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Abstract. This paper presents a solution methodology for bi-matrix games in which pay-off matrices

are represented by triangular intuitionistic fuzzy numbers (TIFNs). In this methodology, a new ranking

function is defined to defuzzify the TIFNs. A non-linear intuitionistic fuzzy (I-fuzzy) programming

problem is constructed to conceptualize the term equilibrium solution for such type of bi-matrix games.

It is shown that this non-linear I-fuzzy programming problem is a generalization of fuzzy non-linear

programming problem. Finally, based on the ranking function the problem is transformed into a crisp

non-linear programming problem which can be solved to obtain the equilibrium solution for each player.

Numerical simulation is provided to show the validity and applicability of this methodology.
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1. Introduction

Game theory is a formal way to analyze conflict of interest among rational agents. Bi-

matrix game is a two players non-zero sum game which have been successfully applied in

different areas such as competition, voting, artificial intelligence etc. In traditional bi-matrix

games it assume that the pay-off values are known exactly by the players. But, in real situ-

ations, it often happens that the players are not able to evaluate exactly the pay-off values

due to imprecision and unavailability of information. In such situations, the fuzzy set theory

(Zadeh [36]) is used and has achieved a great success (Bector and Chandra [4], Vijay et al.

[33, 34], Li [9, 10], Cevikel and Ahlatcioglu [5], Kocken et al. [7], Seikh et al. [29]). In recent

past, various attempt have been made in fuzzy bi-matrix game theory namely (Nishizaki and
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Sakawa [21, 22], Sakawa and Nishizaki [24], Maeda [13], Vidyottama et al. [32], Nayak and

Pal [18]). However, fuzzy set uses only a membership degree to describe the degree of belong-

ingness. The non-membership degree is just automatically equal to the complement to 1. But,

in some real situations, players/decision makers(DMs) could only know the pay-offs approx-

imately with some imprecise degree. In other words, players/DMs may have some hesitation

degree about the approximate pay-offs. Therefore, the fuzzy set has no means to incorporate

the hesitation degree.

Intuitionistic fuzzy set (IFS), introduced by Atanassov [2, 3] has been found to be well

suited than the fuzzy set to express and describe information under uncertainty. The IFS is

characterized by two functions expressing the degree of membership and the degree of non-

membership respectively, so that the sum of both values is less than or equal to 1. The hesita-

tion degree is equal to 1 minus the degree of membership and the degree of non-membership.

Therefore, the concept of an IFS can be seen in the literature (Nan et al. [15, 16], Seikh

et al. [28, 30, 31], Aggarwal et al. [1]) as an alternative approach to define a fuzzy set in

cases where available information is not sufficient. However, there exist less investigation on

application of IFS in bi-matrix games.

Intuitionistic fuzziness in bi-matrix games can appear in so many ways, but two cases of

fuzziness seem to be very natural. These being the one in which DMs have IF goals and the

other in which the elements of the pay-off matrices are given by intuitionistic fuzzy numbers (Li

[8], Seikh et al. [25, 27]). These two classes of fuzzy bi-matrix games are referred as bi-matrix

games with I-fuzzy goals and bi-matrix games with I-fuzzy pay-off. Nayak and Pal [19, 20]

studied bi-matrix games and multi-objective bi-matrix games in which goals are expressed by

IFS. Li [12] implemented bi-linear programming models to solve bi-matrix games with pay-offs

of IFS. Seikh et al. [26] used TIFNs in bi-matrix games though this method is limited to pure

strategies only. Li and Yang [11] developed a difference index based bi-linear programming

approach to solve bi-matrix games with pay-offs represented by trapezoidal intuitionistic fuzzy

numbers.

In this paper, we have considered bi-matrix games in which the pay-offs are represented

by TIFNs. A new ranking function is defined to find a order relation between two TIFNs.

A non-linear I-fuzzy programming problem is formulated to find the equilibrium solution of

this bi-matrix game. Utilizing the ranking function this non-linear programming problem is

further transformed into a crisp equivalent non-linear programming problem which can be

easily solved to find the equilibrium solution.

The paper is organized as follows: In Section 2, some definitions and preliminaries about

TIFNs are recalled and a ranking function is defined. Section 3 describes concept of double

I-fuzzy constraint conditions. The main problem about the bi-matrix games with I-fuzzy pay-

offs is formulated in Section 4. The results are illustrated by considering a media marketing

problem in Section 5. Section 6 concludes the paper.
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2. Definitions and Preliminaries

2.1. Triangular Intuitionistic Fuzzy Number (TIFN)

Definition 1. A TIFN ã = 〈(aµ, a, āµ); (aν, a, āν)〉 is a convex IFS on the set ℜ of real numbers,

whose membership and non-membership functions are defined as follows

µã(x) =





x−aµ
a−aµ

for aµ ≤ x < a

āµ−x

āµ−a for a < x ≤ āµ

0 otherwise

(1)

and

νã(x) =





a−x
a−aν

for aν ≤ x < a

x−a
āν−a for a < x ≤ āν

1 otherwise

(2)

respectively, where aν ≤ aµ ≤ a ≤ āµ ≤ āν, depicted as in Figure 1.

Figure 1: Membership and non-membership functions of TIFN

Note: Here µã(x) increases with constant rate for x ∈ [aµ, a] and decreases with constant

rate for x ∈ [a, āµ] but νã(x) decreases with constant rate for x ∈ [aν, a] and increases with

constant rate for x ∈ [a, āν]. Let πã(x) = 1−µã(x)−νã(x), which is called as the intuitionistic

fuzzy index of an element x in the TIFN ã.

Obviously, if aν = aµ = a and āµ = āν = ā, then µã(x) + νã(x) = 1, ∀x ∈ ℜ. In this case

TIFN ã = 〈(aµ, a, āµ); (aν, a, āν)〉 is reduced to ã = 〈(a, a, ā)〉 which is just a triangular fuzzy

number (TFN). Thus, it is easy to see that the definition of a TIFN is a generalization of that

of the TFN, introduced by Dubois and Prade [6]. The set of all TIFNs is denoted by F̃ (ℜ).

Definition 2 (Arithmetic Operations). Let ã and b̃ be two TIFNs, denoted by

ã = 〈(aµ, a, āµ); (aν, a, āν)〉 and b̃ = 〈(bµ, b, b̄µ); (bν, b, b̄ν)〉 then the addition and scalar mul-

tiplication are defined as follows:
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Addition:

ã+ b̃ =
¬
(aµ + bµ, a+ b, āµ + b̄µ); (aν + bν, a+ b, āν + b̄ν)

¶
.

Scalar Multiplication:

kã =

(
〈(kaµ, ka, kāµ); (kaν, ka, kāν)〉 if k > 0

〈(kāµ, ka, kaµ); (kāν, ka, kaν)〉 if k < 0
,

where k is a real number.

Definition 3 (Cut sets of TIFNs). For anyα ∈ [0,1], aα-cut set of TIFN ã = 〈(aµ, a, āµ); (aν, a, āν)〉
can be expressed as a crisp subset of ℜ, denoted by ãα = {x |µã(x) ≥ α, x ∈ ℜ}. Accord-

ing to the definition of the TIFN, it can be easily seen that ãα is a closed interval, denoted by

ãα = [Lα(ã),Rα(ã)]. It directly follows from (1) that

[Lα(ã),Rα(ã)] =
�
aµ +α(a− aµ), āµ −α(āµ − a)

�
.

Similarly, for any β ∈ [0,1], a β -cut set of an TIFN ã = 〈(aµ, a, āµ); (aν, a, āν)〉 can be

expressed as a crisp subset ofℜ, denoted by ãβ = {x |νã(x)≤ β , x ∈ ℜ}. Obviously, ãβ is a closed

interval, denoted by ãβ = [Lβ (ã),Rβ (ã)]. It directly follows from (2) that

[Lβ (ã),Rβ (ã)] =
�
a− β(a− aν), a+ β(āν − a)

�
.

In the next context, we discuss about the value index and ambiguity index of a TIFN,

inspired by Li [8].

Definition 4. Let ãα = [Lα(ã),Rα(ã)] and ãβ = [Lβ (ã),Rβ (ã)] be any α-cut set and a β -cut

set of a TIFN ã = 〈(aµ, a, āµ); (aν, a, āν)〉, respectively. Then the values of the membership and

non-membership functions are defined as follows.

Gµ(ã) =

1∫

0

Lα(ã) + Rα(ã)

2
f (α)dα

and

Gν(ã) =

1∫

0

Lβ (ã) + Rβ (ã)

2
g(β)dβ

respectively.

Here f (α) is a non-negative and non-decreasing function on the interval [0,1], satisfy-

ing the conditions, f (0) = 0 and f (1) = 1. Also g(β) is a non-negative and non-increasing

function on the interval [0,1], satisfying g(0) = 1 and g(1) = 0.

The functions f (α) and g(β) may be considered as weighting functions and are chosen as

f (α) = 2α,α ∈ [0,1] (3)
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and

g(β) = 2(1− β),β ∈ [0,1] (4)

Then the values of membership an non-membership functions of a TIFN

ã = 〈(aµ, a, āµ); (aν, a, āν)〉 are calculated as follows:

Gµ(ã) =

1∫

0

�
aµ +α(a− aµ) + āµ −α(āµ − a)

�
αdα=

(aµ + 4a+ āµ)

6
(5)

Gν(ã) =

1∫

0

�
a− β(a− aν) + a+ β(āν − a)

�
(1− β)dβ =

(aν + 4a+ āν)

6
. (6)

Obviously, Gµ(ã) and Gν(ã) synthetically reflect information on membership degrees and non-

membership degrees at all levels, respectively. Also it directly follows that Gµ(ã)≤ Gν(ã).

Similarly, the ambiguities of the membership and non-membership functions for any TIFN

ã are defined by

Hµ(ã) =

1∫

0

[Rα(ã)− Lα(ã)] f (α)dα

and

Hν(ã) =

1∫

0

[Rβ (ã)− Lβ (ã)]g(β)dβ ,

respectively. Obviously, Rα(ã)− Lα(ã) and Rβ (ã)− Lβ (ã) represent the lengths of the intervals

ãα and ãβ . Therefore, Hµ(ã) and Hν(ã) measure the uncertainty in ã.

Using (3) and (4), the ambiguities of membership and non-membership functions of a

TIFN ã are calculated as

Hµ(ã) =

1∫

0

�
āµ −α(āµ − a)− aµ −α(a− aµ)

�
2αdα=

āµ − aµ

3
(7)

and

Gν(ã) =

1∫

0

�
β(āν − a)− β(a− aν)

�
2(1− β)dβ =

āν − aν

3
. (8)

It can be easily shown that Eµ(ã)≤ Eν(ã).

Proposition 1. Let ã and b̃ be two any TIFNs and k be any nonnegative real number. Then the

following equalities are valid.

(i) Gµ(kã+ b̃) = kGµ(ã) + Gµ( b̃)
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(ii) Gν(kã+ b̃) = kGν(ã) + Gν( b̃)

(iii) Hµ(kã+ b̃) = kHµ(ã) + Hµ( b̃)

(iv) Hν(kã+ b̃) = kHν(ã) + Hν( b̃).

Definition 5 (Value index and Ambiguity index). The value index and ambiguity index of any

TIFN ã are defined as follows:

value index V (ã,λ) = λGν(ã) + (1−λ)Gµ(ã)

and

ambiguity index A(ã,λ) = λHµ(ã) + (1−λ)Hν(ã),

respectively, where λ ∈ [0,1] is the weight represents the players/DMs preference information.

λ ∈ [0, 1
2) indicates players/DMs pessimistic attitude towards uncertainty while λ ∈ (1

2 , 1] indi-

cates players/DMs optimistic attitude towards uncertainty. Also λ = 1
2 shows that players/DMs

are indifferent. Thus, the value index and ambiguity index may reflect players/DMs attitude to

the TIFNs.

If we choose λ = 1
2 , then

V (ã,
1

2
) =

Gν(ã) + Gµ(ã)

2
and A(ã,

1

2
) =

Hµ(ã) + Hν(ã)

2
.

Proposition 2. Let ã and b̃ be two any TIFNs. Then for any real number k, the following equalities

are valid:

(i) V (kã+ b̃, 1
2) = kV (ã, 1

2) + V ( b̃, 1
2)

(ii) A(kã+ b̃, 1
2) = kA(ã, 1

2) + A( b̃, 1
2).

It can be easily seen that more is the value and lesser is the ambiguity of the TIFN, larger

the TIFN. In the following, a ranking function is defined based on difference of value index

and ambiguity index to find an order relation between two TIFNs.

Definition 6. A ranking function (or defuzzification function) is a function R : F̃ (ℜ) → ℜ,

where F̃ (ℜ) is a set of all TIFNs defined on ℜ, which maps each TIFN into the real line, where a

natural order exists. Let ã be a TIFN, then R(ã) = V (ã, 1
2)− A(ã, 1

2).

Suppose that ã and b̃ be two TIFNs and λ ∈ [0,1] be any real number. Then a new order

relation between ã and b̃ is defined as follows:

(i) ãe≥ b̃ iff R(ã)≥ R( b̃)

(ii) ãe≤ b̃ iff R(ã)≤ R( b̃)

(iii) ãe= b̃ iff R(ã) = R( b̃).
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The symbol “e≥” is an intuitionistic fuzzy version of the order relation “≥” on the set of real

numbers and has the linguistic interpretation as “essentially greater than or equal to”Ṡimilarly,

the symbols “e≤” and “e=” are the intuitionistic fuzzy versions of the order relations “≤” and

“=” on the set of real numbers and have the linguistic interpretations “essentially less than or

equal to” and “essentially equal to”, respectively.

It can be easily verified that the above proposed ranking method satisfies some of the

axioms namely the reasonable properties proposed by Wang and Kerre [35].

Proposition 3. Let ã and b̃ be any two TIFNs, then for any real number k, the following equality

is valid

R(kã+ b̃) = kR(ã) + R( b̃).

This shows that the proposed ranking function is linear.

In the next section the concept of double I-fuzzy inequalities, i.e., the I-fuzzy constraints

involving I-fuzzy numbers is interpreted.

3. Interpretation of Double I-fuzzy Constraints

Let us recall the concept of double fuzzy constraints (Vidyottama et al. [32]), i.e., con-

straints which are expressed as fuzzy inequalities involving fuzzy numbers. For this, letN (ℜ)
be the set of all fuzzy numbers. Also let S̃, w̃, respectively, be m× n matrix and m× 1 vector

having entries from N (ℜ) and the double fuzzy constraints under consideration be given by

X T S̃Y �p̃ w̃ and X T S̃Y �p̃′ w̃, with adequacies p̃ and p̃′, respectively. Then the double fuzzy

constraints X T S̃Y �p̃ w̃ and X T S̃Y �p̃′ w̃ can be expressed as

X T S̃Y �F w̃+ p̃(1−ρ), ρ ∈ [0,1]

and

X T S̃Y �F w̃− p̃′(1−ρ), ρ ∈ [0,1],

where p̃ and p̃′ measure the adequacy between the fuzzy numbers X T S̃Y and w̃. Here �F and

�F are the relations between fuzzy numbers.

We now extend the interpretation of double fuzzy constraints to the I-fuzzy sense. Let S̃, B̃

and C̃ respectively, be m×n matrix, m×1 and n×1 vectors having entries from F̃ (ℜ), and the

double I-fuzzy constraints under consideration be given by S̃T Y e�p̃,q̃ C̃ and S̃X e�r̃,s̃ B̃, with the

adequacies/tolerances p̃, q̃ and r̃, s̃, respectively, which are also I-fuzzy vectors. Based on the

resolution method discussed above we extend the interpretation of I-fuzzy inequalities to the

case where the parameters and the adequacies are also I-fuzzy number. Therefore, the double

I-fuzzy constraint conditions are to be understood as

S̃T Y e�p̃,q̃ C̃ ⇒

¨
S̃iY e�C̃i + p̃i(1− ξ), 0≤ ξ≤ 1

S̃iY e�(C̃i + p̃i)− q̃i(1−η), 0≤ η ≤ 1
(9)

and

S̃X e�r̃,s̃ B̃⇒

¨
S̃ jX e�B̃ j − r̃ j(1− γ), 0≤ γ≤ 1

S̃ jX e�(B̃ j − r̃ j) + s̃ j(1− δ), 0≤ δ ≤ 1
(10)
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respectively, where i = 1,2, . . . , n and j = 1,2, . . . , n. Here e� and e� are relation between

I-fuzzy numbers which preserves the ranking when I-fuzzy numbers are multiplied by positive

scalars. Also, p̃ j , q̃ j( j = 1,2, . . . , n) represent the j th component of I-fuzzy vectors p̃ and q̃,

respectively. Similarly, r̃i , s̃i(i = 1,2, . . . , m) represent the i th component of I-fuzzy vectors r̃

and s̃, respectively.

4. Mathematical Model of a Bi-matrix Game

A bi-matrix game can be considered as a natural extension of the matrix game. Let I , I I

denote two players and let M = {1,2, . . . , m} and N = {1,2, . . . , n} be the sets of all pure

strategies available for players I , I I respectively. By ai j and bi j , we denote the pay-offs that

the player I and I I receive when player I plays the pure strategy i and player I I plays the pure

strategy j. Then we have the following pay-off matrix

A=




a11 a12 · · · a1n

a21 a22 · · · a2n

· · · · · · · · ·
am1 am2 · · · amn


 ; B =




b11 b12 · · · b1n

b21 b22 · · · b2n

· · · · · ·
bm1 bm1 · · · bmn


 .

where we assume that each of the two players chooses a strategy, a pay-off for each of them

is represented as a crisp number. We denote the game by Γ = 〈{I , I I},A, B〉.

4.1. Nash Equilibrium Solution

Nash [17] defined the concept of Nash equilibrium solutions (NES) in bi-matrix games for

single pair of payoff matrices and presented methodology for obtaining them.

Definition 7 (Pure strategy). Let I and I I denote two players and let M = {1,2, . . . , m} and

N = {1,2, . . . , n} be the sets of all pure strategies available for players I and I I respectively.

A pair of strategies (row r, column s) is said to constitute a NES to a bi-matrix game Γ if the

following pair of inequalities is satisfied for all i = 1,2, . . . , m and for all j = 1,2, . . . , n:

ais ≤ ars; br j ≤ brs

Since the strategy sets are finite, these expressions may exist and in such case, bi-matrix

game admits a NES for pure strategy. The pair (ars, brs) is known as a Nash equilibrium outcome

of the bi-matrix game in pure strategies. A bi-matrix game can admit more than one NES, with

the equilibrium outcomes being different in each case.

4.2. Mixed Strategy

We denote the sets of all mixed strategies, called strategy spaces, available for players I , I I

by

SI =
¦
x= (x1, x2, . . . , xm) ∈ ℜ

m
+ : x i ≥ 0; i = 1,2, . . . , m and

m∑

i=1

x i = 1
©
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SI I =
¦
y= (y1, y2, . . . , yn) ∈ ℜ

n
+ : y j ≥ 0; j = 1,2, . . . , n and

n∑

j=1

y j = 1
©

,

where ℜm
+ denotes the m−dimensional non negative Euclidean space. Thus by a crisp two

person zero-sum bi-matrix game BG we mean the triplet BG = (SI × SI I ,A, B). Since the

player is uncertain about what strategy he/she will choose, he/she will choose a probability

distribution over the aet of alternatives available to him/her or a mixed strategy in terms of

game theory.

Definition 8 (Expected payoff). If the mixed strategies x and y are proposed by the player I and

player I I respectively, then the expected pay-offs of the players I and I I are respectively

xT Ay=

m∑

i=1

n∑

j=1

x iai j y j and xT By=

m∑

i=1

n∑

j=1

x i bi j y j .

Definition 9 (Equilibrium Solution). A pair (x∗,y∗) ∈ SI × SI I is said to be an equilibrium

solution of the bi-matrix game BG if

xT Ay∗ ≤ x∗T Ay∗,∀x ∈ SI and x∗T By≤ x∗T By∗,∀y ∈ SI I .

x∗ and y∗ are also called the optimal strategies for the player I and I I respectively. The pair of

numbers V = 〈x∗T Ay∗,x∗T By∗〉 is said to be the Nash equilibrium outcome of BG and the triplet

(x∗,y∗, V ) is called the solution the bi-matrix game.

The following theorem due to Nash, guarantees the existence of an equilibrium solution

of the bi-matrix game BG.

Theorem 1 (Owen [23] (Nash Existence Theorem)). Every bi-matrix game BG has at least one

equilibrium solution.

A Nash equilibrium solution of the bi-matrix game BG can be obtained by solving an ap-

propriate quadratic programming problem as discussed below.

Theorem 2 (Mangasarian and Stone [14] (Equivalence Theorem)). For a given bi-matrix game

BG = (SI × SI I ,A, B) a necessary and sufficient condition that (x∗,y∗) be an equilibrium solution

of BG is that it is a solution of the following quadratic programming problem (QPP).

max xT (A+ B)y− p− q

S.T. Ay≤ pe,

BT x≤ qe,

x ∈ SI ,

y ∈ SI I ;

p,q ∈ ℜ.

Further, if (x∗,y∗, p∗,q∗) is a solution of the above problem then

p∗ = x∗T Ay∗, q∗ = x∗T By∗ and x∗T (A+ B)y∗ − p∗ − q∗ = 0
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4.3. Bi-matrix Games with Pay-offs of TIFNs

Let SI ,SI I be the strategy spaces for player I and player II, respectively as defined in above

section. Also let Ã = (ãi j)m×n and B̃ = ( b̃i j)m×n be the pay-off matrices for players I and II,

respectively, where ãi j = 〈(ai jµ, ai j , āi jµ); (ai jν, ai j , āi jν)〉 (i = 1,2, . . . m; j = 1,2, . . . n) and

b̃i j = 〈(bi jµ, bi j , b̄i jµ); (bi jν, bi j , b̄i jν)〉 (i = 1,2, . . . m; j = 1,2, . . . n) are the TIFNs as defined

in 2.1. Then a two person bi-matrix game with pay-offs of TIFNs is defined by (SI ,SI I , Ã, B̃).

In the following, we shall often call a two-person bi-matrix game with pay-offs of TIFNs as

intuitionistic fuzzy bi-matrix game, denoted byáI FBG = (SI ,SI I , Ã, B̃).

Definition 10 (Expected Pay-offs). Let player I chooses any mixed strategy x ∈ SI and player II

chooses any mixed strategy y ∈ SI I , then the expected pay-offs for player I and player II are

Ẽ1(Ã) = xT Ãy=

m∑

i=1

n∑

j=1

ãi j x i y j

=
¬� m∑

i=1

n∑

j=1

ai jµx i y j ,

m∑

i=1

n∑

j=1

ai j x i y j ,

m∑

i=1

n∑

j=1

āi jµx i y j

�
;

� m∑

i=1

n∑

j=1

ai jνx i y j ,

m∑

i=1

n∑

j=1

ai j x i y j ,

m∑

i=1

n∑

j=1

āi jνx i y j

�¶

Ẽ2(B̃) = xT B̃y=

m∑

i=1

n∑

j=1

b̃i j x i y j

=
¬� m∑

i=1

n∑

j=1

bi jµx i y j ,

m∑

i=1

n∑

j=1

bi j x i y j ,

m∑

i=1

n∑

j=1

b̄i jµx i y j

�
;

� m∑

i=1

n∑

j=1

bi jνx i y j ,

m∑

i=1

n∑

j=1

bi j x i y j ,

m∑

i=1

n∑

j=1

b̄i jνx i y j

�¶

respectively, which are TIFNs.

In the next section, we have described the meaning of equilibrium solution of bi-matrix
áI FBG.

Definition 11. Let ũ and ṽ be two TIFNs. Then (ũ, ṽ) is called a reasonable solution of the

bi-matrix gameáI FBG if there exists x∗ ∈ SI ,y
∗ ∈ SI I such that

(i) xT Ãy∗�̃p̃,q̃ ũ, for all x ∈ SI

(ii) x∗T B̃y�̃r̃,s̃ ṽ, for all y ∈ SI I

(iii) x∗T Ãy∗�̃p̃0,q̃0
ũ

(iv) x∗T B̃y∗�̃r̃0,s̃0
ṽ.
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If (ũ, ṽ) be a reasonable solution ofáI FBG then ũ, ṽ are called the reasonable values for player I

and II, respectively.

Definition 12. Let Ũ and Ṽ be the set of all reasonable values ũ and ṽ for player I and II,

respectively. Also let there exist ũ∗ ∈ Ũ, ṽ∗ ∈ Ṽ such that R(ũ∗)≥ R(ũ), ∀ũ ∈ Ũ and R(ṽ∗)≥ R(ṽ),

∀ṽ ∈ Ṽ , where R is the ranking function defined in Section 2. Then the pair (x∗,y∗) is called an

equilibrium point of the gameáI FBG and x∗, y∗ are called Nash equilibrium strategies of player

I and II, respectively. Also ũ∗ = xT Ãy and ṽ∗ = xT B̃y are called the Nash equilibrium values of

the gameáI FBG for player I and II, respectively, and (x∗,y∗, ũ∗, ṽ∗) is called the Nash equilibrium

solution of the bi-matrix gameáI FBG.

By using the above definitions we can now construct the following I-fuzzy non-linear pro-

gramming problem as

max {ũ+ ṽ}

subject to xT Ãy�̃p̃,q̃ ũ, for all x ∈ SI ,

xT B̃y�̃r̃,s̃ ṽ, for all y ∈ SI I ,

xT Ãy�̃p̃0,q̃0
ũ,

xT B̃y�̃r̃0,s̃0
ṽ,

x ∈ SI ,y ∈ SI I ,

ũ, ṽ ∈ F (ℜ)

(11)

Since SI and SI I are convex polytopes, it is sufficient to consider only the extreme points

(i.e. pure strategies) of SI and SI I . This observation leads to the following I-fuzzy non-linear

programming problem as

max {ũ+ ṽ}

subject to Ãiy�̃p̃,q̃ ũ (i = 1,2, . . . , m),

xT B̃ j�̃r̃,s̃ ṽ ( j = 1,2, . . . , n),

xT Ãy�̃p̃0,q̃0
ũ,

xT B̃y�̃r̃0,s̃0
ṽ,

x ∈ SI ,y ∈ SI I ,

ũ, ṽ ∈ F (ℜ)

(12)

Here Ãi (i = 1,2, . . . , m) denotes the i th row of the pay-off matrix Ã and B̃ j ( j = 1,2, . . . , n)

represents the j th column of B̃. Now by using the resolution procedure for the double I-fuzzy

constraints described in Section 3, we obtain the following I-fuzzy non-linear programming

problem as

max {ũ+ ṽ}

subject to Ãiy�̃ ũ+ (1− ξ)p̃i (i = 1,2, . . . , m),

Ãiy�̃ (ũ+ p̃i)− (1−η)q̃i (i = 1,2, . . . , m),
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xT B̃ j�̃ ṽ + (1− γ)r̃ j ( j = 1,2, . . . , n),

xT B̃ j�̃ (ṽ + r̃ j)− (1−δ)s̃ j ( j = 1,2, . . . , n),

xT Ãy�̃ ũ− (1− ξ)p̃0, (13)

xT Ãy�̃ (ũ− p̃0) + (1−η)q̃0,

xT B̃y�̃ ṽ − (1− γ)r̃0,

xT B̃y�̃ (ṽ − r̃0) + (1−δ)s̃0,

x ∈ SI ,y ∈ SI I ,

0≤ ξ≤ 1,0≤ η≤ 1

0≤ γ≤ 1,0≤ δ ≤ 1

Here �̃ and �̃ are the relations between TIFNs, which preserve the ranking when I-fuzzy

numbers are multiplied by positive scalar. Now by utilizing the ranking function R(defined in

Section 2, Definition 6), the above problem can be transformed into crisp equivalent non-linear

programming problem as follows:

max {R(ũ) + R(ṽ)}

subject to

n∑

j=1

R(ãi j)y j ≤ R(ũ) + (1− ξ)R(p̃i) (i = 1,2, . . . , m),

n∑

j=1

R(ãi j)y j ≤ R(ũ) + R(p̃i)− (1−η)R(q̃i) (i = 1,2, . . . , m),

m∑

i=1

R( b̃i j)x i ≤ R(ṽ) + (1− γ)R(r̃ j) ( j = 1,2, . . . , n),

m∑

i=1

R( b̃i j)x i ≤ R(ṽ) + R(r̃ j)− (1− δ)R(s̃ j) ( j = 1,2, . . . , n),

m∑

i=1

n∑

j=1

R(ãi j)x i y j ≥ R(ũ)− (1− ξ)R(p̃0), (14)

m∑

i=1

n∑

j=1

R(ãi j)x i y j ≥ R(ũ)− R(p̃0) + (1−η)R(q̃0),

m∑

i=1

n∑

j=1

R( b̃i j)x i y j ≥ R(ṽ)− (1− γ)R(r̃0),

m∑

i=1

n∑

j=1

R( b̃i j)x i y j ≥ R(ṽ)− R(r̃0) + (1−δ)R(s̃0),

m∑

i=1

x i = 1,

n∑

j=1

y j = 1,

0≤ ξ≤ 1,0≤ η ≤ 1,
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0≤ γ≤ 1,0≤ δ ≤ 1.

Thus from above discussion we observed that for solving a I-fuzzy bi-matrix gameáI FBG we

have to solve the crisp non-linear programming problem (14). Therefore, if (x∗,y∗,R(ũ∗),R(ṽ∗))

be an optimal solution of the crisp non-linear programming problem (14), then (x∗,y∗) is the

Nash equilibrium point of the gameáI FBG. Also, the players can take the values ũ and ṽ for

which R(ũ) and R(ṽ) are close to R(ũ∗) and R(ṽ∗), respectively.

The above discussion can be summarized in the following theorem.

Theorem 3. The I-fuzzy bi-matrix gameáI FBG described byáI FBG = (SI ,SI I , Ã, B̃) is equivalent

to the crisp non-linear programming problem (14), which can be easily solved by ordinary simplex

method.

Remark 1. It may be noted that when p̃i = q̃i , r̃ j = s̃ j , p̃0 = q̃0, r̃0 = s̃0, η = 1 − ξ and

δ = 1− γ, the I-fuzzy bi-matrix gameáI FBG reduces to the fuzzy bi-matrix game BGFP studied

by Vidyottama et al. [32]. Further, the I-fuzzy non-linear programming problem (13) reduced to

fuzzy non-linear programming problem of Vidyottama et al. [32] as

max {ũ+ ṽ}

subject to Ãiy�F ũ+ (1− ξ)p̃i (i = 1,2, . . . , m),

xT B̃ j �F ṽ + (1− γ)q̃ j ( j = 1,2, . . . , n),

xT Ãy�F ũ− (1− ξ)p̃0, (15)

xT B̃y�F ṽ − (1− γ)r̃0,

x ∈ SI ,y ∈ SI I ,

0≤ ξ≤ 1,0≤ γ≤ 1

ũ, ṽ ∈ N (ℜ)

where N (ℜ) is the set of all fuzzy numbers. The relations �F and �F are the relations between

fuzzy numbers. Therefore, I-fuzzy non-linear programming problem (14) is a generalization of

fuzzy non-linear programming problem (15).

Remark 2. In general, it is very much difficult to obtain the exact membership and non-membership

functions for ũ∗ and ṽ∗ as there are several number of parameters involved in their representation.

For example, if ũ= 〈(uµ,u, ūµ); (uν,u, ūν)〉 be a TIFN then to determine ũ completely we need all

of these variables. Thus, from computational point of view we take R(ũ) and R(ṽ) as real variables

u and v and modify the non-linear programming problem (14) as follows

max {u+ v}

subject to

n∑

j=1

R(ãi j)y j ≤ u+ (1− ξ)R(p̃i) (i = 1,2, . . . , m),

n∑

j=1

R(ãi j)y j ≤ u+ R(p̃i)− (1−η)R(q̃i) (i = 1,2, . . . , m),
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m∑

i=1

R( b̃i j)x i ≤ v + (1− γ)R(r̃ j) ( j = 1,2, . . . , n),

m∑

i=1

R( b̃i j)x i ≤ v + R(r̃ j)− (1−δ)R(s̃ j) ( j = 1,2, . . . , n),

m∑

i=1

n∑

j=1

R(ãi j)x i y j ≥ u− (1− ξ)R(p̃0), (16)

m∑

i=1

n∑

j=1

R(ãi j)x i y j ≥ u− R(p̃0) + (1−η)R(q̃0),

m∑

i=1

n∑

j=1

R( b̃i j)x i y j ≥ v − (1− γ)R(r̃0),

m∑

i=1

n∑

j=1

R( b̃i j)x i y j ≥ v − R(r̃0) + (1− δ)R(s̃0),

m∑

i=1

x i = 1,

n∑

j=1

y j = 1,

0≤ ξ≤ 1,0≤ η ≤ 1,

0≤ γ≤ 1,0≤ δ ≤ 1.

In this situation, we shall get only the numerical values u∗ and v∗ instead of ũ∗ and ṽ∗, respectively

for player I and II. Therefore, we are not able to get exact membership and non-membership values

for ũ∗ and ṽ∗ which are very much desirable and be satisfied with u∗ and v∗ that are close to the

actual I-fuzzy values for the player I and II, respective.

5. An Application to Media Industry

In this section, decision making problem in media industry is considered to show the va-

lidity and applicability of the proposed methodology in real life problem.

Let us consider two major TV station companies T1 and T2 aiming to enhance TRPs by in-

creasing their number of viewers. Assume that management of both the companies are rational

i.e., they will choose optimal strategies to maximize their own TRPs without co-operation. Let

the manager of TV stations T1 and T2 make decision to show what kind of TV program to

broadcast every day at the peak watching hours (6 P.M.-10 P.M.). They choose two options

called strategies-TV Serials (strategy ε1) and Reality Show (strategy ε2). The above problem

may be regarded as a bi-matrix game. Namely, the TV station companies T1 and T2 are re-

garded as Players I and II, respectively. They may use strategies ε1 and ε2. Due to a lack

of information or imprecision of the available information, the managers of two companies

usually are not able to forecast the number of viewers exactly. They estimate the same with a

certain confidence degree, but it is possible that they are not so sure about it. Thus, there may

survive a hesitation degree. In order to deal with uncertainty, TIFNs are used to express the
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number of viewers for a particular TV station for a specified time period. Let there are about

20 million of viewers. The marketing research department of both the companies supplied the

following pay-off matrices.

Ã= TV Serials

Reality Show




TV Serials Reality Show

〈(7,8,9); (6.5,8,9.5)〉 〈(10.5,12,13); (10,12,14)〉
〈(9.5,10,10.5); (9,10,11)〉 〈(4.5,6,7); (4,6,7.5)〉




B̃ = TV Serials

Reality Show




TV Serials Reality Show

〈(7,8,9); (6.5,8,9.5)〉 〈(4.5,6,7); (4,6,7.5)〉
〈(4.5,6,7); (4,6,7.5)〉 〈(9.5,10,10.5); (9,10,11)〉




The entries of these matrices are TIFNs in millions of viewers who would watch TV station

T1 or TV station T2 respectively, at the specified time. Other viewers may watch other minor TV

stations. Here 〈(7,8,9); (6.5,8,9.5)〉 in the matrix Ã is an TIFN, which indicates that expected

number of viewers in favour of TV station T1 is “about 8 million” when both the companies

T1 and T2 use the strategy ε1 (TV Serials) simultaneously. Other elements (i.e., TIFNs) in the

matrices Ã and B̃ are explained similarly.

We assume that the player I and II have the tolerances

p̃1 =p̃2 = p̃0 = 〈(0.08,0.10,0.11); (0.06,0.10,0.12)〉,

q̃1 =q̃2 = q̃0 = 〈(0.13,0.15,0.17); (0.12,0.15,0.18)〉,

r̃1 =r̃2 = r̃0 = 〈(0.10,0.12,0.13); (0.9,0.12,0.14)〉,

s̃1 =s̃2 = s̃0 = 〈(0.12,0.15,0.16); (0.10,0.15,0.17)〉,

respectively. The crisp equivalent of the TIFNs ãi j = 〈(ai jµ, ai j , āi jµ); (ai jν, ai j , āi jν)〉
(i = 1,2; j = 1,2) can be obtained by using the ranking function defined in Section 2 as follows

R(ãi j) =V (ãi j ,
1

2
)− A(ãi j ,

1

2
)

=
Gν(ãi j) + Gµ(ãi j)

2
−

Hµ(ãi j) + Hν(ãi j)

2

=
(ai jν + 4ai j + āi jν) + (ai jµ + 4ai j + āi jµ)

12
−
(āi jµ − ai jµ) + (āi jν − ai jν)

6

=
8(ai jµ + ai j + ai jν)− (āi jµ + āi jν)

12

Therefore,

R(ã11) = 12.79, R(ã12) = 19.42, R(ã21) = 17.21, R(ã22) = 8.46.

Similarly,

R( b̃11) = 12.79, R( b̃12) = 8.46, R( b̃21) = 8.46, R( b̃22) = 17.21.

Also,

R(p̃0) = 0.14, R(q̃0) = 0.24, R(r̃0) = 0.18, R(s̃0) = 0.22.
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Thus according to equation (16) the non-linear programming models can be written as:

max {u+ v}

subject to 12.79y1 + 19.42y2 ≤ u+ 0.14(1− ξ)

17.21y1 + 8.46y2 ≤ u+ 0.14(1− ξ)

12.79y1 + 19.42y2 ≤ u+ 0.14− 0.24(1−η)

17.21y1 + 8.46y2 ≤ u+ 0.14− 0.24(1−η)

12.79x1 + 8.46x2 ≤ v + 0.18(1− γ)

8.46x1 + 17.21x2 ≤ v + 0.18(1− γ)

12.79x1 + 8.46x2 ≤ v + 0.18− 0.22(1−δ) (17)

8.46x1 + 17.21x2 ≤ v + 0.18− 0.22(1−δ)

12.79x1 y1 + 19.42x1 y2 + 17.21x2 y1 + 8.46x2 y2 ≥ u− 0.14(1− ξ)

12.79x1 y1 + 19.42x1 y2 + 17.21x2 y1 + 8.46x2 y2 ≥ u− 0.14+ 0.24(1−η)

12.79x1 y1 + 8.46x1 y2 + 8.46x2 y1 + 17.21x2 y2 ≥ v − 0.18(1− γ)

12.79x1 y1 + 8.46x1 y2 + 8.46x2 y1 + 17.21x2 y2 ≥ v − 0.18+ 0.22(1− δ)

x1 + x2 = 1

y1 + y2 = 1

0≤ ξ≤ 1,0≤ η ≤ 1

0≤ γ≤ 1,0≤ δ ≤ 1

x1, x2, y1, y2 ≥ 0.

Solving (17) with the help of LINGO software we obtained the optimal solution as

Table 1: Solution of the non-linear programming problem.

x∗1 x∗2 u∗ y∗1 y∗2 v∗

0.746 0.254 15.03 0.641 0.359 11.51

It can be easily seen that the Nash equilibrium values of the bi-matrix gameáI FBG for

player I and II are, respectively

ũ∗ =Ẽ(Ã) = 〈(8.12,9.22,10.13); (7.62,9.22,10.77)〉

ṽ∗ =Ẽ(B̃) = 〈(6.15,7.32,8.27); (5.65,7.32,8.77)〉

which are TIFNs and indicates that the expected number of viewers for TV station T1 and T2

are respectively “about 9.22” millions and “about 7.32” millions respectively, when TV sta-

tion T1 chooses mixed strategies (0.746,0.254)T and TV station T2 chooses mixed strategies

(0.641,0.359)T . In other words, the expected number of viewers for TV station T1 is “about

9.22” millions when it broadcast “TV serials” with probability 75% and “reality show” with

probability 25%. Similarly, the expected number of viewers for TV station T2 is “about 7.32”

millions when it broadcast “TV serials” with probability 64% and “reality show” with proba-

bility 36%.
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6. Conclusion

The solution concept for the bi-matrix games with pay-offs of TIFNs is discussed here.

It is shown that the equilibrium solution for each player is obtained by solving a crisp non-

linear programming problem which is derived from a I-fuzzy non-linear programming problem

by employing a suitable ranking function. Further, it should be noted that the proposed I-

fuzzy non-linear programming problem is a generalization of fuzzy non-linear programming

problem studied by Vidyottama et al. [32].

The major limitation of this proposed methodology is that it has not been possible to es-

tablish a Nash existence theorem (Theorem 1), so as to guarantee that the all I-fuzzy bi-matrix

games will have an “equilibrium solution”.

However, it is expected that a more effective methodology will be investigated in near

future. Further, in this methodology the bi-matrix games with I-fuzzy pay-offs are considered

only but the study on bi-matrix games with I-fuzzy goals as well as I-fuzzy pay-offs is our future

work.

Although, the proposed method is illustrated with a media industry problem, it can be

applied in decision making theory such as economics, operations research, management, war

science etc.
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