On the Group of the Elliptic Curve $y^{2}=x^{3}+4 p x$

Naser Zamani ${ }^{1, *}$, Arman Shams ${ }^{2}$
${ }^{1}$ Faculty of Mathematical Science, University of Mohaghegh Ardabili, Ardabil, Iran
${ }^{2}$ Department of mathematics, Shahid Madani University, Tabriz, Iran

Abstract. In this paper we study the group structure of the elliptic curves $E: y^{2}=x^{3}+4 p x$, where p is 3,5 or a prime of the form $u^{4}+v^{4}$ for positive integers u, v.
2010 Mathematics Subject Classifications: 11G05
Key Words and Phrases: Elliptic curves, Rank, Isogenous, Selmer group

1. Introduction

Let E denote an elliptic curve over \mathbb{Q} and $\Gamma=E(\mathbb{Q})$ be the set of all rational points on E. A seminal Theorem of Mordell-Weil asserts that Γ is a finitely generated Abelian group in a natural way with zero element \mathscr{O}. We put $\Gamma=\mathscr{T} \oplus \mathscr{F}$ where \mathscr{T} and \mathscr{F} are the torsion and maximal free subgroups of Γ respectively. By the rank of E, $\operatorname{rank}(E)$, we mean the rank of \mathscr{F}. Hence the rank of E is positive if and only if E possesses an infinity of rational points. Computational works show that a typical elliptic curve has more small rank [1, 9].

Let p be a prime number and consider the curve $E=E_{4 p}: y^{2}=x^{3}+4 p x$. We study the group Γ and show that $\mathscr{T}=\mathbb{Z}_{2}$. By combining some facts of [4], a result on the Selmer group of Γ and that of its isogenous $\tilde{\Gamma}$ will be given. Next, when $p=3,5, u^{4}+v^{4}$ for positive integers u, v, some results on the rank of E are presented. Although, it can be find some similar results concerning the 2 -isogenous of E in the literatures ($[5,8]$), which imply some of our results, our method of study completely differs from those.

2. Preliminaries

We begin with the following proposition which shows some properties of Γ.
Proposition 1. Let $Q=\left(x^{\prime}, y^{\prime}\right), P=(x, y)$ be two points of E such that $x^{\prime} \in \mathbb{Z}$ and $Q=2 P$. Then $x \in \mathbb{Z}$ is even.

*Corresponding author.

Email addresses: zamanin@uma.ac.ir, naserzaka@yahoo.com (N. Zamani), shzarghar.arman@gmail.com (A. Shams)

Proof. Let $x=a / b, \operatorname{gcd}(a, b)=1$ and $x \notin \mathbb{Z}$. According to the group law of Γ, one can see that

$$
x^{\prime}=\frac{\left(a^{2}-4 p b^{2}\right)^{2}}{4 a b\left(a^{2}+4 p b^{2}\right)}
$$

Hence, $\left(a^{2}-4 p b^{2}\right)^{2}-4 a b\left(a^{2}+4 p b^{2}\right) x^{\prime}=0$ which gives that $a^{4} \equiv 0(\bmod 4)$ and so a is even. Also, we have $b \mid\left(a^{2}-4 p b^{2}\right)^{2}$. Thus b is either even or $b= \pm 1$. The first case contradicts $\operatorname{gcd}(a, b)=1$. Thus we must have $b= \pm 1$ and $x \in \mathbb{Z}$ is even.

Lemma 1. For any prime p, the point $\mathbf{0}=(0,0)$ is the only element of order 2 in Γ.
Proof. Suppose the contrary, $\mathbf{0} \neq P=(x, y) \in \Gamma$ is of order 2. Thus $2 P=\mathscr{O}$ and hence $(x, y)=(x,-y)$. Then $x \neq 0, y=0$ and $x^{3}+4 p x=0$. Setting $x=a / b$ and $\operatorname{gcd}(a, b)=1$, we get $a^{3}+4 p a b^{2}=0$. Hence $b^{2} \mid a^{3}$. Since a, b are coprime, so $b= \pm 1$, i.e. $x \in \mathbb{Z}$. But, we have $p=x^{3} /(-4 x)=x^{2} /(-4)<0$, a contradiction.

Proposition 2. For any prime p, there is no point of order 3 in Γ.
Proof. On the contrary, we suppose $P=(x, y) \in \Gamma$ is of order 3, i.e. $2 P=-P$. Let $P=(x, y), 2 P=\left(x^{\prime}, y^{\prime}\right)$. Hence $\left(x^{\prime}, y^{\prime}\right)=-(x, y)=(x,-y)$, so $x^{\prime}=x$. On the other hand, from duplication formula, we have

$$
x=x^{\prime}=\frac{\left(x^{2}-4 p\right)^{2}}{4\left(x^{3}+4 p x\right)}
$$

Thus, $16 p^{2}-24 x^{2} p-3 x^{4}=0$ is a quadratic polynomial in variable p. Therefore,

$$
p=\frac{12 x^{2} \pm \sqrt{\Delta^{\prime}}}{16} \quad \text { with } \quad \Delta^{\prime}=192 x^{4}
$$

Since Δ^{\prime} is not square, then $p \notin \mathbb{N}$, a contradiction.
The following is one of our main results.
Theorem 1. For any prime $p, \mathscr{T} \cong \mathbb{Z}_{2}$.
Proof. By Lemma 1, $\{\mathscr{O}, 0\} \subseteq \mathscr{T}$. Let $P:=(x, y) \in \mathscr{T} \backslash\{\mathscr{O}, 0\}$. By Lutz-Nagell theorem, x and y are integers such that y^{2} divides the discriminant $\Delta=2^{8} p^{3}$ of the curve E. Thus

$$
y^{2}=1,2^{2}, 2^{4}, 2^{6}, 2^{8}, p^{2}, 2^{2} p^{2}, 2^{4} p^{2}, 2^{6} p^{2}, 2^{8} p^{2}
$$

We list the computations done with $2 P=\left(x_{2}, y_{2}\right)$ where

$$
x_{2}=\frac{\left(3 x^{2}+4 p\right)^{2}}{4 y^{2}}-2 x=\frac{\left(x^{2}-4 p\right)^{2}}{4\left(x^{3}+4 p x\right)}
$$

in the following table:

Table 1: Computations with $2 P=\left(x_{2}, y_{2}\right)$

y^{2}	x	$\left(x, y^{2} ; p\right)$	x_{2}
1	± 1	-	-
4	$\pm 1, \pm 2, \pm 4$	-	-
16	$\pm 1, \pm 2, \pm 4, \pm 8, \pm 16$	-	-
64	$\pm 1, \pm 2, \pm 4, \pm 8, \pm 16, \pm 32, \pm 64$	$(2,64 ; 7)$	$\frac{9}{4}$
256	$\pm 1, \pm 2, \pm 4, \pm 8, \pm 16, \pm 32, \pm 64$,		
	$\pm 128, \pm 256$	$(2,256 ; 31)$	$\frac{225}{16}$
p^{2}	$\pm 1, \pm p, \pm p^{2}$	-	-
$4 p^{2}$	$\pm 1, \pm 2, \pm 4, \pm p, \pm 2 p, \pm 4 p, \pm p^{2}$,		-
	$\pm 2 p^{2}, \pm 4 p^{2}$	-	-
$16 p^{2}$	$\pm 1, \pm 2, \pm 4, \pm 8, \pm 16, \pm p, \pm 2 p$,		
	$\pm 4 p, \pm 8 p, \pm 16 p$	-	
$64 p^{2}$	$\pm 1, \pm 2, \pm 4, \pm 8, \pm 16, \pm 32, \pm 64$,		$\frac{9}{4}$
	$\pm p, \pm 2 p, \pm 4 p, \pm 8 p, \pm 16 p, \pm 32 p$		
	$\pm 64 p, \pm p^{2}, \pm 2 p^{2}, \pm 4 p^{2}, \pm 8 p^{2}$,		
$\pm 16 p^{2}, \pm 32 p^{2}, \pm 64 p^{2}, \pm 64 p^{2}$	$(14,3136 ; 7)$		
$256 p^{2}$	$\pm 1, \pm 2, \pm 4, \pm 8, \pm 16, \pm 32, \pm 64$,		
	$\pm 128, \pm 256, \pm p, \pm 2 p, \pm 4 p, \pm 8 p$,		
	$\pm 16 p, \pm 32 p, \pm 64 p, \pm 128 p, \pm 256$		
	$\pm p^{2}, \pm 2 p^{2}, \pm 4 p^{2}, \pm 8 p^{2}, \pm 16 p^{2}$		
$\pm 32 p^{2}, \pm 64 p^{2}, \pm 128 p^{2}, \pm 256 p^{2}$	$(62,246016 ; 31)$	$\frac{225}{16}$	

The symbol ' - ' in Table 1 means that the equation $y^{2}=x^{3}+4 p x$ has no integer solution ($x, y ; p$) and hence no solution for x_{2}. We see that x_{2} is never zero and so $2 P$ can not be of finite order. This contradicts the fact that $2 P \in \mathscr{T}$.

3. A Result on Selmer Group of E

In this section, we want to evaluate the Selmer group of E. For ease in access, we recall some basic facts on the Selmer groups of the elliptic curves [4, 7]. Let E, E^{\prime} be elliptic curves defined over \mathbb{Q} and assume that there exists an isogeny $\varphi: E \longrightarrow E^{\prime}$ over \mathbb{Q} with $\varphi^{\prime}: E^{\prime} \rightarrow E$ its dual. Let \mathbb{K} be a field containing \mathbb{Q} with $\overline{\mathbb{Q}}$ its integral closure in \mathbb{K}. Then there is an exact sequence

$$
0 \longrightarrow E[\varphi] \longrightarrow E \xrightarrow{\varphi} E^{\prime} \longrightarrow 0,
$$

of $\operatorname{Gal}(\overline{\mathbb{Q}} / \mathbb{Q})$-modules where $E[\varphi]=\operatorname{ker}(\varphi)$. Taking Galois cohomology, we obtain the exact sequence

$$
0 \longrightarrow E^{\prime}(\mathbb{K}) / \varphi(E(\mathbb{K})) \xrightarrow{\delta_{\mathbb{K}}} H^{1}(\mathbb{K}, E[\varphi]) \xrightarrow{\varphi^{*}} H^{1}(\mathbb{K}, E)[\varphi] \longrightarrow 0,
$$

where $H^{1}(\mathbb{K}, E)[\varphi]$ is the kernel of φ^{*} and $\delta_{\mathbb{K}}$ is the connecting homomorphism. Consider the following commutative diagram ($\delta_{q}:=\delta_{\mathbb{Q}_{q}}$):

$$
\begin{array}{ccc}
0 \longrightarrow \quad E^{\prime}(\mathbb{Q}) / \varphi(E(\mathbb{Q})) & \xrightarrow{\delta_{\mathbb{Q}}} H^{1}(\mathbb{Q}, E[\varphi]) & \longrightarrow H^{1}(\mathbb{Q}, E)[\varphi] \\
\downarrow & \downarrow \\
0 \longrightarrow & \downarrow E^{\prime}\left(\mathbb{Q}_{q}\right) / \varphi\left(E\left(\mathbb{Q}_{q}\right)\right) \xrightarrow{\Pi \delta_{q}} \Pi H^{1}\left(\mathbb{Q}_{q}, E[\varphi]\right) \longrightarrow \Pi H^{1}\left(\mathbb{Q}_{q}, E\right)[\varphi] \longrightarrow 0
\end{array}
$$

where the symbol Π means the direct product over $P_{\infty}=\{$ primes $\} \cup\{\infty\}$ and $q \in P_{\infty}$. Then, the φ-Selmer group $S^{(\varphi)}(E / \mathbb{Q})$ and the Shafarevich-Tate group $\amalg \amalg(E / \mathbb{Q})$ are defined by

$$
S^{(\varphi)}(E / \mathbb{Q})=\operatorname{ker}\left\{H^{1}(\mathbb{Q}, E[\varphi]) \longrightarrow \Pi H^{1}\left(\mathbb{Q}_{q}, E\right)[\varphi]\right\}
$$

and

$$
\amalg \amalg(E / \mathbb{Q})=\operatorname{ker}\left\{H^{1}(\mathbb{Q}, E) \longrightarrow \Pi H^{1}\left(\mathbb{Q}_{q}, E\right)\right\}
$$

respectively. We note that there is another method of calculating the Selmer group. From the above commutative diagram and the definition of the Selmer group, we have the equivalent definition

$$
\begin{align*}
S^{(\varphi)}(E / \mathbb{Q}) & =\left\{x \in H^{1}(\mathbb{Q}, E[\varphi]) \mid \operatorname{res}_{q}(x) \in \operatorname{Im}\left(\delta_{q}\right), \forall q \in P_{\infty}\right\} \\
& =\bigcap_{q \in P_{\infty}} \operatorname{Im}\left(\delta_{\mathrm{q}}\right) \tag{1}
\end{align*}
$$

where for each $q \in P_{\infty}, \operatorname{Im}\left(\delta_{q}\right)$ is regarded as the subgroup of the group $H^{1}(\mathbb{Q}, E[\varphi])$ and $\operatorname{res}_{q}(x)$ is the residue of x at q.

In the following using some nice results of [4], we are able to calculate the Selmer group of E.

Theorem 2. Assume that $q \in P_{\infty}$ and let (, $)_{q}$ be the Hilbert symbol. For a subgroup $V \subset \mathbb{Q}_{q}^{\times} / \mathbb{Q}_{q}^{\times^{2}}$ we define

$$
V^{\perp}=\left\{x \in \mathbb{Q}_{q}^{\times} / \mathbb{Q}_{q}^{x^{2}} \mid(x, y)_{q}=1, \forall y \in V\right\} .
$$

Then we have
(1) $\operatorname{Im}\left(\delta_{q}\right)=\operatorname{Im}\left(\delta_{2}\right)=\operatorname{Im}\left(\delta_{2}^{\prime}\right)^{\perp}=(-4 q)$
(2) $\operatorname{Im}\left(\delta_{q}^{\prime}\right)=(q)$.

Proof. It follows [4, Theorem 2.1, Propositions 4.1, 4.2].
Corollary 1. Let \tilde{E} be the simultaneous curve of E. Then, we have $S^{(\varphi)}(E / \mathbb{Q})=(-4 p)$ and $S^{(\tilde{\varphi})}(\tilde{E} / \mathbb{Q})=(16 p)$.

Proof. It follows from (1) and the previous theorem that

$$
\begin{aligned}
S^{(\varphi)}(E / \mathbb{Q}) & =\operatorname{Im}\left(\delta_{\infty}\right) \cap \operatorname{Im}\left(\delta_{2}\right) \cap \operatorname{Im}\left(\delta_{p}\right) \\
& =\left(\mathbb{R}^{\times} / \mathbb{R}^{\times^{2}}\right) \cap(-4 p) \cap(-4 p) \\
& =(-4 p)
\end{aligned}
$$

and

$$
\begin{aligned}
S^{\left(\varphi^{\prime}\right)}(\tilde{E} / \mathbb{Q}) & =S^{\left(\varphi^{\prime}\right)}(\tilde{E} / \mathbb{Q}) \\
& =\operatorname{Im}\left(\delta_{\infty}^{\prime}\right) \cap \operatorname{Im}\left(\delta_{2}^{\prime}\right) \cap \operatorname{Im}\left(\delta_{p}^{\prime}\right) \\
& =\{1\} \cap(4 p) \cap(16 p) \\
& =(16 p) .
\end{aligned}
$$

4. Computation of the Rank of E

In this section we assume that $p=u^{4}+v^{4}$ is a prime number with $u, v \in \mathbb{N}$. We note that

$$
\left(2\left(u^{4}+v^{4}\right)(u+v)^{2}, 4\left(u^{2}+u v+v^{2}\right)\left(u^{4}+v^{4}\right) /(u+v)^{3}\right)
$$

is a point of E. Let \tilde{E} be the simultaneous curve of E and $\tilde{\Gamma}$ be its corresponding group. We consider α and $\tilde{\alpha}$ be the group homomorphism

$$
\begin{gathered}
\alpha: \Gamma \longrightarrow \mathbf{Q}^{\times} / \mathbf{Q}^{\times 2} \tilde{\alpha}: \tilde{\Gamma} \longrightarrow \mathbf{Q}^{\times} / \mathbf{Q}^{\times 2} \\
\alpha(P)=\left\{\begin{array}{ll}
1 & \text { for } P=\mathscr{O} \\
\beta(p) & \text { for } P=0 \\
\beta(x) & \text { for } x \neq 0
\end{array} \quad \tilde{\alpha}(P)= \begin{cases}1 & \text { for } P=\mathscr{O} \\
\beta(-p) & \text { for } P=0 \\
\beta(x) & \text { for } x \neq 0\end{cases} \right.
\end{gathered}
$$

where $P=(x, y)$ and β is a natural group homomorphism $\mathbf{Q}^{\times} \longmapsto \mathbf{Q}^{\times} / \mathbf{Q}^{\times 2}$. To compute the rank of E we use the well-known formula (see for example $[2,6]$)

$$
\begin{equation*}
2^{r}=\frac{\# \alpha(\Gamma) \cdot \# \tilde{\alpha}(\tilde{\Gamma})}{4}, \quad r=\operatorname{rank}(E) \tag{2}
\end{equation*}
$$

Here, $\alpha(\Gamma)$ and $\tilde{\alpha}(\tilde{\Gamma})$ are given as

$$
\begin{aligned}
1, \beta(p) \in \alpha(\Gamma) & =\left\{\beta(d): C_{d} \text { has at least an integral solution for } d \mid 4 p\right\} \\
1, \beta(-p) \in \tilde{\alpha}(\tilde{\Gamma}) & =\left\{\beta(\tilde{d}): C_{\tilde{d}} \text { has at least an integral solution for } \tilde{d} \mid-16 p\right\}
\end{aligned}
$$

where C_{d} and $C_{\tilde{d}}$ are Super-Fermat equations [3]:

$$
C_{d}: d t^{4}+\frac{4 p}{d} z^{4}=w^{2}, t \geq 1, z \geq 1, \operatorname{gcd}(t, 4 p / d)=1
$$

$$
C_{\tilde{d}}: \widetilde{d} t^{4}-\frac{16 p}{\tilde{d}} z^{4}=w^{2}, t \geq 1, z \geq 1, \operatorname{gcd}(t, 16 p / \tilde{d})=1,
$$

with integer solutions (t, z, w). Hence,

$$
\begin{aligned}
& d= \pm 1, \pm 2, \pm 4, \pm p, \pm 2 p, \pm 4 p \\
& \tilde{d}= \pm 1, \pm 2, \pm 4, \pm 8, \pm 16, \pm p, \pm 2 p, \pm 4 p, \pm 8 p, \pm 16 p,
\end{aligned}
$$

and so,

$$
\begin{aligned}
& \alpha(\Gamma) \subseteq\{\beta(-1), \beta(\pm 2), \beta(\pm p), \beta(\pm 2 p), \beta(-4 p)\} \\
& \tilde{\alpha}(\tilde{\Gamma}) \subseteq\{\beta(-1), \beta(\pm 2), \beta(\pm 4), \beta(\pm 8), \beta(\pm 16), \beta(\pm p), \beta(\pm 2 p), \beta(\pm 4 p), \beta(16 p)\}
\end{aligned}
$$

together with $1, \beta(p) \in \alpha(\Gamma)$ and $1, \beta(-16 p) \in \tilde{\alpha}(\tilde{\Gamma})$. Now, we define

$$
\begin{aligned}
& S_{d}=\left\{(t, z, w) \mid C_{d} \text { has integer solutions for } d \neq 1,4 p\right\}, \\
& S_{\widetilde{d}}=\left\{(t, z, w) \mid C_{\widetilde{d}} \text { has integer solutions for } d \neq 1,-16 p\right\} .
\end{aligned}
$$

According to [2]

$$
\exists s, \exists \tilde{s} \in \mathbb{N} \text { such that } \sum_{d \mid 4 p} \# S_{d}=2^{s}-2, \quad \sum_{\tilde{d} \mid 16 p} \# S_{\tilde{d}}=2^{\tilde{s}}-2,
$$

where d and \tilde{d} are square free, $\# S_{d}=0$ if $S_{d}=\emptyset$ and $\# S_{d}=1$ if $S_{d} \neq \emptyset$. Similarly for $S_{\tilde{d}}$. By (2) we conclude that $r=s+\tilde{s}-2$. By the closed property of $\alpha(\Gamma)$ and having a note to the Table 2, we conclude that

$$
\alpha(\Gamma)=\{1, \beta(2), \beta(p), \beta(2 p)\} .
$$

Also, using Tables 3 and 4, we have

$$
\tilde{\alpha}(\tilde{\Gamma})=\{1, \beta(-1), \beta(p), \beta(-p)\} .
$$

Now, using these two equalities together with (2) gives that $r=2$.
Table 2: Elements of S_{d}

$$
\begin{array}{|c|l|c|}
\hline d & C_{d} & \text { integer solutions } \\
\hline 2 & 2 t^{4}+2 p z^{4}=w^{2} & \left(u \pm v, 1,2 u^{2} \pm 2 u v+2 v^{2}\right) \\
2 p & 2 p t^{4}+2 z^{4}=w^{2} & \left(1, u \pm v, 2 u^{2} \pm 2 u v+2 v^{2}\right) \\
\hline
\end{array}
$$

Table 3: Elements of $S_{\tilde{d}}$ for $\tilde{d}>0$

d	$C_{\tilde{d}}$	integer solutions
2	$2 t^{4}-8 p z^{4}=w^{2}$	-
$2 p$	$2 p t^{4}-8 z^{4}=w^{2}$	-

Table 4: Elements of $S_{\tilde{d}}$ for $\tilde{d}<0$

d	$C_{\tilde{d}}$	integer solutions
-1	$-t^{4}+16 p z^{4}=w^{2}$	-
-2	$-2 t^{4}+8 p z^{4}=w^{2}$	-
$-2 p$	$-2 p t^{4}+8 z^{4}=w^{2}$	-

In Tables 3 and 4, the symbol '-' shows that the corresponding equation dose not have any integer solution (t, z, w). One can check this straightforward. For example, concerning $C_{\tilde{2}}$ in the Table 3 , if there is any solution, then we conclude that $2 t^{4} \equiv 0(\bmod 4)$, a contradiction with $\operatorname{gcd}(t,-8 p)=1$. Also, concerning $C_{2 p}$ in the Table 3 , if there is any solution (t, z, w), then we conclude that $2 \mid t$ which contradicts $\operatorname{gcd}(t,-8)=1$. Similar arguments can be done for other cases. The following theorem, thus, has been proved.

Theorem 3. For the elliptic curve $E: y^{2}=x^{3}+4 p x\left(p=u^{4}+v^{4}\right)$, the Mordell-Weil theorem holds as following:

$$
\Gamma \cong \mathbb{Z}_{2} \oplus \mathbb{Z}^{2}
$$

As other observations about the rank of $E: y^{2}=x^{3}+4 p x$, we also examined $\operatorname{rank}(E)$ in the cases $p=3,5$. The resulting illustrations done with MWRANK ${ }^{\dagger}$ have been collected in Tables 5-7.

Table 5: $p=3$

$C_{d}, C_{\tilde{d}}$	Legendre value	integer solutions
$w^{2}=2 t^{4}+6 z^{4}$	$\left(\frac{2}{6}\right)=-1$	Not
$w^{2}=3 t^{4}+4 z^{4}$	$\left(\frac{3}{4}\right)=-1$	Not
$w^{2}=6 t^{4}+2 z^{4}$	$\left(\frac{6}{2}\right)=-1$	Not
$w^{2}=2 t^{4}-24 z^{4}$	$\left(\frac{-2}{24}\right)=-1$	Not
$w^{2}=3 t^{4}-16 z^{4}$	$\left(\frac{-3}{16}\right)=-1$	Not
$w^{2}=6 t^{4}-8 z^{4}$	$\left(\frac{-6}{8}\right)=-1$	Not
$w^{2}=-t^{4}+48 z^{4}$	$\left(\frac{-1}{48}\right)=-1$	Not
$w^{2}=-2 t^{4}+24 z^{4}$	$\left(\frac{-2}{24}\right)=-1$	Not
$w^{2}=-3 t^{4}+16 z^{4}$	$\left(\frac{-3}{16}\right)=-1$	Not
$w^{2}=-4 t^{4}+12 z^{4}$	$\left(\frac{-4}{12}\right)=-1$	Not
$w^{2}=-6 t^{4}+8 z^{4}$	$\left(\frac{-6}{8}\right)=-1$	Not

[^0]Table 6: Rank

p	rank of E	\#ШШ(E/Q)[2]
2	1	1
3	0	1
5	1	1
$17 \leq p \leq 10^{6}$	2	1

Table 7: $p=5$

$C_{d}, C_{\tilde{d}}$	Legendre value	integer solutions
$w^{2}=2 t^{4}+10 z^{4}$	$\left(\frac{2}{10}\right)=-1$	Not
$w^{2}=4 t^{4}+5 z^{4}$	$\left(\frac{4}{5}\right)=1$	$(1,1,3)$
$w^{2}=5 t^{4}+4 z^{4}$	$\left(\frac{5}{4}\right)=1$	$(1,1,3)$
$w^{2}=10 t^{4}+2 z^{4}$	$\left(\frac{2}{10}\right)=-1$	Not
$w^{2}=2 t^{4}-40 z^{4}$	$\left(\frac{-2}{40}\right)=-1$	Not
$w^{2}=5 t^{4}-16 z^{4}$	$\left(\frac{-5}{16}\right)=-1$	Not
$w^{2}=10 t^{4}-8 z^{4}$	$\left(\frac{-8}{10}\right)=-1$	Not
$w^{2}=-t^{4}+80 z^{4}$	$\left(\frac{-1}{80}\right)=-1$	Not
$w^{2}=-2 t^{4}+40 z^{4}$	$\left(\frac{-4}{20}\right)=-1$	Not
$w^{2}=-4 t^{4}+20 z^{4}$	$\left(\frac{-4}{20}\right)=-1$	Not
$w^{2}=-5 t^{4}+16 z^{4}$	$\left(\frac{-5}{16}\right)=-1$	Not
$w^{2}=-10 t^{4}+8 z^{4}$	$\left(\frac{10}{-8}\right)=-1$	Not

References

[1] A. Brumer and O Mc. Guinness. The behaviour of the Mordell-Weil group of elliptic curves, Bulletin of American Mathematical Society, 23, 375-382, 1990.
[2] J. S. Chahal. Topics in number theory, Kluwer Academic/Plenum Publisher, 1988.
[3] H. Cohen. Number theory: Tools and Diophantine equations, Springer, Vol. I, 2007.
[4] T. Goto. A study on the Selmer groups of elliptic curves with a rational 2-torsion, Kyushu University, PhD thesis 2002.
[5] T. Kudo and K. Motose. On group structures of some special elliptic curves, Mathematical Journal of Okayama University, 47, 81-84, 2005.
[6] J. H. Silverman and J. Tate. Rational points on elliptic curves, Springer, 1992.
[7] J. H. Silverman, The arithmetic of elliptic curves, Springer, 2009.
[8] B. K. Spearman. Elliptic curves $y^{2}=x^{3}-p x$ of rank two, Mathematical Journal of Okayama University, 49, 183-184, 2007.
[9] D. Zagier and G. Kramarz. Numerical investigations related to the L-series of certain elliptic curves, Journal of Indian Mathematical Society, 52, 51-69, 1987.

[^0]: †http://homepages.warwick.ac.uk/~masgaj/mwrank/

