark 2.3 It is clear that the $\mathcal{K}G$ -strong semilattice is stronger than the G-strong semilattice but it is weaker than the usual strong semilattice. In fact, if ρ and δ are equivalent relations on the semigroup $S=(Y;S_{\alpha})$ with $\rho\subseteq\delta$, then one can observe that $\delta G[Y;S_{\alpha},\varphi_{\alpha,\beta}]$ is "stronger" than $\rho G[Y;S_{\alpha},\varphi_{\alpha,\beta}]$. As special cases, $1_SG[Y;S_{\alpha},\varphi_{\alpha,\beta}]$ is the "weakest" $\mathcal{K}G$ -strong semilattice of semigroups since 1_S is the "smallest" equivalent relation on S and also $\eta G[Y;S_{\alpha},\varphi_{\alpha,\beta}]$ is the strongest $\mathcal{K}G$ -strong semilattice of semigroups since η is the "greatest" equivalent relation on S, where 1_S is the identity relation on S and η is the semilattice congruence on S which partitions the semigroup S into disjoint subsemigroups $S_{\alpha}(\alpha\in Y)$ of S. Hence, we can easily see that $\eta G[Y;S_{\alpha},\varphi_{\alpha,\beta}]$ is the usual strong semilattice of semigroups since in this case, every index set $D(\alpha,\beta)$ is a singleton for $\alpha\geqslant\beta$ on Y and hence there exists one and only one structure homomorphism in the set of structure homomorphisms $\varphi_{\alpha,\beta}$.

We have already defined the Green \sim -relations $\widetilde{\mathcal{L}}$, $\widehat{\mathcal{R}}$, $\widehat{\mathcal{H}}$ and $\widehat{\mathcal{D}}$ on a semigroup S. In order to define the Green \sim -relation $\widetilde{\mathcal{J}}$ on S, we consider the left \sim -ideal L of a semigroup S.

Definition 2.4 A left (right) ideal L(R) of a semigroup S is called a left \sim -ideal of S if $\widetilde{L}_a \subseteq L(\widetilde{R}_a \subseteq R)$ holds, for all $a \in L(a \in R)$. We call a subset I of a semigroup S a \sim -ideal of S if it is both a left \sim -ideal and a right \sim -ideal.

It is noteworthy that if S is a regular semigroup, then every left (right, two-sided) ideal of S is a left (right, two-sided) \sim -ideal. We also observe that for any idempotent e in a semigroup S, the left (right) ideal Se(eS) is a left(right) \sim -ideal. For if $a \in Se$, then a = ae, and hence for any element b in \widetilde{L}_a , we have $b = be \in Se$.

By Definition 2.4, we see that the semigroup S is always a \sim -ideal of itself, and we denote the smallest \sim -ideal containing the element a of S by $\widetilde{J}(a)$. Now, we define $\widetilde{\mathcal{J}}=\{(a,b)\in S\times S: \widetilde{J}(a)=\widetilde{J}(b)\}.$

Definition 2.5 An $\widetilde{\mathcal{H}}$ -abundant semigroup S is called completely $\widetilde{\mathcal{J}}$ -simple if S does not contain any non-trivial proper \sim -ideal of S.

We now give some properties of the \mathcal{H} -abundant semigroups. Some of the properties may have already been known or can be easily derived, however, for the sake of completeness, we provide here the proofs.

Lemma 2.6 Let S be an $\widetilde{\mathcal{H}}$ -abundant semigroup. Then the following properties hold:

- (i) The Green \sim -relation $\widetilde{\mathcal{H}}$ is a congruence on S if and only if for any $a,b\in S$, $(ab)^0=(a^0b^0)^0$.
- (ii) If e, f are $\widetilde{\mathcal{D}}$ -related idempotents of S, then $e\mathcal{D}f$.

(iii)
$$\widetilde{\mathcal{D}}=\widetilde{\mathcal{L}}\circ\widetilde{\mathcal{R}}=\widetilde{\mathcal{R}}\circ\widetilde{\mathcal{L}}.$$

(iv) If e, f are idempotents in S such that $e\mathcal{J}f$, then $e\mathcal{D}f$.

Proof.

- (i) (Necessity). For any $a,b \in S$, we have $a\widetilde{\mathcal{H}}a^0$ and $b\widetilde{\mathcal{H}}b^0$. Since $\widetilde{\mathcal{H}}$ is a congruence on S, $ab\widetilde{\mathcal{H}}a^0b^0$. But $ab\widetilde{\mathcal{H}}(ab)^0$, and so $(ab)^0=(a^0b^0)^0$ since every $\widetilde{\mathcal{H}}$ -class contains a unique idempotent.
 - (Sufficiency). We only need to show that $\widetilde{\mathcal{H}}$ is compatible with the semigroup multiplication of S since $\widetilde{\mathcal{H}}$ is an equivalent relation on S. Let $(a,b) \in \widetilde{\mathcal{H}}$ and $c \in S$. Then $(ca)^0 = (c^0a^0)^0 = (c^0b^0)^0 = (cb)^0$ and hence, $\widetilde{\mathcal{H}}$ is left compatible to the semigroup multiplication. Dually, $\widetilde{\mathcal{H}}$ is right compatible with the semigroup multiplication and thus $\widetilde{\mathcal{H}}$ is a congruence on S.
- (ii) Since $e\widetilde{\mathcal{D}}f$, there exist elements a_1, \dots, a_k of S such that $e\widetilde{\mathcal{L}}a_1\widetilde{\mathcal{R}}a_2 \dots a_k \widetilde{\mathcal{L}}f$. Since S is an $\widetilde{\mathcal{H}}$ -abundant semigroup, $e\mathcal{L}a_1^0\mathcal{R}a_2^0 \dots a_k^0\mathcal{L}f$. Thus $e\mathcal{D}f$.
- (iii) If $a, b \in S$ and $a\widetilde{\mathcal{D}}b$, then by (ii), $a^0\mathcal{D}b^0$. Hence there exist elements c, d in S with $a^0\mathcal{L}c\mathcal{R}b^0$ and $a^0\mathcal{R}d\mathcal{L}b^0$, and consequently, $a\widetilde{\mathcal{L}}c\widetilde{\mathcal{R}}b$ and $a\widetilde{\mathcal{R}}d\widetilde{\mathcal{L}}b$. Thus the result is proved.
- (iv) Since SeS=SfS, there exist elements x,y,s,t in S such that f=set and e=xfy. Let $h=(fy)^0$ and $k=(se)^0$. Then hfy=fy=ffy and so $h=h^2=fh$ and sek=se=see, and thereby, $k=k^2=ke$. Hence, hf,ek are the idempotents satisfying the relations $hf\mathcal{R}h$ and $ek\mathcal{L}k$. These imply that $ehf\mathcal{R}eh$ and $ekf\mathcal{L}kf$. Now by eh=xfyh=xfy=e and kf=kset=set=f, we have $e\mathcal{R}ef\mathcal{L}f$. This shows that $e\mathcal{D}f$.

Similar to the definition of cyber group given by Guo and Shum [5], we formulate the following definition.

Definition 2.7 An $\widetilde{\mathcal{H}}$ -abundant semigroup S is called an $\widetilde{\mathcal{H}}$ -cryptogroup if the Green \sim -relation $\widetilde{\mathcal{H}}$ is a congruence on S. Also, we call an $\widetilde{\mathcal{H}}$ -abundant semigroup S a regular $\widetilde{\mathcal{H}}$ -cryptogroup if $\widetilde{\mathcal{H}}$ is a congruence on S such that $S/\widetilde{\mathcal{H}}$ is a regular band. Thus, $\widetilde{\mathcal{H}}$ -cryptogroups are analogy of cryptogroups in the class of $\widetilde{\mathcal{H}}$ -abundant semigroups. Also, we see in [5] that an $\widetilde{\mathcal{H}}$ -cryptogroup is a generalized cyber groups.

The \mathcal{H} -cryptogroup S has the following properties:

Lemma 2.8

- (i) For any element a of the $\widetilde{\mathcal{H}}$ -cryptogroup S , $\widetilde{J}(a)=Sa^0S$.
- (ii) For the $\widetilde{\mathcal{H}}$ -cryptogroup $S,\,\widetilde{\mathcal{J}}=\widetilde{\mathcal{D}}.$
- (iii) If the $\widetilde{\mathcal{H}}$ -cryptogroup S is completely $\widetilde{\mathcal{J}}$ -simple, then the idempotents of S are primitive.

(iv) If the $\widetilde{\mathcal{H}}$ -cryptogroup S is completely $\widetilde{\mathcal{J}}$ -simple, then the regular elements of S generate a regular subsemigroup of S.

Proof.

- (i) Obviously, we have $a^0 \in \widetilde{J}(a)$ and so $Sa^0S \subseteq \widetilde{J}(a)$. We need to show that the ideal Sa^0S is in fact a \sim -ideal and since $a = aa^0a^0 \in Sa^0S$, $\widetilde{J}(a) \subseteq Sa^0S$. Let $b = xa^0y \in Sa^0S(x,y\in S)$ and $k = (a^0y)^0$. Then $a^0a^0y = a^0y = ka^0y$ so that $a^0(a^0y)^0 = k^2 = k$. Also since $\widetilde{\mathcal{H}}$ is a congruence, $xa^0y\widetilde{\mathcal{H}}xk$. Now let $h = (xk)^0 = (xa^0y)^0$. Then xkh = xk = xkk so that $h = h^2 = hk = ha^0k \in Sa^0S$. Hence if $c \in \widetilde{L}_b, d \in \widetilde{R}_b$, then $c = ch, d = hd \in Sa^0S$ and hence, Sa^0S is a \sim -ideal, as required.
- (ii) Suppose that $(a,b) \in S$ with $a\widetilde{\mathcal{J}}b$. Then by (i), we have $Sa^0S = Sb^0S$. Now, by Lemma 2.6 (iv), $a^0\mathcal{D}b^0$ and so $a\widetilde{\mathcal{H}}a^0\mathcal{D}b^0\widetilde{\mathcal{H}}b$. This implies that $a\widetilde{\mathcal{D}}b$ and hence $\widetilde{\mathcal{J}}\subseteq\widetilde{\mathcal{D}}$. Conversely, let $a,b\in S$ with $a\widetilde{\mathcal{D}}b$. Then by Lemma 2.6 (iii), there exists an element $c\in S$ such that $a\widetilde{\mathcal{L}}c\widetilde{\mathcal{R}}b$. This leads to $a^0\mathcal{L}c^0\mathcal{R}b^0$ and so $Sa^0S = Sc^0S = Sb^0S$. Now, by (i), $(a,b)\in\widetilde{\mathcal{J}}$ and hence $\widetilde{\mathcal{D}}\subseteq\widetilde{\mathcal{J}}$. Therefore, $\widetilde{\mathcal{J}}=\widetilde{\mathcal{D}}$.
- (iii) Let e, f be idempotents in S with $e \leqslant f$. Since S is completely $\widetilde{\mathcal{J}}$ -simple, $f \in SeS$. Now by the first part of Exercise 3 in [14][§8.4], there exists an idempotent g of S such that $f\mathcal{D}g$ and $g \leqslant e$. Let $a \in S$ be such that $f\mathcal{L}a\mathcal{R}g$. Then $f\mathcal{L}a^0\mathcal{R}g$ and since $g \leqslant f$, we have

$$a^{0} = ga^{0}(gf)a^{0} = g(fa^{0}) = gf = g.$$

Now by noting that $g \leqslant f$ and $g\mathcal{L}f$, we have f = fg = g. However, since $g \leqslant e$, we obtain e = f and hence all idempotents of S are primitive.

(iv) Let a,b be regular elements of S. Since S consists of a single $\widetilde{\mathcal{D}}$ -class, by (ii) and by Lemma 2.6 (iii), there exists an element $c \in S$ such that $a\widetilde{\mathcal{L}}c\widetilde{\mathcal{R}}b$. Hence $a\widetilde{\mathcal{L}}c^0\widetilde{\mathcal{R}}b$. This leads to $c^0b = b$ and $a\mathcal{L}c^0$ since a is regular. Now we have $ab\mathcal{L}b$ and so the regularity of ab follows from the regularity of b.

We now establish the following theorem for $\widetilde{\mathcal{H}}$ -cryptogroups.

Theorem 2.9 Let S be an $\widetilde{\mathcal{H}}$ -cryptogroup. Then S is a semilattice Y of completely $\widetilde{\mathcal{J}}$ -simple semigroups $S_{\alpha}(\alpha \in Y)$ such that for every $\alpha \in Y$ and $a \in S_{\alpha}$, we have $\widetilde{L}_a(S) = \widetilde{L}_a(S_{\alpha})$ and $\widetilde{R}_a(S) = \widetilde{L}_a(S_{\alpha})$.

Proof. If $a \in S$, then $a\widetilde{\mathcal{H}}a^2$ and so, $\widetilde{J}(a) = \widetilde{J}(a^2)$. Now for $a, b \in S$, we have $(ab)^2 \in SbaS$, and hence, it follows that

$$\widetilde{J}(ab) = \widetilde{J}((ab)^2) \subseteq \widetilde{J}(ba).$$

Now, by symmetry, we obtain $\widetilde{J}(ab)=\widetilde{J}(ba)$. Since, by Lemma 2.8 (i), we have $\widetilde{J}(a)=Sa^0S$ and $\widetilde{J}(b)=Sb^0S$ so that if $c\in\widetilde{J}(a)\cap\widetilde{J}(b)$, then $c=xa^0y=zb^0t$ for some $x,y,z,t\in S$. Now $c^2=zb^0txa^0y\in Sb^0txa^0S\subseteq\widetilde{J}(b^0txa^0)$ and hence, $\widetilde{J}(b^0txa^0)=\widetilde{J}(a^0b^0tx)$ by using previous arguments. Thus, $c^2\in\widetilde{J}(a^0b^0)$ and since $c\widetilde{\mathcal{H}}c^2$, we have $c\in\widetilde{J}(a^0b^0)$. Since $a\widetilde{\mathcal{H}}a^0$,

 $b\widetilde{\mathcal{H}}b^0$ and $\widetilde{\mathcal{H}}$ is a congruence on S, we have $ab\widetilde{\mathcal{H}}a^0b^0$. Consequently, $c\in\widetilde{J}(ab)$, and thereby $\widetilde{J}(a)\cap\widetilde{J}(b)\subseteq\widetilde{J}(ab)$. The converse containment is clear so that $\widetilde{J}(a)\cap\widetilde{J}(b)=\widetilde{J}(ab)$. We can easily see that the set Y of all \sim -ideals $\widetilde{J}(a)(a\in S)$ forms a semilattice under set intersection and that the mapping $a\mapsto\widetilde{J}(a)$ is a homomorphism from S onto Y. The inverse image of $\widetilde{J}(a)$ is just the $\widetilde{\mathcal{J}}$ -class J_a which is a subsemigroup of S. Hence S is a semilattice Y of the semigroups J_a . Now let a,b be elements of $\widetilde{\mathcal{J}}$ -class J_a and suppose that J_a 0 is just the J_a 1. Then, J_a 2 is just that is, J_a 3 is just that is, J_a 4 is a subsemigroup of J_a 5. Hence J_a 6 is a semilattice J_a 7 is a semilattice J_a 7 in J_a 8 is a semilattice J_a 9. Then, J_a 9 is just that is, J_a 9 is a subsemigroup of J_a 9 is a semilattice J_a 9 is a semilatrice J_a 9. Then, J_a 9 is a subsemigroup of J_a 9 is a semilatrice J_a 9 in J_a 9 in

For the $\widetilde{\mathcal{H}}$ -cryptogroups, we have the following theorem.

Theorem 2.10 Let S be an \mathcal{H} -cryptogroup which is expressed by the semilattice of semigroups $S = (Y; S_{\alpha})$. Then the following statements hold:

- (i) For α , and β in the semilattice Y with $\alpha \geqslant \beta$, if $a \in S_{\alpha}$ then there exists $b \in S_{\beta}$ with $a \geqslant b$;
- (ii) For $a, b, c \in S$ with $b\widetilde{\mathcal{H}}c$, if $a \geqslant b$, $a \geqslant c$ then b = c;
- (iii) For $a \in E(S)$ and $b \in S$, if $a \geqslant b$ then $b \in E(S)$.

Proof. (i) Let $c \in S_{\beta}$. Then, by Lemma 2.6 (i), we see that $a(aca)^0$, $(aca)^0a$ and $(aca)^0$ are all in the same $\widetilde{\mathcal{H}}$ -class of the semigroup S and hence, $a(aca)^0=(aca)^0a(aca)^0=(aca)^0a$. Write $b=a(aca)^0$. Then $b\in S_{\beta}$ and $a\geqslant b$. (ii) By the definition of " \geqslant ", there exist $e,f,g,h\in E(S)$ such that b=ea=af, c=ga=ah. From eb=b and $b\widetilde{\mathcal{H}}b^0$, we have $eb^0=b^0$. Similarly, $c^0h=c^0$. Thus $ec=ec^0c=eb^0c=b^0c=c$. By using similar arguments, we have bh=b and so, b=bh=eah=ec=c, as required. (iii) We have b=ea=af for some $e,f\in E(S)$, and whence

$$b^2 = (ea)(af) = ea^2 f = b.$$

The following fact can be easily observed:

Fact 2.11 Let φ be a homomorphism which maps an $\widetilde{\mathcal{H}}$ -cryptogroup S into another $\widetilde{\mathcal{H}}$ -cryptogroup T. Then $(a\varphi)^0=a^0\varphi$.

3. Properties of regular $\widetilde{\mathcal{H}}$ -cryptogroups

Lemma 3.1 Let S be a regular $\widetilde{\mathcal{H}}$ -cryptogroup(that is, $\widetilde{\mathcal{H}}$ is a congruence on the $\widetilde{\mathcal{H}}$ -abundant semigroup S such that $S/\widetilde{\mathcal{H}}$ is a regular band). For every $a \in S$, we define a relation ρ_a on S by $(b_1,b_2) \in \rho_a$ if and only if $(ab_1a)^0 = (ab_2a)^0$, $(b_1,b_2 \in S)$. Then the following properties hold on S:

- (i) ρ_a is a band congruence on S;
- (ii) $(\forall a, a_1 \in S_\alpha)$, $\rho_a = \rho_{a_1}$, that is, ρ_a depends only on the component S_α containing the element a rather than on the element itself, hence we can write $\rho_\alpha = \rho_a$, for all $a \in S_\alpha$.
- (iii) $(\forall \alpha, \beta \in Y \text{ with } \alpha \geqslant \beta)$, $\rho_{\alpha} \subseteq \rho_{\beta}$ and $\rho_{\beta}|_{S_{\alpha}} = \omega_{S_{\alpha}}$, where $\omega_{S_{\alpha}}$ is the universal relation on S_{α} .

Proof. (i) It is easy to see that ρ_a is an equivalent relation on S, for all $a \in S$. We now prove that ρ_a is left compatible with the semigroup multiplication. For this purpose, we let $(x,y) \in \rho_a$ and $c \in S$. Then, by the definition of ρ_a , we have $(axa)^0 = (aya)^0$. Since S is a regular $\widetilde{\mathcal{H}}$ -cryptogroup, by Lemma 2.6 (i) and the regularity of the band $S/\widetilde{\mathcal{H}}$, we obtain that

$$(acxa)^0 = (ac(axa))^0 = ((ac)^0 (axa)^0)^0 = ((ac)^0 (aya)^0)^0 = (acya)^0.$$

Hence, $(cx,cy) \in \rho_a$. Dually, we can prove that ρ_a is right compatible with the semigroup multiplication. Thus ρ_a is a congruence on S. Obviously, $\widetilde{\mathcal{H}} \subseteq \rho_a$ and so ρ_a is a band congruence on S. (ii) Let $(x,y) \in \rho_a$. Then, by the definition of ρ_a , we have $(axa)^0 = (aya)^0$ and so $a_1^0(axa)^0a_1^0 = a_1^0(aya)^0a_1^0$. This leads to $(a_1^0(axa)^0a_1^0)^0 = (a_1^0(aya)^0a_1^0)^0$. Since $S/\widetilde{\mathcal{H}} = (Y; S_\alpha/\widetilde{\mathcal{H}})$ is a regular band and by Lemma 2.6 (i), we obtain $(a_1aa_1xa_1aa_1)^0 = (a_1aa_1ya_1aa_1)^0$. However, since a, a_1 are elements of the completely $\widetilde{\mathcal{J}}$ -simple semigroup S_α , $(a_1aa_1)^0 = a_1^0$. Thereby, by Lemma 2.6 (i) again, we have $(a_1xa_1)^0 = (a_1ya_1)^0$, that is, $(x,y) \in \rho_{a_1}$. This shows that $\rho_a \subseteq \rho_{a_1}$. Similarly, we also have $\rho_{a_1} \subseteq \rho_a$. Thus, $\rho_a = \rho_{a_1}$. Since this relation holds for all $a \in S_\alpha$, we usually write $\rho_a = \rho_\alpha$. (iii) Let $a \in S_\alpha$, $b \in S_\beta$ and $\alpha \geqslant \beta$. We need to prove that $\rho_\alpha \subseteq \rho_\beta$. For this purpose, we let $(x,y) \in \rho_\alpha = \rho_a$, by (ii). Then, by the definition of ρ_a , we have $(axa)^0 = (aya)^0$ and hence $b(axa)^0b = b(aya)^0b$. By Lemma 2.6 (i) and the regularity of the band, we have $(babxbab)^0 = (babybab)^0$. Since $\alpha \geqslant \beta$ in Y and $a \in S_\alpha$, $b \in S_\beta$, we have $(bab)^0 = b^0$. By using Lemma 2.6 (i) again, we can show that $(bxb)^0 = (byb)^0$, that is, $(x,y) \in \rho_b = \rho_\beta$. Thus, $\rho_\alpha \subseteq \rho_\beta$ as required. Furthermore, it is trivial that $\rho_\beta|_{S_\alpha} = \omega_{S_\alpha}$, which is the universal relation on the semigroup S_α .

We now use the band congruence ρ_{α} defined in Lemma 3.1 to describe the structural homomorphisms for the $\widetilde{\mathcal{H}}$ -cryptogroup $S=(Y;S_{\alpha})$, where each S_{α} is a completely $\widetilde{\mathcal{J}}$ -simple semigroup.

We first consider the congruence $\rho_{\alpha,\beta}=\rho_{\alpha}|_{S_{\beta}}$ for $\alpha,\beta\in Y$, which is a band congruence on the semigroup S_{β} . Now, we denote all the $\rho_{\alpha,\beta}$ -classes of S_{β} by $\{S_{d(\alpha,\beta)}:d(\alpha,\beta)\in D(\alpha,\beta)\}$, where $D(\alpha,\beta)$ is a non-empty index set. In particular, the set $D(\alpha,\alpha)$ is a singleton and we can therefore write $d(\alpha,\alpha)=D(\alpha,\alpha)$. We have the following lemma.

Lemma 3.2 Let $S = (Y; S_{\alpha})$ be a regular $\widetilde{\mathcal{H}}$ -cryptogroup. Then, for all $\alpha, \beta \in Y$ with $\alpha \geqslant \beta$, the following statements hold for all $d(\alpha, \beta) \in D(\alpha, \beta)$.

- (i) For all $a \in S_{\alpha}$, there exists a unique $a_{d(\alpha,\beta)} \in S_{d(\alpha,\beta)}$ satisfying $a \geqslant a_{d(\alpha,\beta)}$;
- (ii) For all $a \in S_{\alpha}$ and $x \in S_{d(\alpha,\beta)}$, if $a^0 \geqslant e$ for some idempotent $e \in S_{d(\alpha,\beta)}$ then eax = ax, xae = xa, ea = ae and $(ea)^0 = e$;

(iii) Let $a \in S_{\alpha}$. Define $\varphi_{d(\alpha,\beta)}: S_{\alpha} \longrightarrow S_{d(\alpha,\beta)}$ by $a\varphi_{d(\alpha,\beta)} = a_{d(\alpha,\beta)}$, where $a_{d(\alpha,\beta)} \in S_{d(\alpha,\beta)}$ and $a \geqslant a_{d(\alpha,\beta)}$. Then $\varphi_{d(\alpha,\beta)}$ is a homomorphism and $a_{d(\alpha,\beta)} = a(aba)^0 = (aba)^0 a$ for any $b \in S_{d(\alpha,\beta)}$.

Proof. (i) We first show that for any $a \in S_{\alpha}$ and $b \in S_{d(\alpha,\beta)}$, we have $ab \in S_{d(\alpha,\beta)}$, that is, $(ab,b) \in \rho_{\alpha,\beta}$. In fact, since $S = (Y,S_{\alpha})$ is an $\widetilde{\mathcal{H}}$ -cryptogroup, each S_{α} is a completely $\widetilde{\mathcal{J}}$ -simple semigroup. Hence, we have $(xax)^0 = x^0$, for all $x \in S_{\alpha}$. This leads to $(xabx)^0 = (xaxbx)^0 = (xbx)^0$ by the regularity of the band $S/\widetilde{\mathcal{H}}$ and Lemma 2.6 (i). Thereby, $(ab,b) \in \rho_{\alpha,\beta}$. Similarly, we also have $ba \in S_{d(\alpha,\beta)}$. Invoking the above results, we have $aba \in S_{d(\alpha,\beta)}$ for any $b \in S_{d(\alpha,\beta)}$. Since $\widetilde{\mathcal{H}}$ is a band congruence on S, by Lemma 2.6 (i) again, we see that $a(aba)^0$, $(aba)^0$ and $(aba)^0a$ are in the same $\widetilde{\mathcal{H}}$ -class of S so that $a(aba)^0 = (aba)^0a(aba)^0 = (aba)^0a$. Let $a(aba)^0 = a_{d(\alpha,\beta)}$. Then by the natural partial order imposed on S, we have $a \geqslant a_{d(\alpha,\beta)}$. In order to show the uniqueness of $a_{d(\alpha,\beta)}$, we assume that there is another $a_{d(\alpha,\beta)}^* \in S_{d(\alpha,\beta)}$ satisfying $a \geqslant a_{d(\alpha,\beta)}^*$. Then, by the definition of " \leqslant ", we can write $a_{d(\alpha,\beta)}^* = ea = af$ for some $e, f \in E(S)$ and so $a_{d(\alpha,\beta)}^*a_{d(\alpha,\beta)}^* = a_{d(\alpha,\beta)}^*a_{d($

$$(a_{d(\alpha,\beta)}^*)^0 = (a^0(a_{d(\alpha,\beta)}^*)^0 a^0)^0 = (aa_{d(\alpha,\beta)}^* a)^0 = (aba)^0.$$

Hence, $(a_{d(\alpha,\beta)}^*, a_{d(\alpha,\beta)}) \in \widetilde{\mathcal{H}}$, and consequently, by Theorem 2.10 (ii), $a_{d(\alpha,\beta)}^* = a_{d(\alpha,\beta)}$. This shows the uniqueness of $a_{d(\alpha,\beta)}$. (ii) It is easy to see that, by the definition of " \leqslant ", $a^0 \geqslant (a^0(ax)^0a^0)^0$. Also, since $a \in S_\alpha$ and $x \in S_{d(\alpha,\beta)}$, we have $ax \in S_{d(\alpha,\beta)}$ by (i). Moreover, since $S_{d(\alpha,\beta)}$ is a $\rho_{\alpha,\beta}$ -congruence class, $(ax)^0 \in S_{d(\alpha,\beta)}$. Thus, by (i) again, we have $(a^0(ax)^0a^0)^0 \in S_{d(\alpha,\beta)}$ and $e = (a^0(ax)^0a^0)^0$. Thereby, we have $eax = (a^0(ax)^0a^0)^0a^0(ax)^0a^0ax = ax$. Similarly, we have xae = xa. Since x is arbitrarily chosen element in $S_{d(\alpha,\beta)}$, we can particularly choose x = e. In this way, we obtain ea = ae and consequently, by Lemma 2.6 (i), we have $(ea)^0 = (ea^0)^0 = e$. (iii) By using the result in (i), we can define $\varphi_{d(\alpha,\beta)}: S_\alpha \longrightarrow S_{d(\alpha,\beta)}$ by $a\varphi_{d(\alpha,\beta)} = a_{d(\alpha,\beta)} = a(aca)^0 = (aca)^0a$, for any $a \in S_\alpha$ and $c \in S_{d(\alpha,\beta)}$. Then, for any $a,b \in S_\alpha$, we have, by (ii),

$$(a\varphi_{d(\alpha,\beta)})(b\varphi_{d(\alpha,\beta)}) = a_{d(\alpha,\beta)}b_{d(\alpha,\beta)}$$

$$= (aca)^0ab(bcb)^0$$

$$= (aca)^0(ab(bcb)^0)$$

$$= ab(bcb)^0.$$

Similarly, we can show that $(a\varphi_{d(\alpha,\beta)})(b\varphi_{d(\alpha,\beta)})=(aca)^0ab$. Hence, $ab\geqslant (a\varphi_{d(\alpha,\beta)})(b\varphi_{d(\alpha,\beta)})$. Thus $(ab)\varphi_{d(\alpha,\beta)}=(a\varphi_{d(\alpha,\beta)})(b\varphi_{d(\alpha,\beta)})$, by the definition of $\varphi_{d(\alpha,\beta)}$. This shows that $\varphi_{d(\alpha,\beta)}$ is indeed a homomorphism.

We now proceed to show that the homomorphisms given in Lemma 3.2 (iii) are the structural homomorphisms for the G-strong semilattice $G[Y; S_{\alpha}, \varphi_{\alpha,\beta}]$ induced by the semigroup $S = (Y; S_{\alpha})$ under the band congruence ρ_{α} on the semigroup S_{α} .

Lemma 3.3 Let $S=(Y;S_{\alpha})$ be an $\widetilde{\mathcal{H}}$ -cryptogroup and $\varphi_{\alpha,\beta}=\{\varphi_{d(\alpha,\beta)}\mid d(\alpha,\beta)\in D(\alpha,\beta)\}$ for $\alpha\geqslant\beta$ on Y, where $D(\alpha,\beta)$ is a non-empty index set. Then

- (i) $\varphi_{\alpha,\beta}\varphi_{\beta,\gamma} \subseteq \varphi_{\alpha,\gamma}$ for $\alpha \geqslant \beta \geqslant \gamma$ on Y.
- (ii) For $a \in S_{\alpha}$ and $\beta \in Y$,

$$a\varphi_{\alpha,\alpha\beta} = \{a\varphi_{d(\alpha,\alpha\beta)} | \forall d(\alpha,\alpha\beta) \in D(\alpha,\alpha\beta)\} \subseteq S_{d(\beta,\alpha\beta)},$$

for some $\rho_{\beta,\alpha\beta}$ -class $S_{d(\beta,\alpha\beta)}$.

Proof. (i) Clearly, $\varphi_{d(\alpha,\alpha)}$ is an identity automorphism of S_{α} . We now prove that $\varphi_{\alpha,\beta}\varphi_{\beta,\gamma}\subseteq\varphi_{\alpha,\gamma}$ for $\alpha\geqslant\beta\geqslant\gamma$ on Y. Pick $\varphi_{d(\alpha,\beta)}:S_{\alpha}\longrightarrow S_{d(\alpha,\beta)}\subseteq S_{\beta}$ and $\varphi_{d(\beta,\gamma)}:S_{\beta}\longrightarrow S_{d(\beta,\gamma)}\subseteq S_{\gamma}$. We show that $\varphi_{d(\alpha,\beta)}\varphi_{d(\beta,\gamma)}=\varphi_{d(\alpha,\gamma)}$ for some $\varphi_{d(\alpha,\gamma)}:S_{\alpha}\longrightarrow S_{d(\alpha,\gamma)}\subseteq S_{\gamma}$. For this purpose, we let $a\in S_{\alpha},\ b_1,b_2\in S_{d(\alpha,\beta)}$ and $c\in S_{d(\beta,\gamma)}$. Then, because $S/\widetilde{\mathcal{H}}$ is a band, by Lemma 3.2, we have $b_1\varphi_{d(\beta,\gamma)}=b_1(b_1cb_1)^0,\ b_2\varphi_{d(\beta,\gamma)}=b_2(b_2cb_2)^0$. Since $b_1,b_2\in S_{d(\alpha,\beta)}$, by the definition of $\rho_{\alpha,\beta},\ (b_1,b_2)\in\rho_{\alpha,\beta}$. This leads to $(ab_1a)^0=(ab_2a)^0$. Now, by the regularity of the band $S/\widetilde{\mathcal{H}}$, we can easily deduce that

$$(a(b_1\varphi_{d(\beta,\gamma)})a)^0 = (ab_1(b_1cb_1)^0a)^0 = ((ab_1a)^0c(ab_1a)^0)^0$$
$$= ((ab_2a)^0c(ab_2a)^0)^0 = (a(b_2(b_2cb_2)^0)a)^0$$
$$= (a(b_2\varphi_{d(\beta,\gamma)})a)^0.$$

Thus, by the definition of $\rho_{\alpha,\gamma}$, we have $(b_1\varphi_{d(\beta,\gamma)},b_2\varphi_{d(\beta,\gamma)})\in \rho_{\alpha,\gamma}$. In other words, there exists a $\rho_{\alpha,\gamma}$ -class $S_{d(\alpha,\gamma)}$ satisfying $S_{d(\alpha,\beta)}\varphi_{d(\beta,\gamma)}\subseteq S_{d(\alpha,\gamma)}$. Also, $\varphi_{d(\alpha,\beta)}\varphi_{d(\beta,\gamma)}$ clearly maps S_{α} into $S_{d(\alpha,\gamma)}$ by the transitivity of " \leq ", and hence $\varphi_{d(\alpha,\beta)}\varphi_{d(\beta,\gamma)}=\varphi_{d(\alpha,\gamma)}$. This proves that $\varphi_{\alpha,\beta}\varphi_{\beta,\gamma}\subseteq\varphi_{\alpha,\gamma}$. (ii) It suffices to show that for any $\varphi_{d(\alpha,\alpha\beta)}$ and $\varphi_{d'(\alpha,\alpha\beta)}\in\varphi_{\alpha,\alpha\beta}$, we have $(a\varphi_{d(\alpha,\alpha\beta)},a\varphi_{d'(\alpha,\alpha\beta)})\in\rho_{\beta,\alpha\beta}$. For this purpose, we let $x\in S_{d(\alpha,\alpha\beta)}$ and $x'\in S_{d'(\alpha,\alpha\beta)}$. Then, by Lemma 3.2 (iii), we have $a\varphi_{d(\alpha,\alpha\beta)}=a(axa)^0$ and $a\varphi_{d'(\alpha,\alpha\beta)}=a(ax'^0$. Let $b\in S_{\beta}$. Since $S_{\alpha\beta}$ is a completely $\widetilde{\mathcal{J}}$ -simple semigroup, and bab, $a\varphi_{d(\alpha,\alpha\beta)}$, $a\varphi_{d'(\alpha,\alpha\beta)}$ are elements in $S_{\alpha\beta}$, we obtain that $(bab, (bab)(a\varphi_{d(\alpha,\alpha\beta)})(bab))\in\widetilde{\mathcal{H}}$ and $(bab, (bab)(a\varphi_{d'(\alpha,\alpha\beta)})(bab))^0=((bab)(a\varphi_{d'(\alpha,\alpha\beta)})(bab))^0$. In other words, we have $((bab)(a(axa)^0)(bab))^0=((bab)(a(axa'^0)(bab))^0$. Thus, by the regularity of the band $S/\widetilde{\mathcal{H}}$, we can further simplify the above equality to $(b(a(axa)^0)b)^0=(b(a(axa'^0)b)^0$, that is, $(b(a\varphi_{d(\alpha,\alpha\beta)})b)^0=(b(a\varphi_{d'(\alpha,\alpha\beta)})b)^0$. By the definition of $\rho_{\beta,\alpha\beta}$, we see that $(a\varphi_{d(\alpha,\alpha\beta)},a\varphi_{d'(\alpha,\alpha\beta)})\in\rho_{\beta,\alpha\beta}$.

Finally we show that $S=(Y;S_{\alpha})$ equipped with the above structural homomorphisms acting on the $\rho_{\alpha,\beta}$ -equivalence class of S forms a G-strong semilattice of semigroups S_{α} . We need the following lemma.

Lemma 3.4 Let $S=(Y;S_{\alpha})$ be a regular \mathcal{H} -cryptogroup. For any $a\in S_{\alpha},b\in S_{\beta}$, suppose that $a\varphi_{\alpha,\alpha\beta}\subseteq S_{d(\beta,\alpha\beta)},b\varphi_{\beta,\alpha\beta}\subseteq S_{d(\alpha,\alpha\beta)}$, where $\varphi_{\alpha,\alpha\beta}$ and $\varphi_{\beta,\alpha\beta}$ are the structural homomorphisms defined in Lemma 3.3. Then we have

$$ab = (a\varphi_{d(\alpha,\alpha\beta)})(b\varphi_{d(\beta,\alpha\beta)}).$$

Proof. Let $c_1 \in S_{d(\alpha,\alpha\beta)}$, $c_2 \in S_{d(\beta,\alpha\beta)}$. Then $(ac_1a)^0 \in S_{d(\alpha,\alpha\beta)}$ because $S_{d(\alpha,\alpha\beta)}$ is a $\rho_{\alpha,\alpha\beta}$ -equivalence class of $S_{\alpha\beta}$. Now, by Lemma 3.2, $a\varphi_{d(\alpha,\alpha\beta)} = (ac_1a)^0a$ and $b\varphi_{d(\beta,\alpha\beta)} = b(bc_2b)^0$ for $\varphi_{d(\alpha,\alpha\beta)} \in \varphi_{\alpha,\alpha\beta}$ and $\varphi_{d(\beta,\alpha\beta)} \in \varphi_{\beta,\alpha\beta}$. Since we assume that $a\varphi_{\alpha,\alpha\beta} \subseteq S_{d(\beta,\alpha\beta)}$, we have $a\varphi_{d(\alpha,\alpha\beta)} = (ac_1a)^0a \in S_{d(\beta,\alpha\beta)}$. Similarly, we have $b\varphi_{d(\beta,\alpha\beta)} \in S_{d(\alpha,\alpha\beta)} \cap S_{d(\beta,\alpha\beta)}$. Thus, by Lemma 3.2 (ii), we have

$$(a\varphi_{d(\alpha,\alpha\beta)})(b\varphi_{d(\beta,\alpha\beta)}) = (ac_1a)^0(ab(bc_2b)^0) = ab(bc_2b)^0$$

and also

$$(a\varphi_{d(\alpha,\alpha\beta)})(b\varphi_{d(\beta,\alpha\beta)}) = ((ac_1a)^0ab)(bc_2b)^0 = (ac_1a)^0ab.$$

However, by the definition of the natural partial order " \leqslant ", we have $ab \geqslant (a\varphi_{d(\alpha,\alpha\beta)})(b\varphi_{d(\beta,\alpha\beta)})$. On the other hands, since every semigroup $S_{\alpha\beta}$ is primitive, we obtain

$$ab = (a\varphi_{d(\alpha,\alpha\beta)})(b\varphi_{d(\beta,\alpha\beta)}).$$

4. Structure of regular $\widetilde{\mathcal{H}}$ -cryptogroups

In this section, we use the $\mathcal{K}G$ -strong semilattice to characterize regular $\widetilde{\mathcal{H}}$ -cryptogroups. Also, we consider the question when will the Green \sim -relation $\widetilde{\mathcal{H}}$ to be a right quasi-normal band congruence? By using the $\mathcal{K}G$ -strong semilattice, we are able to give a description for the normal $\widetilde{\mathcal{H}}$ -cryptogroups. We note here that the orthodox regular $\widetilde{\mathcal{H}}$ -cryptogroups with $\mathcal{K}G$ -strong semilattices have been studies in [10]. A construction theorem of orthodox regular $\widetilde{\mathcal{H}}$ -cryptogroups was also given in [8].

Theorem 4.1 An $\widetilde{\mathcal{H}}$ -cryptogroup S is a regular $\widetilde{\mathcal{H}}$ -cryptogroup if and only if S is an $\widetilde{\mathcal{H}}G$ -strong semilattice of completely $\widetilde{\mathcal{J}}$ -simple semigroups, that is, $S = \widetilde{\mathcal{H}}G[Y; S_{\alpha}, \varphi_{\alpha,\beta}]$.

Proof. By the definition of the $\mathcal{K}G$ -strong semilattice and the results obtained in $\S 3$, we have already proved the necessity part of Theorem 4.1 since it is obvious that $\widetilde{\mathcal{H}}|_{S_\beta}\subseteq\rho_{\alpha,\beta}$ for $\alpha\geqslant\beta$ on Y. We now prove the sufficiency part of the theorem. To prove that $S/\widetilde{\mathcal{H}}$ is a regular band, we use a result in [14]. What we need is to prove that the usual Green relations \mathcal{L} and \mathcal{R} are congruences on $S/\widetilde{\mathcal{H}}$. In fact, we only need to verify that \mathcal{L} is a left congruence on $S/\widetilde{\mathcal{H}}$ since \mathcal{R} is a right congruence on $S/\widetilde{\mathcal{H}}$ can be proved in a similar fashion. Since $S=(Y;S_\alpha)$ is an $\widetilde{\mathcal{H}}$ -cryptogroup, we can let $e\widetilde{\mathcal{H}},f\widetilde{\mathcal{H}}$ and $g\widetilde{\mathcal{H}}\in S/\widetilde{\mathcal{H}}$, where $e,f\in S_\alpha\cap E(S),g\in S_\beta\cap E(S)$ with $(e,f)\in\widetilde{\mathcal{L}}$. Then, we have ef=e and fe=f. By the definition of $\widetilde{\mathcal{H}}G$ -strong semilattice $\widetilde{\mathcal{H}}G[Y;S_\alpha,\varphi_{\alpha,\beta}]$, we can find the homomorphisms $\varphi_{d(\beta,\alpha\beta)}^{ef}$ and $\varphi_{d(\beta,\alpha\beta)}^f\in\varphi_{\beta,\alpha\beta}$, $\varphi_{d(\alpha,\alpha\beta)}^g\in\varphi_{\alpha,\alpha\beta}$ such that

$$\begin{array}{lcl} (gegf)\widetilde{\mathcal{H}} & = & \{[g(ef)](gf)\}\widetilde{\mathcal{H}} \\ & = & \{[(g\varphi^{ef}_{d(\beta,\alpha\beta)})((ef)\varphi^g_{d(\alpha,\alpha\beta)})][(g\varphi^f_{d(\beta,\alpha\beta)})(f\varphi^g_{d(\alpha,\alpha\beta)})]\}\widetilde{\mathcal{H}} \\ & = & [(g\varphi^{ef}_{d(\beta,\alpha\beta)})(f\varphi^g_{d(\alpha,\alpha\beta)})]\widetilde{\mathcal{H}} \end{array}$$

and

$$\begin{split} (ge)\widetilde{\mathcal{H}} &= [g(ef)]\widetilde{\mathcal{H}} \\ &= [(g\varphi^{ef}_{d(\beta,\alpha\beta)})((ef)\varphi^g_{d(\alpha,\alpha\beta)})]\widetilde{\mathcal{H}} \\ &= [(g\varphi^{ef}_{d(\beta,\alpha\beta)})(f\varphi^g_{d(\alpha,\alpha\beta)})]\widetilde{\mathcal{H}}. \end{split}$$

Thereby, $(gegf)\widetilde{\mathcal{H}}=(ge)\widetilde{\mathcal{H}}$. Analogously, we can also prove that $(gfge)\widetilde{\mathcal{H}}=(gf)\widetilde{\mathcal{H}}$. This proves that \mathcal{L} is left compatible with the multiplication of $S/\widetilde{\mathcal{H}}$. Since \mathcal{L} is always right congruence, \mathcal{L} is a congruence on $S/\widetilde{\mathcal{H}}$, as required. Dually, \mathcal{R} is also a congruence on $S/\widetilde{\mathcal{H}}$. Thus by [14] (see II. 3.6 Proposition), $S/\widetilde{\mathcal{H}}$ forms a regular band and hence S is indeed a regular $\widetilde{\mathcal{H}}$ -cryptogroup. Our proof is completed.

Recall that a right quasi-normal band is a band satisfying the identity yxa = yaxa [6]. Also, a left quasi-normal band is a band satisfying the identity axy = axay. Thus, we can easily observe that both the right quasi-normal bands and the left quasi-normal bands are special cases of the regular bands. Also, a normal band (that is, a band satisfies the identity axya = ayxa) is a special right quasi-normal band and a left quasi-normal band. Based on the above observation, we are able to establish the following theorem for right quasi-normal \mathcal{H} -cryptogroups.

Theorem 4.2 An $\widetilde{\mathcal{H}}$ -abundant semigroup S is a right quasi-normal $\widetilde{\mathcal{H}}$ -cryptogroup if and only if S is an $\widetilde{\mathcal{L}}G$ -strong semilattice of completely $\widetilde{\mathcal{J}}$ -simple semigroups, that is, $S=\widetilde{\mathcal{L}}G[Y;S_{\alpha},\varphi_{\alpha,\beta}]$.

Proof. (Necessity) Let S be a right quasi-normal $\widetilde{\mathcal{H}}$ -cryptogroup. Then $S/\widetilde{\mathcal{H}}$ is a right quasi-normal band. To show that S is an $\widetilde{\mathcal{L}}G$ -strong semilattice, by invoking Lemma 3.3 and its proof, we only need to show that for any $\delta \geqslant \gamma$ on Y, $\widetilde{\mathcal{L}}|_{S_{\gamma}} \subseteq \rho_{\delta,\gamma}$. In fact, for $a \in S_{\delta}, x, y \in S_{\gamma}$ with $(x,y) \in \widetilde{\mathcal{L}}$, we have $(axa)\widetilde{\mathcal{H}} = ((axy)a)\widetilde{\mathcal{H}} = (ayxya)\widetilde{\mathcal{H}} = (aya)\widetilde{\mathcal{H}}$ by the right quasi-normality of the band $S/\widetilde{\mathcal{H}}$. Thus, by the definition of $\rho_{\delta,\gamma}$, we have $\widetilde{\mathcal{L}}|_{S_{\gamma}} \subseteq \rho_{\delta,\gamma}$ as required. This shows that $S = \widetilde{\mathcal{L}}G[Y;S_{\alpha},\varphi_{\alpha,\beta}]$. (Sufficiency) Let $a \in S_{\alpha}, x \in S_{\beta}$, and $y \in S_{\gamma}$. Then, since $S = \widetilde{\mathcal{L}}G[Y;S_{\alpha},\varphi_{\alpha,\beta}]$ is an $\widetilde{\mathcal{H}}G$ -strong semilattice of S_{α} and by Theorem 4.1, $\widetilde{\mathcal{H}}$ is a congruence on S. Moreover, we have $xa = (x\varphi_{d(\beta,\alpha\beta)}^a)(a\varphi_{d(\alpha,\alpha\beta)}^x)$ and thereby, $axa = (a\varphi_{d(\alpha,\alpha\beta)}^x)(x\varphi_{d(\beta,\alpha\beta)}^a)(a\varphi_{d(\alpha,\alpha\beta)}^x)$. By the fact $((xa)^0,(axa)^0) \in \mathcal{L}$, we can easily see that $(xa,axa) \in \widetilde{\mathcal{L}}[S_{\alpha\beta}$, and so, by our hypothesis, $S = \widetilde{\mathcal{L}}G[Y;S_{\alpha},\varphi_{\alpha,\beta}]$. This implies that there exist some homomorphisms $\varphi_{d(\alpha,\alpha\beta\gamma)}^{\widetilde{\mathcal{L}}} \in \varphi_{\alpha\beta,\alpha\beta\gamma}$ and $\varphi_{d(\gamma,\alpha\beta\gamma)}^{\widetilde{\mathcal{L}}} \in \varphi_{\gamma,\alpha\beta\gamma}$ satisfying the conditions $y(xa) = (y\varphi_{d(\gamma,\alpha\beta\gamma)}^{\widetilde{\mathcal{L}}})((xa)\varphi_{d(\alpha\beta,\alpha\beta\gamma)}^{\widetilde{\mathcal{L}}})$ and $y(axa) = (y\varphi_{d(\gamma,\alpha\beta\gamma)}^{\widetilde{\mathcal{L}}})((axa)\varphi_{d(\alpha\beta,\alpha\beta\gamma)}^{\widetilde{\mathcal{L}}})$. Hence, it follows that

$$\begin{split} (y(xa))\widetilde{\mathcal{H}} &= [(y\varphi_{d(\gamma,\alpha\beta\gamma)}^{\widetilde{\mathcal{L}}})((xa)\varphi_{d(\alpha\beta,\alpha\beta\gamma)}^{\widetilde{\mathcal{L}}})]\widetilde{\mathcal{H}} \\ &= \{(y\varphi_{d(\gamma,\alpha\beta\gamma)}^{\widetilde{\mathcal{L}}})\{[(x\varphi_{d(\beta,\alpha\beta)}^a)(a\varphi_{d(\alpha,\alpha\beta)}^x)]\varphi_{d(\alpha\beta,\alpha\beta\gamma)}^{\widetilde{\mathcal{L}}}\}\}\widetilde{\mathcal{H}} \\ &= [(y\varphi_{d(\gamma,\alpha\beta\gamma)}^{\widetilde{\mathcal{L}}})((a\varphi_{d(\alpha,\alpha\beta)}^x)\varphi_{d(\alpha\beta,\alpha\beta\gamma)}^{\widetilde{\mathcal{L}}})]\widetilde{\mathcal{H}} \end{split}$$

REFERENCES 58

and

$$(y(axa))\widetilde{\mathcal{H}} = \{(y\varphi_{d(\gamma,\alpha\beta\gamma)}^{\widetilde{\mathcal{L}}})\{[(a\varphi_{d(\alpha,\alpha\beta)}^x)(x\varphi_{d(\beta,\alpha\beta)}^a)(a\varphi_{d(\alpha,\alpha\beta)}^x)]\varphi_{d(\alpha\beta,\alpha\beta\gamma)}^{\widetilde{\mathcal{L}}}\}\}\widetilde{\mathcal{H}}$$

$$= [(y\varphi_{d(\gamma,\alpha\beta\gamma)}^{\widetilde{\mathcal{L}}})((a\varphi_{d(\alpha,\alpha\beta)}^x)\varphi_{d(\alpha\beta,\alpha\beta\gamma)}^{\widetilde{\mathcal{L}}})]\widetilde{\mathcal{H}}.$$

This leads to $(yxa)\widetilde{\mathcal{H}}=(yaxa)\widetilde{\mathcal{H}}$ and so $S/\widetilde{\mathcal{H}}$ is a right quasi-normal band. Thus, S is indeed a right quasi-normal $\widetilde{\mathcal{H}}$ -cryptogroup.

Since we have already mentioned that a band B is a normal band if for all elements e, f, g in B, the identity efge = egfe holds in B(see [6]). In closing this paper, we characterize the normal $\widetilde{\mathcal{H}}$ -cryptogroups. In fact, this result gives a modified version of the theorem of Petrich and Reilly in [11] on normal cryptogroups, in particular, the theorem on normal cryptogroups in [11] and also the theorem of Fountain on superabundant semigroups in [4] is now refined and amplified in the class of quasiabundant semigroups.

Theorem 4.3 An $\widetilde{\mathcal{H}}$ -abundant semigroup S is a normal $\widetilde{\mathcal{H}}$ -cryptogroup if and only if S is a $\widetilde{\mathcal{D}}G$ -strong semilattice of completely $\widetilde{\mathcal{J}}$ -simple semigroups, that is, $S = \widetilde{\mathcal{D}}G[Y; S_{\alpha}, \varphi_{\alpha,\beta}]$.

Proof. (Necessity) The proof is similar to the necessity part given in Theorem 4.2, that is, we only need to prove that $\widetilde{\mathcal{D}}|_{S_{\beta}} \subseteq \rho_{\alpha,\beta}$ for all $\alpha,\beta \in Y$ with $\alpha \geqslant \beta$. Since every semigroup S_{α} can be regarded as a $\widetilde{\mathcal{D}}$ -class of S, we can just let $a \in S_{\alpha}$, $x,y \in S_{\beta}$. Recall that $S = (Y;S_{\alpha})$ is a normal $\widetilde{\mathcal{H}}$ -cryptogroup, $S/\widetilde{\mathcal{H}}$ is a normal band. Now, by the normality of the band $S/\widetilde{\mathcal{H}}$, we have

$$(axa)\widetilde{\mathcal{H}} = (a(xyx)a)\widetilde{\mathcal{H}} = (ayxya)\widetilde{\mathcal{H}} = (aya)\widetilde{\mathcal{H}}.$$

Thus, by Lemma 3.1, we see that $(x,y)\in \rho_{\alpha,\beta}$ and whence $\widetilde{\mathcal{D}}|_{S_{\beta}}\subseteq \rho_{\alpha,\beta}$. This proves that $S=\widetilde{\mathcal{D}}G[Y;S_{\alpha},\varphi_{\alpha,\beta}]$. (Sufficency) Let $S=\widetilde{\mathcal{D}}G[Y;S_{\alpha},\varphi_{\alpha,\beta}]$, where each S_{α} is a completely $\widetilde{\mathcal{J}}$ -simple semigroup, for all $\alpha\in Y$. Then by definition, S is an $\widetilde{\mathcal{L}}G$ -strong semilattice of semigroups S_{α} and also S is an $\widetilde{\mathcal{R}}G$ -strong semilattice of semigroups S_{α} . By applying Theorem 4.2 and its dual, we immediately deduce that $\widetilde{\mathcal{H}}$ is a congruence on S and for all $a,x,y\in S$, we have

$$[(axy)a]\widetilde{\mathcal{H}} = [ay(xya)]\widetilde{\mathcal{H}} = (ayxyxa)\widetilde{\mathcal{H}} = (ayxa)\widetilde{\mathcal{H}}.$$

This shows that $S/\widetilde{\mathcal{H}}$ is a normal band. Moreover, since each S_{α} is a $\widetilde{\mathcal{D}}$ -class of S, for every $\alpha, \beta \in Y$ with $\alpha \geqslant \beta$, the set $D(\alpha, \beta)$ is just a singleton. This means that S is a strong semilattice of completely $\widetilde{\mathcal{J}}$ -simple semigroups S_{α} . Our proof is completed.

References

- [1] A. H. Clifford, Semigroups admitting relative inverses, Ann of Math. 42, 1037-1049, (1941)
- [2] A. H. Clifford and G. B. Preston, *The Algebraic Theory of Semigroups, Mathematical Surveys 7, Vols 1 and 2*, American Mathematical Society, Providence, R.I., (1967)
- [3] A. El-Qallali, Structure Theory for Abundant and Related Semigroups, PhD Thesis, York University, England, (1980)

REFERENCES 59

- [4] J. B. Fountain, Abundant semigroups, Proc London Math Soc 43 (3) 103-129, (1982)
- [5] X. J. Guo and K. P. Shum, On left cyber groups. *Int. Math. J*, **5** 705–717, (2004)
- [6] J. M. Howie, Fundamental of Semigroup Theory, Clarendon Press, Oxford, (1995)
- [7] X. Z. Kong and K. P. Shum, Completely regular semigroups with generalized strong semilattice decompositions, *Algebra Colloqium*, **12** (2) 269-280, (2005)
- [8] X. Z. Kong and K. P. Shum, On the structure of regular crypto semigroups, *Comm. in Algebra*, **29** (6), 2461-2479, (2001)
- [9] X. Z. Kong and K. P. Shum, Semilattice structure of regular cyber groups, *Pragmatic Algebra*, **1** 1-12, (2006)
- [10] X. Z. Kong and Z. L. Yuan , KG-strong semilattice decomposition of regular orthocryptosemigroups, Semigroup Forum, 73, 95-108, (2006)
- [11] F. Pastijn, A representation of a semigroup by a semigroup of matrices over a group with zero, *Semigroup Forum*, **10**, 238-249,(1975)
- [12] M. Petrich and N. R. Reilly, Completely Regular Semigroups, John Wiley & Sons, 162-242, (1999)
- [13] M. Petrich, The structure of completely regular semigroups, *Trans Amer Math Soc*, **189**, 211-236, (1974)
- [14] M. Petrich, Lectures in Semigroups, Wiley & Sons Inc. London, (1976)
- [15] X. M. Ren and K. P. Shum, The structure of superabundant semigroups, *Sci in China*, *Ser. A*, **47** (5), 756-771, (2004)
- [16] X. M. and K. P. Shum, On superabundant semigroups whose set of idempotnets forms a subsemigroup, *Algebra Colloqium*, **14** (2), 215-228, (2007)