Honorary Invited Paper

On the structure of regular \tilde{H}-cryptogroups

Xiangzhi Kong 1, Yue Ding, K.P. Shum2,*

1 School of Science, Jiangnan University, Wuxi, Jiangsu, 214122, China
2 Department of Mathematics, The University of Hong Kong, Pokfulam Road, Hong Kong (SAR), China

Abstract. We introduce the concepts of Green \sim-relations on \tilde{H}-abundant semigroups. By using the generalized strong semilattice of semigroups, we show that an \tilde{H}-cryptogroup is a regular \tilde{H}-cryptogroup if and only if it is an $\tilde{H}G$-strong semilattice of completely \tilde{J}-simple semigroups. This result not only extends a known result of Petrich from the class of completely regular semigroups to the class of semiabundant semigroups but also generalizes a well known result of Fountain on superabundant semigroups from the class of abundant semigroups to the class of semiabundant semigroups.

AMS subject classifications: 20M10

Key words: The Green \sim-relations; Homomorphisms of \tilde{H}-abundant semigroups; \tilde{H}-cryptogroups.

1. Introduction

It was proved by Clifford [1] that a regular semigroup is a union of groups if and only if it is a semilattice of completely simple semigroups. It is also known that if the set of all idempotents of a completely regular semigroup S is the center of S, then S can be expressed by a strong semilattice of groups (see [1]). Thus, we usually regard the completely regular semigroups as generalized groups. Moreover, by Petrich and Reilly, we call a completely regular semigroup S a normal cryptogroup if the Green relation H on S is a normal band congruence on S. In particular, a completely regular semigroup S is a normal cryptogroup if and only if S can be expressed by a strong semilattice of completely simple semigroups (see [12] and [13]). This result was further generalized by Fountain by proving that an abundant semigroup S is a superabundant semigroup if and only if S is a semilattice of completely J^*-simple semigroups [4]. The structure of superabundant semigroups whose set of idempotents forms a subsemigroup have been recently extensively investigated by Ren and Shum in [15] and [16].

The Green \ast-relations on a semigroup S were first defined by Pastijn [11] which can be regarded as the Green relations in some oversemigroups of S. These relations were formulated by

Corresponding author. Email addresses: xiangzhikong@163.com (X. Kong), kpshum@maths.hku.edu.hk (K.P. Shum)

The research of K.P. Shum is partially supported by a Wu Jiehyee Charitable foundation grant no. 7103084, 2006-07
Later on, El-Qallali further generalized the Green ∗-relations to Green ~-relations [3] as follows:

$$\mathcal{L}^* = \{(a, b) \in S \times S : (\forall x, y \in S^1)ax = ay \Leftrightarrow bx = by\},$$

$$\mathcal{R}^* = \{(a, b) \in S \times S : (\forall x, y \in S^1)xa = ya \Leftrightarrow xb = yb\},$$

$$\mathcal{H}^* = \mathcal{L}^* \cap \mathcal{R}^*, \mathcal{D}^* = \mathcal{L}^* \lor \mathcal{R}^*.$$

We can easily see that $\mathcal{\tilde{L}}$ and $\mathcal{\tilde{R}}$ are equivalent relations on S, however, the $\mathcal{\tilde{L}}$ relation is not necessary to be right compatible with the semigroup multiplication and the $\mathcal{\tilde{R}}$ relation is not necessary to be left compatible with the semigroup multiplication. We now denote the $\mathcal{\tilde{L}}$-class containing the element a of the semigroup S by $\mathcal{\tilde{L}}_a$ and we observe that $\mathcal{L} \subseteq \mathcal{L}^* \subseteq \mathcal{\tilde{L}}$. Among the usual Green relations or the above relations, \mathcal{L}- or the generalized \mathcal{L}-relations are duals of the corresponding \mathcal{R}-relations or generalized \mathcal{R}-relations. In what follows, we only discuss the properties which are related to the \mathcal{L}-relation and the generalized \mathcal{L}-relation, respectively. One can easily see that there is at most one idempotent of the semigroup S in each \mathcal{H}-class. If $e \in \mathcal{H}_a \cap E(S)$, for some $a \in S$, then we simply denote the idempotent e by x^0, for any $x \in \mathcal{H}_a$. Clearly, for any $x \in \mathcal{H}_a$ with $a \in S$, we have $x = xx^0 = x^0x$.

If a semigroup S is regular, then every \mathcal{L}-class of S contains at least one idempotent, and so does every \mathcal{R}-class of S. Thus, regular semigroups are obviously special abundant semigroups. Thus, Fountain called such semigroup superabundant [4] if its every \mathcal{H}-classes contains an idempotent. Obviously, completely regular semigroups are special superabundant semigroups. Following El-Qallali [3], we call a semigroup S a semiabundant semigroup if every \mathcal{L}-class and every \mathcal{R}-class of S contain at least one idempotent. A semigroup S is called \mathcal{H}-abundant if every \mathcal{H}-class contains an idempotent of S. Clearly, the \mathcal{H}-abundant semigroups are generalizations of superabundant semigroups in the class of semiabundant semigroups. One can easily see that $\mathcal{\tilde{L}} = \mathcal{L}$ on the set of regular elements in any \mathcal{H}-abundant semigroup.

Throughout this paper, we call a band B a regular band (right quasi normal band) if B satisfies the identity $axya = axaya(xy = xay)$. According to Petrich and Reilly [12], a completely regular semigroup S was called a regular cryptogroup if the Green relation \mathcal{H} on S is a regular band congruence on S. The structure of regular cryptogroup was investigated by Kong-Shum in [8] and [9]. In the class of abundant semigroups, Guo and Shum [5] called an abundant semigroup whose set of idempotents forms a regular band a cyber group. The semilattice structure of regular cyber groups have been recently investigated in [9].

Naturally, one would ask : can we establish an analogous result of superabundant semigroups [4] in the class of semiabundant semigroups or an analogous result of cryptogroups [12] in the
class of \(\tilde{\mathcal{H}} \)-abundant semigroups? In this paper, we will establish a theorem for \(\tilde{\mathcal{H}} \)-cryptogroups by using the Green \(\sim \) relations and the \(KG \)-strong semilattice of semigroups, as described in [10]. We will show that an \(\tilde{\mathcal{H}} \)-cryptogroup is a regular \(\tilde{\mathcal{H}} \)-cryptogroup if and only if it is an \(\tilde{\mathcal{H}}G \)-strong semilattice of completely \(\tilde{J} \)-simple semigroups. Our results in this paper also generalize and enrich the corresponding results given in [1], [4], [7], [8] and [13].

2. \(KG \)-strong semilattices

We now restate the concept of \(G \)-strong semilattice decomposition of semigroup \(S \) given by Kong and Shum in [8] and [9].

Let \(S = (Y; S_\alpha) \) be a semilattice of the semigroups \(S_\alpha \), where each \(S_\alpha \) is a subsemigroup of the semigroup \(S \) and \(Y \) is a semilattice. We define the \(G \)-strong semilattice of semigroups by generalizing the well known strong semilattice of semigroups (see [9]).

Definition 2.1 Let \(S = (Y; S_\alpha) \) be a semigroup. Suppose that the following conditions \(S \) are satisfied:

(i) \((\forall \alpha, \beta \in Y, \alpha \geq \beta) \), there exists a family of homomorphisms \(\varphi_{d(\alpha, \beta)} : S_\alpha \rightarrow S_\beta \), where \(d(\alpha, \beta) \in D(\alpha, \beta) \) and \(D(\alpha, \beta) \) is a non-empty index set.

(ii) \((\forall \alpha \in Y) \), \(D(\alpha, \alpha) \) is a singleton. Denote the element in \(D(\alpha, \alpha) \) by \(d(\alpha, \alpha) \). In this case, the homomorphism \(\varphi_{d(\alpha, \alpha)} : S_\alpha \rightarrow S_\alpha \) is the identity automorphism of the semigroup \(S_\alpha \).

(iii) \((\forall \alpha, \beta, \gamma \in Y, \alpha \geq \beta \geq \gamma) \), if we write \(\varphi_{\alpha, \beta} = \{ \varphi_{d(\alpha, \beta)} : d(\alpha, \beta) \in D(\alpha, \beta) \} \) then \(\varphi_{\alpha, \beta} \varphi_{\beta, \gamma} = \varphi_{\alpha, \gamma} \), where

\[
\varphi_{\alpha, \beta} \varphi_{\beta, \gamma} = \{ \varphi_{d(\alpha, \beta)} \varphi_{d(\beta, \gamma)} : \forall d(\alpha, \beta) \in D(\alpha, \beta), d(\beta, \gamma) \in D(\beta, \gamma) \}.
\]

(iv) for each \(\alpha, \beta \in Y \), there is a mapping from \(S_\alpha \) into the set \(\varphi_{\beta, \alpha} \) whose value at any given element \(a \in S_\alpha \) is denoted by \(\varphi_{d(\beta, \alpha)}^a \) such that for all \(b \in S_\beta \),

\[
ab = (a \varphi_{d(\alpha, \beta)}^b)(b \varphi_{d(\beta, \alpha)}^a).
\]

Then the above semilattice of semigroups is called the generalized strong semilattice of semigroups \(S_\alpha \) and in brevity, the “\(G \)-strong semilattice” of semigroups \(S_\alpha \) and denoted it by \(S = G[Y; S_\alpha, \varphi_{\alpha, \beta}] \).

The following definition is a more general version of \(G \)-strong semilattices.

Definition 2.2 Let \(K \) be any equivalent relation on a \(G \)-strong semilattice of semigroups \(S = G[Y; S_\alpha, \varphi_{\alpha, \beta}] \). Then, we call \(S \) a “\(KG \)-strong semilattice of semigroups \(S_\alpha \)” if for every \(\alpha, \beta \in Y \), the mapping \(a \mapsto \varphi_{\alpha, \beta}^{a,b} \) has the property that \(\varphi_{d(\beta, \alpha)}^a = \varphi_{d(\beta, \alpha)}^b \) whenever the elements \(a, b \in S_\alpha \) are in the same \(K \)-class of \(S \).

Thus, it is clear that the \(G \)-strong semilattice of semigroups \(S \) can be determined by an equivalent
of semigroups since ρG is weaker than the usual strong semilattice. In fact, if

it is clear that the Green L-relation \sim is both a left (right) ideal.

Remark 2.3 It is clear that the KG-strong semilattice is stronger than the G-strong semilattice but it is weaker than the usual strong semilattice. In fact, if ρ and δ are equivalent relations on the semigroup $S = (Y; S_\alpha)$ with $\rho \subseteq \delta$, then one can observe that $\delta G[Y; S_\alpha, \varphi_{\alpha,\beta}]$ is “stronger” than $\rho G[Y; S_\alpha, \varphi_{\alpha,\beta}]$. As special cases, $1_S G[Y; S_\alpha, \varphi_{\alpha,\beta}]$ is the “weakest” KG-strong semilattice of semigroups since 1_S is the “smallest” equivalent relation on S and also $\eta G[Y; S_\alpha, \varphi_{\alpha,\beta}]$ is the strongest KG-strong semilattice of semigroups since η is the “greatest” equivalent relation on S, where 1_S is the identity relation on S and η is the semilattice congruence on S which partitions the semigroup S into disjoint subsemigroups $S_\alpha(\alpha \in Y)$ of S. Hence, we can easily see that $\eta G[Y; S_\alpha, \varphi_{\alpha,\beta}]$ is the usual strong semilattice of semigroups since in this case, every index set $D(\alpha, \beta)$ is a singleton for $\alpha \geq \beta$ on Y and hence there exists one and only one structure homomorphism in the set of structure homomorphisms $\varphi_{\alpha,\beta}$.

We have already defined the Green \sim-relations \tilde{L}, \tilde{R}, \tilde{H} and \tilde{D} on a semigroup S. In order to define the Green \sim-relation \tilde{J} on S, we consider the left \sim-ideal L of a semigroup S.

Definition 2.4 A left (right) ideal L (R) of a semigroup S is called a left \sim-ideal of S if $\tilde{L}_a \subseteq L(a \subseteq R)$ holds, for all $a \in L(a \in R)$. We call a subset I of a semigroup S a \sim-ideal of S if it is both a left \sim-ideal and a right \sim-ideal.

It is noteworthy that if S is a regular semigroup, then every left (right, two-sided) ideal of S is a left (right, two-sided) \sim-ideal. We also observe that for any idempotent e in a semigroup S, the left (right) ideal $S(eS)$ is a left(right) \sim-ideal. For if $a \in Se$, then $a = ae$, and hence for any element b in \tilde{L}_a, we have $b = be \in Se$.

By Definition 2.4, we see that the semigroup S is always a \sim-ideal of itself, and we denote the smallest \sim-ideal containing the element a of S by $\tilde{J}(a)$. Now, we define $\tilde{J} = \{(a, b) \in S \times S : \tilde{J}(a) = \tilde{J}(b)\}$.

Definition 2.5 An \tilde{H}-abundant semigroup S is called completely \tilde{J}-simple if S does not contain any non-trivial proper \sim-ideal of S.

We now give some properties of the \tilde{H}-abundant semigroups. Some of the properties may have already been known or can be easily derived, however, for the sake of completeness, we provide here the proofs.

Lemma 2.6 Let S be an \tilde{H}-abundant semigroup. Then the following properties hold:

(i) The Green \sim-relation \tilde{H} is a congruence on S if and only if for any $a, b \in S$, $(ab)^0 = (a^0b^0)^0$.

(ii) If e, f are \tilde{D}-related idempotents of S, then $e \tilde{D} f$.

(iii) $\tilde{D} = \tilde{L} \circ \tilde{R} = \tilde{R} \circ \tilde{L}$.

(iv) If \(e, f\) are idempotents in \(S\) such that \(eJf\), then \(eDf\).

Proof.

(i) *(Necessity).* For any \(a, b \in S\), we have \(a\tilde{H}a^0\) and \(b\tilde{H}b^0\). Since \(\tilde{H}\) is a congruence on \(S\), \(ab\tilde{H}(ab)^0\). But \(ab\tilde{H}(ab)^0\), and so \((ab)^0 = (a^0b^0)^0\) since every \(\tilde{H}\)-class contains a unique idempotent.

(Sufficiency). We only need to show that \(\tilde{H}\) is compatible with the semigroup multiplication of \(S\) since \(\tilde{H}\) is an equivalent relation on \(S\). Let \((a, b) \in \tilde{H}\) and \(c \in S\). Then \((ca)^0 = (c^0a^0)^0 = (c^0b^0)^0 = (cb)^0\) and hence, \(\tilde{H}\) is left compatible to the semigroup multiplication. Dually, \(\tilde{H}\) is right compatible with the semigroup multiplication and thus \(\tilde{H}\) is a congruence on \(S\).

(ii) Since \(e\tilde{D}f\), there exist elements \(a_1, \ldots, a_k\) of \(S\) such that \(eL\alpha_1R\alpha_2 \cdots a_k L f\). Since \(S\) is an \(\tilde{H}\)-abundant semigroup, \(eL\alpha_1R\alpha_2 \cdots a_k L f\). Thus \(e\tilde{D}f\).

(iii) If \(a, b \in S\) and \(a\tilde{D}b\), then by (ii), \(a^0\tilde{D}b^0\). Hence there exist elements \(c, d\) in \(S\) with \(a^0LcRh^0\) and \(a^0RdLb^0\), and consequently, \(aLc\tilde{R}b\) and \(a\tilde{R}db\). Thus the result is proved.

(iv) Since \(SeS = SfS\), there exist elements \(x, y, s, t\) in \(S\) such that \(f = set\) and \(e = xy\). Let \(h = (fy)^0\) and \(k = (se)^0\). Then \(hfy = fyy = ffy\) and so \(h = h^2 = fh\) and \(sek = se = see\), and thereby, \(k = k^2 = ke\). Hence, \(h, f, e\) are the idempotents satisfying the relations \(hL Rh\) and \(ekLk\). These imply that \(ehf\tilde{R}eh\) and \(ekf\tilde{L}kf\). Now by \(eh = xfyh = xfy = e\) and \(kf = kset = set = f\), we have \(eh\tilde{R}ef\tilde{L}f\). This shows that \(e\tilde{D}f\).

Similar to the definition of cyber group given by Guo and Shum [5], we formulate the following definition.

Definition 2.7 An \(\tilde{H}\)-abundant semigroup \(S\) is called an \(\tilde{H}\)-cryptogroup if the Green \(\sim\)-relation \(\tilde{H}\) is a congruence on \(S\). Also, we call an \(\tilde{H}\)-abundant semigroup \(S\) a regular \(\tilde{H}\)-cryptogroup if \(\tilde{H}\) is a congruence on \(S\) such that \(S/\tilde{H}\) is a regular band. Thus, \(\tilde{H}\)-cryptogroups are analogy of cryptogroups in the class of \(\tilde{H}\)-abundant semigroups. Also, we see in [5] that an \(\tilde{H}\)-cryptogroup is a generalized cyber groups.

The \(\tilde{H}\)-cryptogroup \(S\) has the following properties:

Lemma 2.8

(i) For any element \(a\) of the \(\tilde{H}\)-cryptogroup \(S\), \(\tilde{J}(a) = Sa^0S\).

(ii) For the \(\tilde{H}\)-cryptogroup \(S\), \(\tilde{J} = \tilde{D}\).

(iii) If the \(\tilde{H}\)-cryptogroup \(S\) is completely \(\tilde{J}\)-simple, then the idempotents of \(S\) are primitive.
(iv) If the $\tilde{\mathcal{H}}$-cryptogroup S is completely $\tilde{\mathcal{J}}$-simple, then the regular elements of S generate a regular subsemigroup of S.

Proof.

(i) Obviously, we have $a^0 \in \tilde{\mathcal{J}}(a)$ and so $Sa^0S \subseteq \tilde{\mathcal{J}}(a)$. We need to show that the ideal Sa^0S is in fact a \sim-ideal and since $a = a \alpha a^0 \in Sa^0S$, $\tilde{\mathcal{J}}(a) \subseteq Sa^0S$. Let $b = xa y \in Sa^0S(x, y \in S)$ and $k = (a^0y)^0$. Then $a^0a^0y = a^0y = ka^0y$ so that $a^0(a^0y)^0 = k^2 = k$. Also since \mathcal{H} is a congruence, $xa^0y \mathcal{H} xk$. Now let $h = (xk)^0 = (xa^0y)^0$. Then $xkh = xk = xkk$ so that $h = h^2 = hk = ha^0k \in Sa^0S$. Hence if $c \in Lb, d \in \bar{R}a$, then $c = ch, d = hd \in Sa^0S$ and hence, Sa^0S is a \sim-ideal, as required.

(ii) Let $(a, b) \in S$ with $a \mathcal{J} b$. Then by (i), we have $Sa^0S = Sb^0S$. Now, by Lemma 2.6 (iv), a^0Db^0 and so $a \mathcal{H}a^0Db^0 \mathcal{H} b$. This implies that $a \mathcal{D} b$ and hence $c \mathcal{J} \mathcal{H} b$. Conversely, let $a, b \in S$ with $a \mathcal{D} b$. Then by Lemma 2.6 (iii), there exists an element $c \in S$ such that $a \mathcal{L} \mathcal{R} b$. This leads to $a^0\mathcal{L}b^0\mathcal{R}0$ and so $Sa^0S = Sc^0S = Sb^0S$. Now, by (i), $(a, b) \in \tilde{\mathcal{J}}$ and hence $D \subseteq \tilde{\mathcal{J}}$. Therefore, $\tilde{\mathcal{J}} = D$.

(iii) Let e, f be idempotents in S with $e \leq f$. Since S is completely $\tilde{\mathcal{J}}$-simple, $f \in Se_S$. Now by the first part of Exercise 3 in [14][§8.4], there exists an idempotent g of S such that $f \mathcal{D} g$ and $g \leq e$. Let $a \in S$ be such that $f \mathcal{L} a \mathcal{R} g$. Then $f \mathcal{L} a^0 \mathcal{R} g$ and since $g \leq f$, we have

$$a^0 = ga^0(gf)a^0 = gf = g.$$

Now by noting that $g \leq f$ and $g \mathcal{L} f$, we have $f = fg = g$. However, since $g \leq e$, we obtain $e = f$ and hence all idempotents of S are primitive.

(iv) Let a, b be regular elements of S. Since S consists of a single D-class, by (ii) and by Lemma 2.6 (iii), there exists an element $c \in S$ such that $a \mathcal{L} \mathcal{R} c \mathcal{R} b$. Hence $a \mathcal{L} \mathcal{R} c \mathcal{R} b$. This leads to $c^0b = b$ and $a \mathcal{L} \mathcal{R} b$ since a is regular. Now we have $ab \mathcal{L} b$ and so the regularity of ab follows from the regularity of b.

We now establish the following theorem for $\tilde{\mathcal{H}}$-cryptogroups.

Theorem 2.9 Let S be an $\tilde{\mathcal{H}}$-cryptogroup. Then S is a semilattice Y of completely $\tilde{\mathcal{J}}$-simple semigroups $S_\alpha (\alpha \in Y)$ such that for every $\alpha \in Y$ and $a \in S_\alpha$, we have $L_a(S) = L_a(S_\alpha)$ and $R_a(S) = R_a(S_\alpha)$.

Proof. If $a \in S$, then $a \mathcal{H}a^2$ and so, $\tilde{\mathcal{J}}(a) = \tilde{\mathcal{J}}(a^2)$. Now for $a, b \in S$, we have $(ab)^2 \in Sba_S$, and hence, it follows that

$$\tilde{\mathcal{J}}(ab) = \tilde{\mathcal{J}}((ab)^2) \subseteq \tilde{\mathcal{J}}(ba).$$

Now, by symmetry, we obtain $\tilde{\mathcal{J}}(ab) = \tilde{\mathcal{J}}(ba)$. Since, by Lemma 2.8 (i), we have $\tilde{\mathcal{J}}(a) = Sa^0S$ and $\tilde{\mathcal{J}}(b) = Sb^0S$ so that if $c \in \tilde{\mathcal{J}}(a) \cap \tilde{\mathcal{J}}(b)$, then $c = xa^0y = zb^0t$ for some $x, y, z, t \in S$. Now $c^2 = zb^0txa^0y \in Sb^0txa^0S \subseteq \tilde{\mathcal{J}}(b^0txa^0)$ and hence, $\tilde{\mathcal{J}}(b^0txa^0) = \tilde{\mathcal{J}}(a^0b^0tx)$ by using previous arguments. Thus, $c^2 \in \tilde{\mathcal{J}}(a^0b^0)$ and since $\mathcal{H}c^2$, we have $c \in \tilde{\mathcal{J}}(a^0b^0)$. Since $a \mathcal{H}a^0$, $\tilde{\mathcal{J}}(ab) = \tilde{\mathcal{J}}(ba)$, and so $\tilde{\mathcal{J}}(ab) = \tilde{\mathcal{J}}(ba)$.
\(b\tilde{a}b^0 \) and \(\tilde{H} \) is a congruence on \(S \), we have \(ab\tilde{a}b^0 \). Consequently, \(c \in \tilde{J}(ab) \), and thereby \(\tilde{J}(a) \cap \tilde{J}(b) \subseteq \tilde{J}(ab) \). The converse containment is clear so that \(\tilde{J}(a) \cap \tilde{J}(b) = \tilde{J}(ab) \). We can easily see that the set \(Y \) of all \(\sim \)-ideals \(\tilde{J}(a)(a \in S) \) forms a semilattice under set intersection and that the mapping \(a \mapsto \tilde{J}(a) \) is a homomorphism from \(S \) onto \(Y \). The inverse image of \(\tilde{J}(a) \) is just the \(\tilde{J} \)-class \(\tilde{J}_a \) which is a subsemigroup of \(S \). Hence \(S \) is a semilattice \(Y \) of the semigroups \(\tilde{J}_a \). Now let \(a, b \) be elements of \(\tilde{J} \)-class \(\tilde{J} \) and suppose that \((a, b) \in \tilde{E}(\tilde{J}) \). Then, \(a^0, b^0 \in \tilde{J} \) so that \((a^0, b^0) \in \tilde{E}(\tilde{J}) \), that is, \(a^0b^0 = a^0, b^0a^0 = b^0 \) and \((a^0, b^0) \in \tilde{L}(S) \). It follows that \((a, b) \in \tilde{L}(S) \) and consequently, by \(\tilde{L}_a(S) \subseteq \tilde{J} \), we have \(\tilde{L}_a(S) = \tilde{L}_a(J) \). By using a similar argument, we can show that \(\tilde{R}_a(S) = \tilde{R}_a(J) \). From the above discussion, we can deduce that \(\tilde{H}_a(J) = \tilde{H}_a(S) \) and so \(J \) is indeed an \(\tilde{H} \)-abundant semigroup. Furthermore, if \(a, b \in \tilde{J} \), then by Lemma 2.8 (i), \((a, b) \in \tilde{D}(S) \) and hence, by Lemma 2.6 (iii), there exists an element \(c \) in \(\tilde{L}_a(S) \cap \tilde{R}_b(S) = \tilde{L}_a(J) \cap \tilde{R}_b(J) \). Thus \(a, b \) are \(\tilde{D} \)-related in \(\tilde{J} \) and so \(J \) is \(\tilde{J} \)-simple.

For the \(\tilde{H} \)-cryptogroups, we have the following theorem.

Theorem 2.10 Let \(S \) be an \(\tilde{H} \)-cryptogroup which is expressed by the semilattice of semigroups \(S = (Y; S_{\alpha}) \). Then the following statements hold:

1. For \(\alpha, \beta \) in the semilattice \(Y \) with \(\alpha \geq \beta \), if \(a \in S_{\alpha} \), then there exists \(b \in S_{\beta} \) with \(a \geq b \);
2. For \(a, b, c \in S \) with \(b\tilde{H}c \), if \(a \geq b \), \(a \geq c \) then \(b = c \);
3. For \(a \in E(S) \) and \(b \in S \), if \(a \geq b \) then \(b \in E(S) \).

Proof. (i) Let \(c \in S_{\beta} \). Then, by Lemma 2.6 (i), we see that \(a(acac)^0, (acac)^0a \) and \((acac)^0 \) are all in the same \(\tilde{H} \)-class of the semigroup \(S \) and hence, \(a(acac)^0 = (acac)^0a(acac)^0 = (acac)^0a \). Write \(b = a(acac)^0 \). Then \(b \in S_{\beta} \) and \(a \geq b \). (ii) By the definition of \(\geq \), there exist \(e, f, g, h \in E(S) \) such that \(b = ea = af, c = ga = ah \). From \(eb = b \) and \(b\tilde{H}b^0 \), we have \(eb^0 = b^0 \). Similarly, \(c^0h = c^0 \). Thus \(ec = ec^0c = ebh \). Then \(bh = eah = ec = c \). By using similar arguments, we have \(bh = b \) and so, \(b = bh = eah = ec = c \), as required. (iii) We have \(b = ea = af \) for some \(e, f \in E(S) \), and whence \(b^2 = (ea)(af) = ea^2f = b \).

The following fact can be easily observed:

Fact 2.11 Let \(\varphi \) be a homomorphism which maps an \(\tilde{H} \)-cryptogroup \(S \) into another \(\tilde{H} \)-cryptogroup \(T \). Then \((a\varphi)^0 = a^0\varphi \).

3. Properties of regular \(\tilde{H} \)-cryptogroups

Lemma 3.1 Let \(S \) be a regular \(\tilde{H} \)-cryptogroup (that is, \(\tilde{H} \) is a congruence on the \(\tilde{H} \)-abundant semigroup \(S \) such that \(S/\tilde{H} \) is a regular band). For every \(a \in S \), we define a relation \(\rho_a \) on \(S \) by \((b_1, b_2) \in \rho_a \) if and only if \((ab_1a)^0 = (ab_2a)^0, (b_1, b_2 \in S) \). Then the following properties hold on \(S \):
Lemma 3.2

(i) \(\rho_a \) is a band congruence on \(S \);

(ii) \(\forall a, a_1 \in S_a, \rho_a = \rho_{a_1} \), that is, \(\rho_a \) depends only on the component \(S_a \) containing the element \(a \) rather than on the element itself, hence we can write \(\rho_a = \rho_a \), for all \(a \in S_a \).

(iii) \(\forall \alpha, \beta \in Y \) with \(\alpha \geq \beta \), \(\rho_\alpha \subseteq \rho_\beta \) and \(\rho_\beta |_{S_\alpha} = \omega_{S_\alpha} \), where \(\omega_{S_\alpha} \) is the universal relation on \(S_\alpha \).

Proof. (i) It is easy to see that \(\rho_a \) is an equivalent relation on \(S \), for all \(a \in S \). We now prove that \(\rho_a \) is left compatible with the semigroup multiplication. For this purpose, we let \((x, y) \in \rho_a \) and \(c \in S \). Then, by the definition of \(\rho_a \), we have \((axa) = (aya) \). Since \(S \) is a regular \(\tilde{\mathcal{H}} \)-cryptogroup, by Lemma 2.6 (i) and the regularity of the band \(S/\tilde{\mathcal{H}} \), we obtain

\[
(axa)^0 = (ac(axa))^0 = ((ac)^0(axa))^0 = ((ac)^0(aya))^0 = (acya)^0.
\]

Hence, \((cx, cy) \in \rho_a \). Dually, we can prove that \(\rho_a \) is right compatible with the semigroup multiplication. Thus \(\rho_a \) is a congruence on \(S \). Obviously, \(\tilde{\mathcal{H}} \subseteq \rho_a \) and so \(\rho_a \) is a band congruence on \(S \).

(ii) Let \((x, y) \in \rho_a \). Then, by the definition of \(\rho_a \), we have \((axa) = (aya) \), and so \((axa)^0 = (aya)^0 = (a^0(aya))^0 = (a^0)^0 = (a_y)^0 \). This leads to \((a_y^0(axa)^0)^0 = (a_y^0(aya)^0)^0 \). Since \(S/\tilde{\mathcal{H}} = (Y; S_\alpha/\tilde{\mathcal{H}}) \) is a regular band and by Lemma 2.6 (ii), we obtain \((a_y^0(axa_y^0a))^0 = (a_y^0a^0ya^0a_y^0)^0 \). However, since \(a, a_1 \) are elements of the completely \(\tilde{\mathcal{J}} \)-simple semigroup \(S_a \), \((a_y^0axa_y^0)^0 = a_y^0 \). Thereby, by Lemma 2.6 (i) again, we have \((a_y^0axa_y^0)^0 = (a_y^0a_y^0)^0 \), that is, \((x, y) \in \rho_a \). This shows that \(\rho_a \subseteq \rho_{a_1} \). Similarly, we also have \(\rho_{a_1} \subseteq \rho_a \). Thus, \(\rho_a = \rho_{a_1} \). Since this relation holds for all \(a \in S_a \), we usually write \(\rho_a = \rho_a \). (iii) Let \(a \in S_a, b \in S_b \) and \(\alpha \geq \beta \). We need to prove that \(\rho_a \subseteq \rho_b \). For this purpose, we let \((x, y) \in \rho_a \), by (ii). Then, by the definition of \(\rho_a \), we have \((axa)^0 = (aya)^0 \) and hence \(b(axa)^0b = (baya)^0b \). By Lemma 2.6 (i) and the regularity of the band, we have \((babxbab)^0 = (babxbab)^0 \). Since \(\alpha \geq \beta \) in \(Y \) and \(a \in S_a, b \in S_b \), we have \((bab)^0 = b^0 \). By using Lemma 2.6 (ii) again, we can show that \((bab)^0 = (bab)^0 \), that is, \((x, y) \in \rho_{a_1} = \rho_{a_2} \). Thus, \(\rho_a \subseteq \rho_b \) as required. Furthermore, it is trivial that \(\rho_b |_{S_a} = \omega_{S_a} \), which is the universal relation on the semigroup \(S_a \).

We now use the band congruence \(\rho_a \) defined in Lemma 3.1 to describe the structural homomorphisms for the \(\tilde{\mathcal{H}} \)-cryptogroup \(S = (Y; S_a) \), where each \(S_a \) is a completely \(\tilde{\mathcal{J}} \)-simple semigroup.

We first consider the congruence \(\rho_{a, \beta} = \rho_a |_{S_\beta} \) for \(\alpha, \beta \in Y \), which is a band congruence on the semigroup \(S_\beta \). Now, we denote all the \(\rho_{a, \beta} \)-classes of \(S_\beta \) by \(\{ S_{d(a, \beta)} : d(a, \beta) \in D(\alpha, \beta) \} \), where \(D(\alpha, \beta) \) is a non-empty index set. In particular, the set \(D(\alpha, \alpha) \) is a singleton and we can therefore write \(d(\alpha, \alpha) = D(\alpha, \alpha) \). We have the following lemma.

Lemma 3.2 Let \(S = (Y; S_a) \) be a regular \(\tilde{\mathcal{H}} \)-cryptogroup. Then, for all \(\alpha, \beta \in Y \) with \(\alpha \geq \beta \), the following statements hold for all \(d(\alpha, \beta) \in D(\alpha, \beta) \).

(i) For all \(a \in S_a \), there exists a unique \(a_{d(a, \beta)} \in S_{d(a, \beta)} \) satisfying \(a \geq a_{d(a, \beta)} \);

(ii) For all \(a \in S_a \) and \(x \in S_{d(a, \beta)} \), if \(a^0 \geq e \) for some idempotent \(e \in S_{d(a, \beta)} \) then \(eax = ax, xae = xa, ea = ae \) and \((ea)^0 = e \);
(iii) Let \(a \in S_\alpha \). Define \(\varphi_{d(\alpha,\beta)} : S_\alpha \rightarrow S_{d(\alpha,\beta)} \) by \(a\varphi_{d(\alpha,\beta)} = a_{d(\alpha,\beta)}, \) where \(a_{d(\alpha,\beta)} \in S_{d(\alpha,\beta)} \) and \(a \geq a_{d(\alpha,\beta)} \). Then \(\varphi_{d(\alpha,\beta)} \) is a homomorphism and \(a_{d(\alpha,\beta)} = (aba)^0a \) for any \(b \in S_{d(\alpha,\beta)} \).

Proof. (i) We first show that for any \(a \in S_\alpha \) and \(b \in S_{d(\alpha,\beta)} \), we have \(ab \in S_{d(\alpha,\beta)} \), that is, \((ab, b) \in \rho_{a,\beta} \). In fact, since \(S = (Y, S_\alpha) \) is a \(\mathcal{H} \)-cryptogroup, each \(S_\alpha \) is a completely \(\mathcal{J} \)-simple semigroup. Hence, we have \((xax)^0 = x^0 \), for all \(x \in S_\alpha \). This leads to \((xabx)^0 = (xbx)^0 \) by the regularity of the band \(S/\mathcal{H} \) and Lemma 2.6 (i). Thereby, \((ab, b) \in \rho_{a,\beta} \). Similarly, we also have \(ba \in S_{d(\alpha,\beta)} \). Invoking the above results, we have \(ab \in S_{d(\alpha,\beta)} \) for any \(b \in S_{d(\alpha,\beta)} \). Since \(\mathcal{H} \) is a band congruence on \(S \), by Lemma 2.6 (i) again, we see that \(a_{d(\alpha,\beta)}^0 , (aba)^0 \) and \((aba)^0 a \) are in the same \(\mathcal{H} \)-class of \(S \) so that \(a_{d(\alpha,\beta)}^0 = (aba)^0 a(aba)^0 = (aba)^0 a \). Let \(a_{d(\alpha,\beta)}^0 = a_{d(\alpha,\beta)} \). Then by the natural partial order imposed on \(S \), we have \(a \geq a_{d(\alpha,\beta)} \). In order to show the uniqueness of \(a_{d(\alpha,\beta)} \), we assume that there is another \(a_{d(\alpha,\beta)}^* \in S_{d(\alpha,\beta)} \) satisfying \(a \geq a_{d(\alpha,\beta)}^* \). Then, by the definition of \("\leq\" \), we can write \(a_{d(\alpha,\beta)}^* = e\alpha = af \) for some \(e, f \in E(S) \) and so \(a_{d(\alpha,\beta)}^* a^0 = a_{d(\alpha,\beta)}^* = a^0 a_{d(\alpha,\beta)}^* \). By the fact \(a_{d(\alpha,\beta)}^* \mathcal{H} a^0 \), we have \((a_{d(\alpha,\beta)}^*)^0 a^0 = (a_{d(\alpha,\beta)}^*)^0 a^0 \) and \(a^0 (a_{d(\alpha,\beta)}^*)^0 = (a_{d(\alpha,\beta)}^*)^0 a^0 \). Consequently, by the definition of \("\leq\" \), we have \(a^0 \geq (a_{d(\alpha,\beta)}^*)^0 a^0 \). By Lemma 2.6 (i) again, we deduce that

\[
(a_{d(\alpha,\beta)}^*)^0 = (a^0 (a_{d(\alpha,\beta)}^*)^0 a^0)^0 = (a^0 a_{d(\alpha,\beta)}^*)^0 = (aba)^0.
\]

Hence, \((a_{d(\alpha,\beta)}^*, a_{d(\alpha,\beta)}) \in \mathcal{H} \), and consequently, by Theorem 2.10 (ii), \(a_{d(\alpha,\beta)}^* = a_{d(\alpha,\beta)} \). This shows the uniqueness of \(a_{d(\alpha,\beta)} \). (ii) It is easy to see that, by the definition of \("\leq\" \), \(a^0 \geq (a^0 (ax)^0 a^0)^0 \). Also, since \(a \in S_\alpha \) and \(x \in S_{d(\alpha,\beta)} \), we have \(ax \in S_{d(\alpha,\beta)} \) by (i). Moreover, since \(S_{d(\alpha,\beta)} \) is a \(\rho_{a,\beta} \)-congruence class, \((ax)^0 \in S_{d(\alpha,\beta)} \). Thus, by (i) again, we have \((a^0 (ax)^0 a^0)^0 \in S_{d(\alpha,\beta)} \) and \(e = (a^0 (ax)^0 a^0)^0 \). Thereby, we have \(eax = (a^0 (ax)^0 a^0)^0 a^0 (ax)^0 a^0 ax = ax \). Similarly, we have \(xae = xa \). Since \(x \) is arbitrarily chosen element in \(S_{d(\alpha,\beta)} \), we can particularly choose \(x = e \). In this way, we obtain \(ea = ae \) and consequently, by Lemma 2.6 (i), we have \((ea)^0 = (ea)^0 = e \). (iii) By using the result in (i), we can define \(\varphi_{d(\alpha,\beta)} : S_\alpha \rightarrow S_{d(\alpha,\beta)} \) by \(a\varphi_{d(\alpha,\beta)} = a_{d(\alpha,\beta)} = a(aca)^0 = (aca)^0 a \), for any \(a \in S_\alpha \) and \(c \in S_{d(\alpha,\beta)} \). Then, for any \(a, b \in S_\alpha \), we have, by (ii),

\[
(a\varphi_{d(\alpha,\beta)}) (b\varphi_{d(\alpha,\beta)}) = a_{d(\alpha,\beta)} b_{d(\alpha,\beta)} = (aca)^0 ab(bcb)^0 = (aca)^0 (ab(bcb)^0) = ab(bcb)^0.
\]

Similarly, we can show that \((a\varphi_{d(\alpha,\beta)}) ((b\varphi_{d(\alpha,\beta)}) = (aca)^0 ab \). Hence, \(ab \geq (a\varphi_{d(\alpha,\beta)}) (b\varphi_{d(\alpha,\beta)}) \).

Thus \((ab)\varphi_{d(\alpha,\beta)} = (a\varphi_{d(\alpha,\beta)}) (b\varphi_{d(\alpha,\beta)}) \), by the definition of \(\varphi_{d(\alpha,\beta)} \). This shows that \(\varphi_{d(\alpha,\beta)} \) is indeed a homomorphism.

We now proceed to show that the homomorphisms given in Lemma 3.2 (iii) are the structural homomorphisms for the \(G \)-strong semilattice \(G[Y; S_\alpha, \varphi_{\alpha,\beta}] \) induced by the semigroup \(S = (Y; S_\alpha) \) under the band congruence \(\rho_\alpha \) on the semigroup \(S_\alpha \).
Lemma 3.3 Let $S = (Y; S_a)$ be an \tilde{H}-cryptogroup and $\varphi_{\alpha, \beta} = \{ \varphi_{d(\alpha, \beta)} | d(\alpha, \beta) \in D(\alpha, \beta) \}$ for $\alpha \geq \beta$ on Y, where $D(\alpha, \beta)$ is a non-empty index set. Then

(i) $\varphi_{\alpha, \beta} \varphi_{\beta, \gamma} \subseteq \varphi_{\alpha, \gamma}$ for $\alpha \geq \beta \geq \gamma$ on Y.

(ii) For $a \in S_\alpha$ and $\beta \in Y$,

$$a \varphi_{\alpha, \beta} = \{a \varphi_{d(\alpha, \beta)} | \forall d(\alpha, \alpha) \in D(\alpha, \alpha)\} \subseteq S_{d(\alpha, \beta)},$$

for some $\rho_{\beta, \alpha\beta}$-class $S_{d(\alpha, \beta)}$.

Proof. (i) Clearly, $\varphi_{d(\alpha, \alpha)}$ is an identity automorphism of S_α. We now prove that $\varphi_{\alpha, \beta} \varphi_{\beta, \gamma} \subseteq \varphi_{\alpha, \gamma}$ for $\alpha \geq \beta \geq \gamma$ on Y. Pick $\varphi_{d(\alpha, \beta)} : S_\alpha \to S_{d(\alpha, \beta)} \subseteq S_\beta$ and $\varphi_{d(\beta, \gamma)} : S_\beta \to S_{d(\beta, \gamma)} \subseteq S_\gamma$. We show that $\varphi_{d(\alpha, \beta)} \varphi_{d(\beta, \gamma)} = \varphi_{d(\alpha, \gamma)}$ for some $\varphi_{d(\alpha, \gamma)} : S_\alpha \to S_{d(\alpha, \gamma)} \subseteq S_\gamma$. For this purpose, we let $a \in S_{d(\alpha, \gamma)}$, $b_1, b_2 \in S_{d(\alpha, \beta)}$ and $c \in S_{d(\beta, \gamma)}$. Then, because S/\tilde{H} is a band, by Lemma 3.2, we have $b_1 \varphi_{d(\beta, \gamma)} = b_1 (b_1 c b_1) = b_2 (b_2 c b_2)$. Since $b_1, b_2 \in S_{d(\alpha, \beta)}$, by the definition of $\rho_{\alpha, \beta}$, $(b_1, b_2) \in \rho_{\alpha, \beta}$. This leads to $(ab_1 a) = (ab_2)$. Now, by the regularity of the band S/\tilde{H}, we can easily deduce that

$$a \varphi_{d(\alpha, \gamma)} = \{(ab_1 \varphi_{d(\beta, \gamma)} a) = (ab_2) = (ab_2) = (ab_2) \}.$$

Thus, by the definition of $\rho_{\alpha, \gamma}$, we have $(b_1 \varphi_{d(\beta, \gamma)}, b_2 \varphi_{d(\beta, \gamma)}) \in \rho_{\alpha, \gamma}$. In other words, there exists a $\rho_{\alpha, \gamma}$-class $S_{d(\alpha, \gamma)}$ satisfying $S_{d(\alpha, \beta)} \varphi_{d(\beta, \gamma)} \subseteq S_{d(\alpha, \gamma)}$. Also, $\varphi_{d(\alpha, \beta)} \varphi_{d(\beta, \gamma)}$ clearly maps S_α into $S_{d(\alpha, \gamma)}$ by the transitivity of “\subseteq”, and hence $\varphi_{d(\alpha, \beta)} \varphi_{d(\beta, \gamma)} = \varphi_{d(\alpha, \gamma)}$. This proves that $\varphi_{\alpha, \beta} \varphi_{\beta, \gamma} \subseteq \varphi_{\alpha, \gamma}$. (ii) It suffices to show that for any $\varphi_{d(\alpha, \beta)}$ and $\varphi_{d(\alpha, \beta)} \in \varphi_{\alpha, \beta}$, we have

$$a \varphi_{d(\alpha, \beta)} \varphi_{d(\alpha, \beta)} = a \varphi_{d(\alpha, \beta)} \varphi_{d(\alpha, \beta)} \in \rho_{\beta, \alpha\beta}.$$
Proof. Let \(c_1 \in S_{d(a,\alpha \beta)}, c_2 \in S_{d(\beta,\alpha \beta)} \). Then \((ac_1a)^0 \in S_{d(a,\alpha \beta)}\) because \(S_{d(a,\alpha \beta)} \) is a \(\rho_{\alpha \beta} \)-equivalence class of \(S_{\alpha \beta} \). Now, by Lemma 3.2, \(a\varphi_{d(a,\alpha \beta)} = (ac_1a)^0a \) and \(b\varphi_{d(\beta,\alpha \beta)} = (bc_2b)^0 \) for \(\varphi_{d(a,\alpha \beta)} \in \varphi_{\alpha \beta} \) and \(\varphi_{d(\beta,\alpha \beta)} \in \varphi_{\beta \alpha} \). Since we assume that \(a\varphi_{\alpha \beta} \subseteq S_{d(\beta,\alpha \beta)} \), we have \(a\varphi_{d(a,\alpha \beta)} = (ac_1a)^0a \in S_{d(\beta,\alpha \beta)} \). Similarly, we have \(b\varphi_{d(\beta,\alpha \beta)} \in S_{d(a,\alpha \beta)} \cap S_{d(\beta,\alpha \beta)} \). Thus, by Lemma 3.2 (ii), we have

\[
(a\varphi_{d(a,\alpha \beta)})(b\varphi_{d(\beta,\alpha \beta)}) = (ac_1a)^0(ab(bc_2b)^0) = ab(bc_2b)^0
\]

and also

\[
(a\varphi_{d(a,\alpha \beta)})(b\varphi_{d(\beta,\alpha \beta)}) = ((ac_1a)^0)(bc_2b)^0 = (ac_1a)^0ab.
\]

However, by the definition of the natural partial order “\(\leq \)”, we have \(ab \geq (a\varphi_{d(a,\alpha \beta)})(b\varphi_{d(\beta,\alpha \beta)}) \).

On the other hand, since every semigroup \(S_{\alpha \beta} \) is primitive, we obtain

\[
ab = (a\varphi_{d(a,\alpha \beta)})(b\varphi_{d(\beta,\alpha \beta)}).
\]

4. Structure of regular \(\tilde{H} \)-cryptogroups

In this section, we use the \(KG \)-strong semilattice to characterize regular \(\tilde{H} \)-cryptogroups. Also, we consider the question when will the Green \(\sim \)-relation \(\tilde{H} \) to be a right quasi-normal band congruence? By using the \(KG \)-strong semilattice, we are able to give a description for the normal \(\tilde{H} \)-cryptogroups. We note here that the orthodox regular \(\tilde{H} \)-cryptogroups with \(KG \)-strong semilattices have been studies in [10]. A construction theorem of orthodox regular \(\tilde{H} \)-cryptogroups was also given in [8].

Theorem 4.1 An \(\tilde{H} \)-cryptogroup \(S \) is a regular \(\tilde{H} \)-cryptogroup if and only if \(S \) is an \(\tilde{H}G \)-strong semilattice of completely \(J \)-simple semigroups, that is, \(S = \tilde{H}G[Y; S_{\alpha}, \varphi_{\alpha \beta}] \).

Proof. By the definition of the \(KG \)-strong semilattice and the results obtained in §3, we have already proved the necessity part of Theorem 4.1 since it is obvious that \(\tilde{H}(S_{\alpha}) \subseteq \rho_{\alpha \beta} \) for \(\alpha \geq \beta \) on \(Y \). We now prove the sufficiency part of the theorem. To prove that \(S/\tilde{H} \) is a regular band, we use a result in [14]. What we need is to prove that the usual Green relations \(L \) and \(R \) are congruences on \(S/\tilde{H} \). In fact, we only need to verify that \(L \) is a left congruence on \(S/\tilde{H} \) since \(R \) is a right congruence on \(S/\tilde{H} \) can be proved in a similar fashion. Since \(S = (Y; S_{\alpha}) \) is an \(\tilde{H} \)-cryptogroup, we can let \(e\tilde{H}, f\tilde{H} \) and \(g\tilde{H} \in S/\tilde{H} \), where \(e, f \in S_{\alpha} \cap E(S) \), \(g \in S_{\beta} \cap E(S) \) with \((e, f) \in L \). Then, we have \(ef = e \) and \(fe = f \). By the definition of \(\tilde{H}G \)-strong semilattice \(\tilde{H}G[Y; S_{\alpha}, \varphi_{\alpha \beta}] \), we can find the homomorphisms \(\varphi_{d(\beta,\alpha \beta)} \) and \(\varphi_{d(\alpha,\alpha \beta)} \) such that

\[
(gef)\tilde{H} = ([g(ef)](gf))\tilde{H} = [[(g\varphi_{d(\beta,\alpha \beta)})(ef)](g\varphi_{d(\alpha,\alpha \beta)})][g\varphi_{d(\beta,\alpha \beta)}(f\varphi_{d(\alpha,\alpha \beta)})] \tilde{H}
\]

\[
= (g\varphi_{d(\beta,\alpha \beta)})(f\varphi_{d(\alpha,\alpha \beta)})] \tilde{H}
\]
and

\[(ge)\tilde{H} = |g(ef)|\tilde{H} = |(g\varphi^f_d(\beta,\alpha,\beta))(ef)\varphi^g_d(\alpha,\alpha,\beta)]\tilde{H} = |(g\varphi^f_d(\beta,\alpha,\beta))(f\varphi^g_d(\alpha,\alpha,\beta)]\tilde{H}.

Thus, \((gef)\tilde{H} = (ge)\tilde{H} \) and \((gfg)\tilde{H} = (gf)\tilde{H}\). This proves that \(L \) is left compatible with the multiplication of \(S/\tilde{H}\). Since \(L \) is always right congruence, \(L \) is a congruence on \(S/\tilde{H}\), as required. Dually, \(R \) is also a congruence on \(S/\tilde{H}\). Thus by [14] (see II. 3.6 Proposition), \(S/\tilde{H}\) forms a regular band and hence \(S \) is indeed a regular \(\tilde{H}\)-cryptogroup. Our proof is completed.

Recall that a right quasi-normal band is a band satisfying the identity \(yxa = yaxa \) [6]. Also, a left quasi-normal band is a band satisfying the identity \(axy = axay \). Thus, we can easily observe that both the right quasi-normal bands and the left quasi-normal bands are special cases of the regular bands. Also, a normal band (that is, a band satisfies the identity \(axya = ayxa \)) is a special right quasi-normal band and a left quasi-normal band. Based on the above observation, we are able to establish the following theorem for right quasi-normal \(\tilde{H}\)-cryptogroups.

Theorem 4.2 An \(\tilde{H}\)-abundant semigroup \(S \) is a right quasi-normal \(\tilde{H}\)-cryptogroup if and only if \(S \) is an \(\tilde{L}G\)-strong semilattice of completely \(\tilde{J}\)-simple semigroups, that is, \(S = \tilde{L}G[Y; S_\alpha, \varphi_{\alpha, \beta}] \).

Proof. (*Necessity*) Let \(S \) be a right quasi-normal \(\tilde{H}\)-cryptogroup. Then \(S/\tilde{H}\) is a right quasi-normal band. To show that \(S \) is an \(\tilde{L}G\)-strong semilattice, by invoking Lemma 3.3 and its proof, we only need to show that for any \(\delta \geq \gamma \) on \(Y \), \(\tilde{L}|S_\gamma \subseteq \rho_{\delta, \gamma} \). In fact, for \(a \in S_\delta, x, y \in S_\gamma \) with \((x, y) \in \tilde{L} \), we have \((axa)\tilde{H} = ((axy)a)\tilde{H} = (ayxa)\tilde{H} = (aya)\tilde{H} \) by the right quasi-normality of the band \(S/\tilde{H} \). Thus, by the definition of \(\rho_{\delta, \gamma} \), we have \(\tilde{L}|S_\gamma \subseteq \rho_{\delta, \gamma} \) as required. This shows that \(S = \tilde{L}G[Y; S_\alpha, \varphi_{\alpha, \beta}] \). (*Sufficiency*) Let \(a \in S_\alpha, x \in S_\beta \), and \(y \in S_\gamma \). Then, since \(S = \tilde{L}G[Y; S_\alpha, \varphi_{\alpha, \beta}] \) is an \(\tilde{H}G\)-strong semilattice of \(S_\alpha \) and by Theorem 4.1, \(\tilde{H} \) is a congruence on \(S \). Moreover, we have \(xa = (x\varphi^a_d(\beta,\alpha,\beta))(ax\varphi^a_d(\alpha,\alpha,\beta)) \) and thereby, \(axa = ((x\varphi^a_d(\beta,\alpha,\beta))(ax\varphi^a_d(\alpha,\alpha,\beta)))(a\varphi^x_d(\alpha,\alpha,\beta)) \). By the fact \((xa)^0, (axa)^0 \in L \), we can easily see that \((xa, axa) \in \tilde{L}|S_\alpha, \) and so, by our hypothesis, \(S = \tilde{L}G[Y; S_\alpha, \varphi_{\alpha, \beta}] \). This implies that there exist some homomorphisms \(\varphi^E_d(\alpha,\beta,\gamma) \in \varphi_{\alpha,\beta,\gamma} \) and \(\varphi^E_d(\gamma,\alpha,\beta) \in \varphi_{\gamma,\alpha,\beta} \) satisfying the conditions \(y(xa) = ((ya)\varphi^E_d(\gamma,\alpha,\beta))((xa)\varphi^E_d(\alpha,\alpha,\beta)) \) and \(y(axa) = ((ya)\varphi^E_d(\gamma,\alpha,\beta))((xa)\varphi^E_d(\alpha,\alpha,\beta)) \). Hence, it follows that

\[(y(xa))\tilde{H} = [(ya)\varphi^E_d(\gamma,\alpha,\beta)](xa)\varphi^E_d(\alpha,\alpha,\beta)\tilde{H} = (ya)\varphi^E_d(\gamma,\alpha,\beta)(xa)\varphi^E_d(\alpha,\alpha,\beta)\tilde{H} = (ya)\varphi^E_d(\gamma,\alpha,\beta)(xa)\varphi^E_d(\alpha,\alpha,\beta)\tilde{H} \]
and
\[
(y(axa))\tilde{H} = \{(y\varphi_d^{\gamma}(\alpha,\alpha\beta\gamma))\{(a\varphi_d^{\rho}(\alpha,\alpha\beta\gamma))(a\varphi_d^{\rho}(\alpha,\alpha\beta\gamma))\}^\tilde{H}
\]
\[
= \{(y\varphi_d^{\gamma}(\alpha,\alpha\beta\gamma))(a\varphi_d^{\rho}(\alpha,\alpha\beta\gamma))\}^\tilde{H}.
\]
This leads to \((yxa)\tilde{H} = (yaxa)\tilde{H}\) and so \(S/\tilde{H}\) is a right quasi-normal band. Thus, \(S\) is indeed a right quasi-normal \(\tilde{H}\)-cryptogroup.

Since we have already mentioned that a band \(B\) is a normal band if for all elements \(e, f, g\) in \(B\), the identity \(efge = egfe\) holds in \(B\) (see [6]). In closing this paper, we characterize the normal \(\tilde{H}\)-cryptogroups. In fact, this result gives a modified version of the theorem of Petrich and Reilly in [11] on normal cryptogroups, in particular, the theorem on normal cryptogroups in [11] and also the theorem of Fountain on superabundant semigroups in [4] is now refined and amplified in the class of quasiabundant semigroups.

Theorem 4.3 An \(\tilde{H}\)-abundant semigroup \(S\) is a normal \(\tilde{H}\)-cryptogroup if and only if \(S\) is a \(\tilde{D}G\)-strong semilattice of completely \(\tilde{F}\)-simple semigroups, that is, \(S = \tilde{D}G[Y; S_\alpha, \alpha, \beta]\).

Proof. (*Necessity*) The proof is similar to the necessity part given in Theorem 4.2, that is, we only need to prove that \(\tilde{D}|S_{\alpha} \subseteq \rho_{\alpha, \beta}\) for all \(\alpha, \beta \in Y\) with \(\alpha \geq \beta\). Since every semigroup \(S_\alpha\) can be regarded as a \(\tilde{D}\)-class of \(S\), we can just let \(a \in S_\alpha, x, y \in S_\beta\). Recall that \(S = (Y; S_\alpha)\) is a normal \(\tilde{H}\)-cryptogroup. \(S/\tilde{H}\) is a normal band. Now, by the normality of the band \(S/\tilde{H}\), we have
\[
(axa)\tilde{H} = (a(axy)a)\tilde{H} = (ayxa)\tilde{H} = (aya)\tilde{H}.
\]
Thus, by Lemma 3.1, we see that \((x, y) \in \rho_{\alpha, \beta}\) and whence \(\tilde{D}|S_\alpha \subseteq \rho_{\alpha, \beta}\). This proves that \(S = \tilde{D}G[Y; S_\alpha, \alpha, \beta]\). (*Sufficiency*) Let \(S = \tilde{D}G[Y; S_\alpha, \alpha, \beta]\), where each \(S_\alpha\) is a completely \(\tilde{F}\)-simple semigroup, for all \(\alpha \in Y\). Then by definition, \(S\) is an \(\tilde{D}G\)-strong semilattice of semigroups \(S_\alpha\) and also \(S\) is an \(\tilde{D}G\)-strong semilattice of semigroups \(S_\alpha\). By applying Theorem 4.2 and its dual, we immediately deduce that \(\tilde{H}\) is a congruence on \(S\) and for all \(a, x, y \in S\), we have
\[
[(axy)a]\tilde{H} = [ay(xya)]\tilde{H} = (ayxya)\tilde{H} = (aya)\tilde{H}.
\]
This shows that \(S/\tilde{H}\) is a normal band. Moreover, since each \(S_\alpha\) is a \(\tilde{D}\)-class of \(S\), for every \(\alpha, \beta \in Y\) with \(\alpha \geq \beta\), the set \(D(\alpha, \beta)\) is just a singleton. This means that \(S\) is a strong semilattice of completely \(\tilde{F}\)-simple semigroups \(S_\alpha\). Our proof is completed.

References

REFERENCES