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Abstract. We introduce the concepts of Green ~-relations on H-abundant semigroups. By using the gen-
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1. Introduction

It was proved by Clifford [1] that a regular semigroup is a union of groups if and only if it is
a semilattice of completely simple semigroups. It is also known that if the set of all idempotents
of a completely regular semigroup S is the center of S, then S can be expressed by a strong
semilattice of groups (see [1]). Thus, we usually regard the completely regular semigroups as
generalized groups. Moreover, by Petrich and Reilly, we call a completely regular semigroup
S a normal cryptogroup if the Green relation H on S is a normal band congruence on S. In
particular, a completely regular semigroup .S is a normal cryptogroup if and only if S can be
expressed by a strong semilattice of completely simple semigroups (see [12] and [13]). This result
was further generalized by Fountain by proving that an abundant semigroup .S is a superabundant
semigroup if and only if S is a semilattice of completely 7 * -simple semigroups [4]. The structure
of superabundant semigroups whose set of idempotents forms a subsemigroup have been recently
extensively investigated by Ren and Shum in [15] and [16].

The Green x-relations on a semigroup .S were first defined by Pastijn [11] which can be re-
garded as the Green relations in some oversemigroups of .S. These relations were formulated by
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Fountain [4] as follows:

L£* ={(a,b) €S x8:(Vr,y € SY)azr = ay < bxr = by},
R* = {(a,b) € Sx S: (Va,y € S )za = ya < xb = yb},
H* =L'NR*, D=L VR
Later on, El-Qallali further generalized the Green *-relations to Green ~-relations [3] as follows:

L ={(a,b)€SxS:(Vee E(S))ae =a< be = b},

R ={(a,b) € Sx S: (Ve E(S))ea=a< eb=b},

H =LNR,D=LVR.
We can easily see that L and R are equivalent relations on S, however, the L relation is not neces-
sary to be right compatible with the semigroup multiplication and the R relation is not necessary
to be left compatible with the semigroup multiplication. We now denote the L -class containing
the element a of the semigroup S by L, and we observe that £ C L* C L. Among the usual Green
relations or the above relations, £- or the generalized L-relations are duals of the corresponding
‘R -relations or generalized R-relations. In what follows, we only discuss the properties which
are related to the £- relation and the generalized L-relation, respectively. One can easily see that
there is at most one idempotent of the semigroup S in each H ~class. If e € H,NE (S), for some
a € S, then we simply denote the idempotent e by 2°, for any x € Ha. Clearly, for any x € Ha
with a € S, we have z = z2° = 2%2.

If a semigroup S is regular, then every L-class of S contains at least one idempotent, and
so does every R-class of S. If S is a completely regular semigroup, then every H-class of S
contains an idempotent. According to Fountain [4], a semigroup is abundant if every L£*- and
R*-class of S contains some idempotents. In other words, the term “abundant” means that the
semigroup has plenty of idempotents. Clearly, we have £* = L on the set of all regular elements
of a semigroup. Thus, regular semigroups are obviously special abundant semigroups. Thus,
Fountain called such semigroup superabundant [4] if its every H*-classes contains an idempotent.
Obviously, completely regular semigroups are special superabundant semigroups. Following EI-
Qallali [3], we call a semigroup S a semiabundant semigroup if every L-class and every R-class of
S contain at least one idempotent. A semigroup S is called H-abundant if every H-class contains
an idempotent of S. Clearly, the H-abundant semigroups are generalizations of superabundant
semigroups in the class of semiabundant semigroups. One can easily see that L = L on the set of
regular elements in any H-abundant semigroup.
Throughout this paper, we call a band B a regular band (right quasi normal band) if B satisfies
the identity axya = azaya(rya = waya). According to Petrich and Reilly [12], a completely
regular semigroup S was called a regular cryptogroup if the Green relation H on S is a regular
band congruence on S. The structure of regular cryptogroup was investigated by Kong-Shum in
[8] and [9]. In the class of abundant semigroups, Guo and Shum [5] called an abundant semigroup
whose set of idempotents forms a regular band a cyber group. The semilattice structure of regular
cyber groups have been recently investigated in [9].
Naturally, one would ask : can we establish an analogous result of superabundant semigroups

[4] in the class of semiabundant semigroups or an analogous result of cryptogroups [12] in the
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class of H -abundant semigroups? In this paper, we will establish a theorem for H- -cryptogroups
by using the Green ~-relations and the K G-strong semilattice of semigroups, as described in [10].
We will show that an H- -cryptogroup is a regular H-cryptogroup if and only if it is an HG- strong
semilattice of completely J-simple semigroups. Our results in this paper also generalize and
enrich the corresponding results given in [1], [4], [7], [8] and [13].

2. KG-strong semilattices

We now restate the concept of G-strong semilattice decomposition of semigroup S given by
Kong and Shum in [8] and [9].

Let S = (Y;S,) be a semilattice of the semigroups S,,, where each S, is a subsemigroup
of the semigroup S and Y is a semilattice. We define the G-strong semilattice of semigroups by
generalizing the well known strong semilattice of semigroups ( see [9]).

Definition 2.1 Let S = (Y;S,) be a semigroup. Suppose that the following conditions S are
satisfied:

(i) (Va, B € Y,a = 3), there exists a family of homomorphisms (g4 5) : Sa — Sp, where
d(a, B) € D(a, ) and D(«, 3) is a non-empty index set.

(i) (Va €Y), D(«, ) is a singleton. Denote the element in D(a, o) by d(a, o). In this case,
the homomorphism g(q,q) : Sa — Sa is the identity automorphism of the semigroup S,

(iii) (Va, 8,7 € Y,a = B > v), if we write 9o 38 = {@aa,p) : d(a,3) € D(a,3)} then
@&,ngﬁ,’y g (Paﬁ, Where

Do, 3PBy = 1Pd(a,3)Pd(B,y) : Vd(a, B) € D(a, 3),d(B,7) € D(B,7)}.

(iv) foreach o, 8 € Y, there is a mapping from S, into the set ¢ 3 o3 Whose value at any given
element a € S, is denoted by cpg( 5.0) such that for all b € Sg,

ab = (60 0)) (05.08))-

Then the above semilatttice of semigroups is called the generalized strong semilattice of semi-
groups S, and in brevity , the “G-strong semilattice” of semigroups S, and denoted it by S =
G[Y; Sa, Soa,,@]-

The following definition is a more general version of (G-strong semilattices.

Definition 2.2 Let K be any equivalent relation on a GG-strong semilattice of semigroups S =
GY'; Sa, @a,p]. Then, we call S a “ICG-strong semilattice of semigroups S,,” if for every o, § €
Y, the mappin.g a+— gog( 8,08) has the property that cp?l( Bap) = 902( B.08) whenever the elements
a,b € S, are in the same KC-class of .S.

Thus, it is clear that the G-strong semilattice of semigroups .S can be determined by an equivalent
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relation K. We therefore call the above generalized strong semilattice of semigroups S, a “)CG
-strong semilattice of semigroups S,” and is denoted by S = KG[Y; Sy, ¢a g], where K is any
one of the Green relations £, R, D and H, respectively.

Remark 2.3 It is clear that the X G-strong semilattice is stronger than the GG-strong semilattice
but it is weaker than the usual strong semilattice. In fact, if p and J are equivalent relations on
the semigroup S = (Y';.S,) with p C 0, then one can observe that 6G[Y'; Sy, pq g is “‘stronger”
than pG[Y'; So, pa,p). As special cases, 15G[Y'; Sy, ¢q g is the “weakest” KG-strong semilattice
of semigroups since 1g is the “smallest” equivalent relation on S and also nG[Y'; Sy, ¢a.g] is the
strongest JCG-strong semilattice of semigroups since 7 is the “greatest” equivalent relation on S,
where 1g is the identity relation on S and 7 is the semilattice congruence on .S which partitions
the semigroup S into disjoint subsemigroups S, (v € Y) of S. Hence, we can easily see that
nG[Y; Sa, ¢a,g) is the usual strong semilattice of semigroups since in this case, every index set
D(a, ) is a singleton for o« > [ on Y and hence there exists one and only one structure homo-
morphism in the set of structure homomorphisms ¢, 3.

We have already defined the Green ~-relations L,R,Hand D on a semigroup S. In order to
define the Green ~-relation 7 on S, we consider the left ~-ideal L of a semigroup S.

Definition 2.4 A left (right) ideal L (R) of a semigroup S is called a left ~-ideal of S if L, C
L(R, C R) holds, for all a € L(a € R). We call a subset I of a semigroup S a ~-ideal of §'if it
is both a left ~-ideal and a right ~-ideal.
It is noteworthy that if S is a regular semigroup, then every left (right, two-sided) ideal of S is a
left (right, two-sided) ~-ideal. We also observe that for any idempotent e in a semigroup S , the
left (right) ideal Se(eS) is a left(right) ~-ideal. For if a € Se, then a = ae , and hence for any
element b in Ea, we have b = be € Se.

By Definition 2.4, we see that the semigroup S is always a ~-ideal of itself, and we denote the
smallest ~-ideal containing the element a of S by J(a). Now, we define 7 = {(a,b) € S x S :

J(a) = J(b)}.

Definition 2.5 An H-abundant semigroup S is called completely J -simple if .S does not contain
any non-trivial proper ~-ideal of 5.

We now give some properties of the H-abundant semigroups. Some of the properties may have
already been known or can be easily derived, however, for the sake of completeness, we provide
here the proofs.

Lemma 2.6 Let S be an H-abundant semigroup. Then the following properties hold:

(i) The Green ~-relation His a congruence on S if and only if for any a,b € S, (ab)? =
(a"80)°.

(ii) Ife, f are D-related idempotents of S, then eD f.
(iii)
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(iv)

If e, f are idempotents in .S such that .7 f, then €D f.

Proof.

@)

(ii)

(iii)

(iv)

(Necessity). For any a,b € S, we have aHa® and bHHO. Sinceﬁ is a congruence on S,
abHa’b". But abH(ab)?, and so (ab)? = (ab") since every H-class contains a unique
idempotent.

(Sufficiency). We only need to show that H is compatible with the semigroup multipli-
cation of S since H is an equivalent relation on S. Let (a,b) € H and ¢ € S. Then
(ca)® = (a%)? = ("°)? = (cb)" and hence, H is left compatible to the semigroup mul-
tiplication. Dually, H is right compatible with the semigroup multiplication and thus H is a
congruence on S.

Singve eﬁf, there exist elements a1, - - - , a; of S such that e/jalﬁag cee Qg L f. Since S'is
an ‘H-abundant semigroup, eLa{Ra3 - - ad L f. Thus eDf.

Ifa,b € S and aﬁb, then by (ii), aolgb?v. Hence there exist elements ¢, d in S with a’LcRY°
and a"RdLbY, and consequently, aLcRb and aRdLb. Thus the result is proved.

Since SeS = Sf.S, there exist elements z,y, s,t in S such that f = set and e = xfy.
Let h = (fy)? and k& = (se)’. Then hfy = fy = ffy andso h = h? = fh and
sek = se = see, and thereby, k = k? = ke. Hence, hf, ek are the idempotents satis-
fying the relations hfRh and ekLk . These imply that ehfReh and ek fLkf. Now by
eh = zfyh = xfy = eand kf = kset = set = f, we have eRefLf. This shows that
eDf.

Similar to the definition of cyber group given by Guo and Shum [5], we formulate the following
definition.

Definition 2.7 An H-abundant semigroup S is called an ﬁ—cryptogmup if the Green ~-relation
H is a congruence on S. Also, we call an H-abundant semigroup .S a regular H-cryptogroup if
H is a congruence on S such that S/H is a regular band. Thus, H-cryptogroups are analogy of
cryptogroups in the class of H-abundant semigroups. Also, we see in [5] that an H-cryptogroup
is a generalized cyber groups.

The ﬁ—cryptogroup S has the following properties:

Lemma 2.8

(1)
(i)
(iii)

For any element a of the H-cryptogroup S , J(a) = Sas.
For the ﬁ—cryptogroup S,J =D.

If the ﬁ—cryptogroup S is completely J -simple, then the idempotents of S are primitive.
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(iv) If the ﬁ—cryptogroup S is completely J -simple, then the regular elements of S generate a
regular subsemigroup of S.

Proof.

(i) Obviously, we have a® € J(a) and so Sa’S C J(a). We need to show that the ideal
Sa®8 is in fact a ~-ideal and since a = aa’a’ € Sa’S, J(a) C Sa’S. Let b = zay €
Sa’S(x,y € S)and k = (a®y)". Then a®a®y = a®y = ka’y so that a°(a%)° = k* = k.
Also since H is a congruence, za’yHak. Now let h = (zk)” = (za"y)°. Then zkh =
xzk = zkk sothat h = h? = hk = ha®k € Sa®S. Hence if ¢ € Ly, d € Ry, then
¢ =ch,d = hd € Sa’S and hence, Sa’S is a ~-ideal, as required.

(i) Suppose that (a,b) € S with aJb. Then by (i), we have Sa®S = Sb°S. Now, by Lemma
2.6 (iv), a®Db° and RY aHa Db Hb. This implies that aDb and hence 7 C D. Conversely,
let a,b € S with aDb. Then by Lemma 2.6 (iii), there exists an element ¢ € S such that
aLcRb. This leads to aoﬁcoRbO and so Sa’S = S8 = Su°S. Now, by (i), (a,b) € J
and hence D - j Therefore, j D.

(iii) Let e, f be idempotents in S with e < f. Since S is completely J- simple, f € SeS. Now
by the first part of Exercise 3 in [14][§8.4], there exists an idempotent g of .S such that fDg
and g < e. Let a € S be such that fLaRg. Then fLa"Rg and since g < f, we have

a’ = ga’(gf)a’ = g(fa’) = gf = g.

Now by noting that ¢ < f and gL f, we have f = fg = g. However, since g < e, we obtain
e = f and hence all idempotents of S are primitive.

(iv) Let a,b be regular elements of S. Since S consists of a single D-class, by (ii) and by
Lemma 2.6 (iii), there exists an element ¢ € S such that aLcRb. Hence aLcPRb. This
leads to c’b = b and aLcP since a is regular. Now we have abLb and so the regularity of ab
follows from the regularity of b.

We now establish the following theorem for H -cryptogroups.

Theorem 2.9 Let S be an ‘H -cryptogroup. Then S is a semilattice Y of completely J- simple
semigroups S, (v € Y) such that for every a € Y and a € Sy, we have Ly(S) = La(Sa) and
Ry (S) = La(Sa). N _ N

Proof. If a € S, then aHa? and so, J(a) = J(a?). Now for a,b € S, we have (ab)? € SbaS,
and hence, it follows that

J(ab) = J((ab)?) C J(ba).

Now, by symmetry, we obtain J (ab) =J (ba) Since, by Lemma 2.8 (i), we have J(a) = Sa°S
and J(b) = S°S so that if ¢ € J(a) N J(b), then ¢ = zay = zb°t for some z,y,z,t € S.
Now 2 = zb%za’y € St0tza®S C J(btxa®) and hence, J(b°tza®) = J(a°t'tz) by using
previous arguments. Thus, ¢2 € J(a%0°) and since ¢Hc?, we have ¢ € J(a%°). Since aHa®,
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bNﬁbO and H is a congruence on S, we have abHa't° . Consequently, ¢ € J (ab), and thereby

J(a) N J(b) C J(ab). The converse containment is clear so that J(a) N J(b) = J(ab). We can

easily see that the set Y of all ~-ideals J(a)(a € S) forms a semilattice under set intersection and
that the mapping a — J(a) is a homomorphism from S onto Y. The inverse image of .J(a) is
Just the J-class J, which is a subsemigroup of S. Hence S is a semilattice Y of the semigroups
Ja. Now let a,b be elements of J-class J and suppose that (a,b) € L£(J). Then, a®,0° € J
so that (a”,0") € L(J), that is, a’® = a% %" = v° and (a°,8°) € ;(S) It follows that
(a,b) € L(S) and consequently, by L,(S) C J, we have L,(S) = L(J). By using a similar
argument, we can show that R,(S) = R4(J). From the above discussion, we can deduce that
Hy(J) = Hy(S) and so J is indeed an H-abundant semigroup. Furthermore, if a,b € J, then
by Lemma 2.8 (i), (a,b) € D(S) and hence, by Lemma 2.6 (iii), there exists an element c in

Lo(S) N Ry(S) = Ly(J) N Ry(J). Thus a, b are D-related in J and so J is J-simple.

For the ﬁ—cryptogroups, we have the following theorem.
Theorem 2.10 Let S be an H -cryptogroup which is expressed by the semilattice of semigroups
S = (Y;S,). Then the following statements hold:

(i) For o, and 3 in the semilattice Y with o > 3, if a € S, then there exists b € Sg with a > b;
(ii) For a,b,c € S with b7-(c, ifa>0b, a>cthenb=c;
(iii) Fora € E(S)andb € S,ifa > bthenb € E(S) .

Proof. (i) Let ¢ € Sg. Then, by Lemma 2.6 (i), we see that a(aca)®, (aca)’a and (aca)® are all
in the same H-class of the semigroup S and hence, a(aca)? = (aca)’a(aca)® = (aca)®a. Write
b = a(aca)®. Then b € Sg and a > b. (ii) By the definition of “>", there exist e, f, g, h € E(S)
such that b = ea = af, ¢ = ga = ah. From eb = b and bHb°, we have eb® = 0. Similarly,
h = . Thus ec = ec’c = eb’c = b'c = c. By using similar arguments, we have bh = b and
0, b = bh = eah = ec = ¢, as required. (iii) We have b = ea = af for some e, f € FE(S), and
whence

b’ = (ea)(af) = ea®f =b.
The following fact can be easily observed:

Fact 2.11 Let ¢ be a homomorphism which maps an ﬁ—cryptogroup S into another H -cryptogroup
T. Then (ap)? = a%p.

3. Properties of regular ﬁ-cryptogmups

Lemma 3.1 Let S be a regular H -cryptogroup(that is, His a congruence on the H-abundant
semigroup S such that S/H is a regular band). For every a € S, we define a relation p, on S by
(b1,b2) € pg if and only if (ab1a)® = (abea)®, (b1, be € S). Then the following properties hold
on S:
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(1) p, is a band congruence on S

(i) (Va,a1 € Sa), pa = pa,. that is, p, depends only on the component S, containing the
element ¢ rather than on the element itself, hence we can write p, = pg, forall a € S,.

(iii) (Vo, B € Y witha > ), po € pg and pg|s, = wg,, where wg,, is the universal relation on
Sa.

Proof. (i) It is easy to see that p, is an equivalent relation on S, for all « € S. We now prove
that p, is left compatible with the semigroup multiplication. For this purpose, we let (x,y) € p,
and ¢ € S. Then, by the definition of p,, we have (aza)? = (aya)®. Since S is a regular
ﬁ—cryptogroup, by Lemma 2.6 (i) and the regularity of the band S/ H, we obtain that

(acza)® = (ac(aza))’ = ((ac)(aza)°)’ = ((ac)’(aya)®)° = (acya)’.

Hence, (cr, cy) € pa. Dually, we can prove that p, is right compatible with the semigroup multi-
plication. Thus p, is a congruence on S. Obviously, H C p, and so p, is a band congruence on S.

(ii) Let (x,y) € pa. Then, by the definition of p,, we have (aza)? = (aya)® and so af (aza)’al =

a%(aya)®al. This leads to (a%(aza)?a?)? = (a9(aya)®a?)?. Since S/H = (Y;S4/H) is a reg-
ular band and by Lemma 2.6 (i), we obtain (alaalmalaal)o = (alaalyalaal)o. However, since
a, ay are elements of the completely J -simple semigroup Sy, (ajaa;)? = @Y. Thereby, by Lemma
2.6 (i) again, we have (a1za1)? = (a1ya1)’, thatis, (x,y) € pa,. This shows that p, C pg,. Sim-
ilarly, we also have p,, C p,. Thus, p, = pg,. Since this relation holds for all a € S,,, we usually
write p, = po. (iii) Let @ € So,b € Sg and o > (3. We need to prove that p, C pg. For this
purpose, we let (7, ) € po = pa, by (ii). Then, by the definition of p,, we have (aza)’ = (aya)’
and hence b(ara)’b = b(aya)’b. By Lemma 2.6 (i) and the regularity of the band, we have
(babzbab)? = (babybab)®. Since a > BinY and a € S,,b € S5, we have (bab)? = Y. By
using Lemma 2.6 (i) again, we can show that (bzb)? = (byb)°, that is, (z,y) € pp = pg. Thus,
pa C pp as required. Furthermore, it is trivial that pg|s, = wg,, which is the universal relation
on the semigroup Sy,.

We now use the band congruence p, defined in Lemma 3.1 to describe the structural homomor-
phisms for the H -cryptogroup S = (Y'; S, ), where each S,, is a completely 7 -simple semigroup.

We first consider the congruence p, 3 = pa|5ﬁ for a, B € Y, which is a band congruence on
the semigroup Sz. Now, we denote all the p,, g-classes of Sg by {Sg(a,) : d(a, 8) € D(a, 3)},
where D(a, (3) is a non-empty index set. In particular, the set D(«, ) is a singleton and we can
therefore write d(a, o) = D(«, ). We have the following lemma.

Lemma 3.2 Let S = (Y; S,,) be a regular ﬁ-cryptogroup. Then, for all o, § € Y with « > 3, the
following statements hold for all d(«, 3) € D(«, ().

(i) Forall a € S,, there exists a unique a4(4,3) € Sq(a,g) satisfying a > aga,p) ;

(ii) Forall a € S, and © € Sy g), if a® > e for some idempotent e € Sd(a,p) then eax =
ax,vae = za, ea = ae and (ea)’ = ¢;
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(iii) Let a € S,. Define Pd(a,B) ° So — Sd(a,ﬁ) by APd(a,B) = Qd(a,)> where Ad(a,8) €
Si(a,p) and @ = agq,3)- Then @g, g is a homomorphism and a5 = a(aba)? =
(aba)’a for any b € Sy 5)-

Proof. (i) We first show that for any a € S, and b € Sy, 5), we have ab € Sy(q ), that is,

(ab,b) € pag. Infact, since S = (Y, 5, ) is an H -cryptogroup, each S, is a completely 7 -simple
semigroup. Hence, we have (zax)? = 29, for all x € S,,. This leads to (zabr)? = (razbr)? =
(xbx)° by the regularity of the band S/ H and Lemma 2.6 (i). Thereby, (ab,b) € pq p. Similarly,
we also have ba € Sj(q,g)- Invoking the above results, we have aba € Sy(q,5) forany b € Sy g)-
Since H is a band congruence on S, by Lemma 2.6 (i) again, we see that a(aba)?, (aba)® and
(aba)%a are in the same H-class of S so that a(aba)® = (aba)®a(aba)® = (aba)®a. Let a(aba)® =
d(a,3)- Then by the natural partial order imposed on .S, we have a = ag(q,)- In order to show the
uniqueness of a,(,,3), we assume that there is another az(aﬂ) € Sq(a,p) satisfying a > a:’;(aﬂ).
Then, by the definition of “<”, we can write a:l(oz,ﬁ) = ea = af for some e, f € E(S5) and so

0 _ — 40 1,0 0,0 _ 0
Tgiap)® = Qg = @ Gy, 5 By the factay , 5 Ha’, we have (afl(aﬂ)) a’ = (ajl(aﬂ)) and
ao(az(a B))O = (o ﬂ))o. Consequently, by the definition of “ < 7, we have a” > (@%a ﬁ))o. By
Lemma 2.6 (i) again, we deduce that

(az(aﬂ))o = (GO(GZ(a,ﬁ))OGO)O = (aaz(aﬂ)a)o = (aba)°.

Hence, (afl(aﬂ), Ad(a,B)) € H, and consequently, by Theorem 2.10 (ii), U(0,8) = Gd(a,8)- This
shows the uniqueness of Ad(a,B)- (ii) It is easy to see that, by the definition of “<”, a® >
(a®(axz)%a®)°. Also, since a € S, and z € Sd(a,8)> We have ax € Sy(q gy by (i). Moreover, since
Si(a,) 18 @ pa, 3 -congruence class, (ax)? € Sd(a,)- Thus, by (i) again, we have (a®(az)%a®)? €
Sd(a,p) and e = (a°(ax)’a’)°. Thereby, we have eax = (a’(az)%a")a’(az)a’az = ax. Sim-
ilarly, we have xae = wa. Since z is arbitrarily chosen element in Sy, 3), we can particularly
choose x = e. In this way, we obtain ea = ae and consequently, by Lemma 2.6 (i), we have
(ea)’ = (ea®)? = e. (iii) By using the result in (i), we can define ©4(a. ) : Sa — Sg(a,9)
by apg(a,5) = Ad(a,8) = a(aca)? = (aca)a, for any a € S, and ¢ € Sd(a,)- Then, for any
a,b € S,, we have, by (ii),

(@a(a,5)(0aa) = adasPias)
= (aca)’ab(beb)’
= (aca)®(ab(bch)?)
= ab(beb)°.

Similarly, we can show that (apq(a,5)) (b@4(a,8)) = (aca)’ab. Hence, ab > (a@d(a,8)) (bPd(a,8))-
Thus (ab)@a(a,3) = (@Pd(a,8)) (0¥d(a,3)), by the definition of g 3). This shows that g, ) is
indeed a homomorphism.

We now proceed to show that the homomorphisms given in Lemma 3.2 (iii) are the structural
homomorphisms for the G-strong semilattice G[Y'; S, , ¢q,g) induced by the semigroup S =
(Y'; Su) under the band congruence p,, on the semigroup S,.
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Lemma 3.3 Let S = (Y;S,) be an H -cryptogroup and Pa,p = {®d(a,p) | dla, B) € D(a, B)}
fora > BonY , where D(«, [3) is a non-empty index set. Then

(1) Qa,pP8~y C Payfora>pB>vyonY.
(ii) Fora € Sp,and 3 €Y,

APa,af = {asod(a,ozﬁ)wld(a?aﬁ) € D(Oé, Oéﬁ)} C Sd(ﬁ,aﬁ)a
for some pg ap-class Sy(,q4)-

Proof. (i) Clearly, ©q(q,«) is an identity automorphism of S,. We now prove that ¢, gps ., C
Pa,y fora > B > yonY. Pick Pd(a,p) S0 — Sd(a,ﬁ) - Sg and Pd(B,y) Sg — Sd(ﬁ,y) -

Sy. We show that ©4(4,8)Pd(3,y) = Pd(a,y) fOr some pya) © Sa — Sa(a,y) S S For this
purpose, we let a € Sq, b1,b2 € Sya,p) and ¢ € Sy ). Then, because S/’I-N( is a band, by
Lemma 3.2, we have bl(pd(ﬂﬁ) = bl(blcbl)o, bg(pd(ﬁﬁ) = bz(bQCbQ)O. Since bl, bg S Sd(oz,ﬁ)’ by
the definition of pa g, (b1,b2) € pa s. This leads to (abja)® = (abya)’. Now, by the regularity of
the band S/ H, we can easily deduce that

(a(brpas)a)’ = (abi(bichi)’a)’ = ((abra)’c(abia)’)’
= ((abga)®c(abya)®)? = (a(by(bychy)?)a)?
= (a(bapy(p.))a)’-

Thus, by the definition of p, -, we have (blgod(ﬁﬁ), b2%d(8,y)) € Pay- In other words, there ex-
ists @ pay-class Sgq ) satistying Sy, 8)Pd(3,y) S Sd(ay)- AlSO, Yi(a,3)Pa(s,y) clearly maps
Sa into Sj(q,) by the transitivity of “< 7, and hence @ 3)Pd(8,y) = Pd(a,y)- This proves that
Pa,3PBry © Pay- (1) It suffices to show that for any g(q,g) and ©4/(a,a8) € Pa,ap » We have
(Pd(a,a8), WP (a,a8)) € PB.ap- For this purpose, we let 2 € Sy(q 0y and 2’ € Sg(q,ap)- Then,
by Lemma 3.2 (iii), we have apg(q,q3) = a(aza)® and AP (a,0B) = a(az®. Letb € Sg.
Since S, is a completely J -simple semigroup, and bab, ap(a,ap)s WP (a,ap) are elements
in S,s, we obtain that (bab, (bab)(awy(a,ap))(bab)) € H and (bab, (bab)(apq (a,qp))(bab))

€ H. Since every H-class of Sap contains a unique idempotent, ((bab)(a@y(a,qag))(bab))’ =
((bab)(apg (a,qp)) (bab))®. In other words, we have ((bab) (a(axa)?)(bab))® = ((bab)(a(az")(bab))°
Thus, by the regularity of the band S/H, we can further simplify the above equality to (b(a(aza)?)b)°
(b(a(az’)b)°, that is, (b(aPa(a,ap)b)” = (b(aPa(a,as)b)’. By the definition of pg .5, We see
that (ad(a,a8), 4Pd (a,08)) € PB.as-

Finally we show that S = (Y;S,) equipped with the above structural homomorphisms acting
on the p, g-equivalence class of S forms a G-strong semilattice of semigroups S,. We need the
following lemma.

Lemma 34 Let S = (Y; S,) be a regular ﬁ—cryptogroup. For any a € S,,b € Sg, suppose that
@pa,08 C Sis,a8) 0Ps.as € Sd(a,ap) Where vq op and @g o are the structural homomorphisms
defined in Lemma 3.3. Then we have

ab = (apd(a,a8)) (0Pd(3,08))-
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Proof. Letci € Sg(a,ap) €2 € Sq(8,a8)- Then (acia)’ € Sd(a,ap) because Sy ag) 18 @ pa,ap-
equivalence class of Sq3. Now, by Lemma 3.2, apg(a,a5) = (ac1a)’a and bpg(g o) = b(beab)"
for vg(a,a8) € Pa,ap and Yg(.a5) € Pg.ap- Since we assume that apa,ap C Sg(s,q05), We have
aPd(a,ap) = (acra)a € S4q(3,ap)- Similarly, we have bpg5.08) € Sq(a,ap) N Sa(s,ap)- Thus, by
Lemma 3.2 (i), we have

(aPd(a,00)) (La(s.08) = (ac1a)’(ab(bezb)’) = ab(bezb)”

and also
(4(0,08)) (0La(8,0p)) = ((ac1a)’ab)(beab)” = (acia)’ab.

However, by the definition of the natural partial order “<”, we have ab > (a¢4(a,a8)) (09d(3,03))-
On the other hands, since every semigroup S, is primitive, we obtain

ab = (aPd(a,a8)) (0Pd(3,08))-

4. Structure of regular ﬁ-cryptogroups

In this section, we use the KG-strong semilattice to characterize regular ﬁ—cryptogroups.
Also, we consider the question when will the Green ~-relation H to be a right quasi-normal band
congruence? By using the KG-strong semilattice, we are able to give a description for the normal
H -cryptogroups. We note here that the orthodox regular H -cryptogroups with G-strong semi-
lattices have been studies in [10]. A construction theorem of orthodox regular H -cryptogroups
was also given in [8].

Theorem 4.1 An H- -cryptogroup S is a regular H- -cryptogroup if and only if S is an HG- strong
semilattice of completely 7-simple semigroups, that is, S = HG [Y'; Sas Pa.8)-

Proof. By the definition of the G-strong semilattice and the results obtained in §3, we have
already proved the necessity part of Theorem 4.1 since it is obvious that 7'N[| S5 € pa,pfora > fon
Y. We now prove the sufficiency part of the theorem. To prove that S/ Hisa regular band, we use
aresult in [14]. What we need is to prove that the usual Green relations £ and R are congruences
on S/ H. In fact, we only need to verify that £ is a left congruence on S/ H since R is a right
congruence on .S/ Z{ can be proved in a similar fashion. Since S = (Y’; S, ) is an H- -cryptogroup,
we can let eH, fH and gH € S/H, where e, f € S, N E(S), g € Sz N E(S) with (e, f) € L.
Then, we have ef = e and fe = f. By the definition of ﬁG—strong semilattice HG Y5 Sas @a.p)s
we can find the homomorphisms @Z{ﬁ,aﬁ) and @Zlc(aam € V8,08 (pg(a,aﬂ) € Pa,ap such that

(sea )R = {lo(el o)A )
= {[(9@2{5’a5))((ef)ﬁpfl(a,ag))] [(QQPZIC(QQB))(f@g(a,aﬂ))]}H
[(9902{57045))(!]0802(&704@)]ﬁ
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and

(geH = [g(ef)IH -
= (e /,aﬁx(ef)soz I
= [(g gag )(f@d(aaﬁ))]H

Thereby, (gegf)H = (ge)H. Analogously, we can also prove that (gfge)H = (gf)H . This
proves that £ is left compatible with the multiplication of S/ H. Since L is always right congru-
ence, L is a congruence on .S/ H, as required. Dually, R is also a congruence on S/ H. Thus
by [14] (see II. 3.6 Proposition ), S/ H forms a regular band and hence S is indeed a regular
'F[—cryptogroup. Our proof is completed.

Recall that a right quasi-normal band is a band satisfying the identity yxa = yaxa [6]. Also, a
left quasi-normal band is a band satisfying the identity axy = axay. Thus, we can easily observe
that both the right quasi-normal bands and the left quasi-normal bands are special cases of the
regular bands. Also, a normal band (that is, a band satisfies the identity axya = ayza) is a special
right quasi-normal band and a left quasi-normal band. Based on the above observation, we are
able to establish the following theorem for right quasi-normal H-cryptogroups.

Theorem 4.2 An H-abundant semigroup S is a right quasi-normal ﬁ—cryptogrollp if and only if
S is an LG-strong semilattice of completely 7-simple semigroups, that is, S = LG[Y; Sa, @a,s]-

Proof. (Necessity) Let S be a right quasi-normal H -cryptogroup. Then S/H is a right
quasi-normal band. To show that S is an LG-strong semilattice, by invoking Lemma 3.3 and its
proof, we only need to show that for any § > yon Y, £|5 C ps~- Infact, fora € Ss5,x,y €

S, with (z,y) € L, we have (axa)H = ((azy)a)H = (ayzya)H = (aya)'H by the right
quasi-normality of the band S/H. Thus, by the definition of ps,, we have ﬁ\ s, € ps~ as re-
quired. This shows that S = LG[Y;Su,Pa sl (Sufficiency) Let a € Sa,z € S, and
y € S,. Then, since S = EG[Y Sa, Pa,p) is an HG- strong semilattice of S, and by Theo-
rem 4.1, H is a congruence on S. Moreover, we have za = (xwd(ﬂ’aﬂ))(awd(maﬂ)) and thereby,
aza = (ag,. aﬁ))(a:cpfl(ﬁ o)) (@954 a)- BY the fact ((za)°, (aza)?) € L, we can easily see
that (za, aza) € L|g s+ and so, by our hypothesis, S = LG [Y Sa, @a,p)- This implies that there
exist some homomorphisms ¢ d(aB,afy) € Yap,apy and - d(yapy) € Praby satisfying the con-

ditions y(ra) = (?/Sf’d(7 aﬁy))((xa)SOd(a/g,am)) and y(aza) = (ynpdﬁ(%am))((axa)gpdﬁ(a@am)).
Hence, it follows that

(Waa)H = (005 apr)) (20) 05 05,0817
{(ygod (v, am)){[(iﬁ‘ﬁd(ﬁ afB) )(C“Pd(a aﬁ))]@d(aﬁ aﬁ'y)}}H
[(y% (v.a8m) (@9, aﬁ))god(aﬁ,aﬁ'y))}H
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and

(y(aza))H = {(ysodﬁ(y,aﬁw)){[(‘“Pg(a,ag))(xﬁpg(ﬁ,aﬁ))(a@g(a,aﬁ))]‘Pdﬁ(aﬁ,aﬁv)}}ﬁ

= [(ygpdﬁ('y,aﬁw))((agpz(a,aﬂ))(pdﬁ(aﬁ,aﬁfy))]H'

This leads to (yza)H = (yaza)H and so S/H is a right quasi-normal band. Thus, S is indeed a

right quasi-normal H-cryptogroup.

Since we have already mentioned that a band B is a normal band if for all elements e, f, g
in B, the identity efge = egfe holds in B( see [6]). In closing this paper, we characterize the
normal H -cryptogroups. In fact, this result gives a modified version of the theorem of Petrich and
Reilly in [11] on normal cryptogroups, in particular, the theorem on normal cryptogroups in [11]
and also the theorem of Fountain on superabundant semigroups in [4] is now refined and amplified
in the class of quasiabundant semigroups.

Theorem 4.3 An H-abundant semigroup S is a normal ﬁ—cryptogrollp if and only if S is a DG-
strong semilattice of completely [7-simple semigroups, that is, S = DG[Y; Sy, ¢a.g)-

Proof. (Necessity) The proof is similar to the necessity part given in Theorem 4.2, that is,
we only need to prove that D[g, C p, g forall a, 3 € Y with o > . Since every semigroup S,

can be regarded as a D-class of S, we can justleta € Sy, x,y € Sg. Recall that S = (Y; 5, ) isa
normal H-cryptogroup, S/H is a normal band. Now, by the normality of the band S/H, we have

(axa)H = (a(zyz)a)H = (ayxya)H = (aya)H.

Thus, by Lemma 3.1, we see that (z,y) € p, g and whence 25]56 C pa,p- This proves that S =
25G[Y; Sa, ¢a,p)- (Suf ficency) Let S = 5G[Y; Sa, Pa,p), where each S, is a completely J -
simple semigroup, for all « € Y. Then by definition, S is an EG—strong semilattice of semigroups
S, and also S'is an ﬁG—strong semilattice of semigroups .S, . By applying Theorem 4.2 and its
dual, we immediately deduce that H is a congruence on S and for all a, z,y € .S, we have

[(azy)aH = [ay(aya)|H = (ayzyza)H = (ayza)H.

This shows that S/ H is a normal band. Moreover, since each S, is a D-class of S , for every
o, €Y witha > 3, the set D(a, 8) is just a singleton. This means that S is a strong semilattice
of completely J-simple semigroups S,. Our proof is completed.
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