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Abstract. In this study, initially the geometric meanings of the curvatures of the curves parametrized
with the arc length are given in E5. This is followed by the calculation of the Frenet vectors and
curvatures of any curve. After these, some results have been given for the state of evolute curve X

being a W-curve and the Frenet vectors and curvatures of involute curve Y have been calculated in
terms of Frenet vectors and curvatures of the curve X. At last, the differential equation of the spherical
curves, the equation of the radius and the center of the osculating hyperspheres have been achieved in
E5.
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1. Introduction

The involute-evolute curves and helices can often be seen in our daily lives. For example,
the idea of a string involute is due to C. Huygens, who is also known for his works in optics.
He discovered involutes while trying to build a more accurate clock [2, 7]. In addition to this,
standard screws, bolts and a double-stranded molecule of DNA are the most common examples
for helices in the nature and structures [11].

A. R. Forsyth (1930) [4] has took the hypothesis of curves and surfaces in the four-dimensional
Euclidean space E4 [4], while H. Gluck (1966) [5] examined the curvatures of the curve in
the n-dimensional Euclidean space En. Lately the studies in the four and five-dimensional
spaces have been accelerated. For example, some characterizations for the spherical curves
and helices have been obtained in the four-dimensional Euclidean space E4, [8, 10, 13]. Also
some characterizations related to the inclined curves have been defined in the 5-dimensional
Euclidean space E5 and 5-dimensional Lorentzian space L5, [1, 11]. The Frenet vectors of
any curve and involute-evolute curves in E4 and E4

1 have been given by [12, 15]. In addition
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to this, the curvatures and Frenet vectors of the curves parametrized with the arc length in
E5 and L5 have been determined, [14, 16]. At last, Bertrand curves in E5 and L5 have been
defined, [3, 8].

In this study, initially we have given the geometrical meanings of the curvatures of curves
parametrized with arc length in the Euclidean 5-Space. Afterwards, we have calculated the
Frenet vectors and curvatures of an arbitrary curve in E5. Moreover, we have given the Frenet
vectors and curvatures of the involute curve Y in the state of the evolute curve X as the W-
curve. Finally, we have defined the differential equation of the spherical curves, the equation
of the center of osculating hyperspheres and the equation of their radius in E5.

2. Preliminaries

In this section, we recall some basic concepts on classical differential geometry of space
curve in the Euclidean 5-space and the definitions of special curves. Let X : I ⊂ R → E5

be an arbitrary curve in the Euclidean 5-space. We call the curve X as unit speed curve if
〈X ′(s), X ′(s)〉= 1, where 〈, 〉 is the standard scalar product of E5 given by

〈a, b〉= a1 b1 + a2 b2 + a3 b3 + a4 b4 + a5 b5,

for each vectors a = (a1, a2, a3, a4, a5) and b = (b1, b2, b3, b4, b5) of E5, [6]. The norm of a
vector a of E5 is given by ‖a‖=

p

〈a, a〉, [6].
Let a = (a1, a2, a3, a4, a5), b = (b1, b2, b3, b4, b5), c = (c1, c2, c3, c4, c5) and

d = (d1, d2, d3, d4, d5) be vectors in E5. The vectorial product of these vectors is defined by the
determinant,[6]

a ∧ b ∧ c ∧ d =

�

�

�

�

�

�

�

�

�

�

e1 e2 e3 e4 e5

a1 a2 a3 a4 a5

b1 b2 b3 b4 b5

c1 c2 c3 c4 c5

d1 d2 d3 d4 d5

�

�

�

�

�

�

�

�

�

�

where ei for 1≤ i ≤ 5 are the standard basis vectors of E5 which satisfies e1∧ e2∧ e3∧ e4 = e5,
e2 ∧ e3 ∧ e4 ∧ e5 = e1, e3 ∧ e4 ∧ e5 ∧ e1 = e2, e4 ∧ e5 ∧ e1 ∧ e2 = e3, e5 ∧ e1 ∧ e2 ∧ e3 = e4.

Let
�

V1, V2, V3, V4, V5

	

denotes the moving Frenet Frame of the unit speed curve X . Then
the Frenet formulas are given by













V ′1
V ′2
V ′3
V ′4
V ′5













=













0 k1 0 0 0
−k1 0 k2 0 0

0 −k2 0 k3 0
0 0 −k3 0 k4

0 0 0 −k4 0

























V1

V2

V3

V4

V5













where Vi, i = 1,2,3,4,5 are called the i th Frenet vectors of the curve X and the functions ki ,
i = 1,2,3,4 are called the i th curvatures of the curve X ,[6]. The set, whose elements are frame
vectors and curvatures of a curve, is called Frenet apparatus of the curve. A regular curve is
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called a W-curve if it has constant Frenet curvatures. A unit speed curve X is called inclined
curve in E5 if its tangent vector V1 makes a constant angle with a unit fixed direction U .

Let X and Y be unit speed curves in E5. Y is an involute of X if the tangent line V1 at X (s)

and the tangent line V ∗1 at Y (s) are perpendicular for each s. X is an evolute of Y if Y is an
involute of X . This curve couple is defined by [12]

Y = X +µV1.

The Euclidean hypersphere with the center C and radius r ∈ R+ in Euclidean 5-space E5 is
defined by [6]

S4 =
�

X ∈ E5|〈X − C , X − C〉= r2
	

If X ⊂ S4 is a regular curve in E5, then the curve X is called as a spherical curve in E5. The
hypersphere is called as osculating hypersphere if it has six common points with the curve X

at the point X (s),[6]

3. Geometric Meanings of the Curvatures in Euclidean 5-Space

Let X = X (s) be a unit speed curve in Euclidean 5-space. The Frenet vectors and curvatures
of X , are given by

V1 =X ′,

V2 =
X ′′

k1
,

V3 =



X ′′




2
(X ′′′ +


X ′′




2
X ′)− 〈X ′′, X ′′′〉X ′′



‖X ′′‖2 (X ′′′ + ‖X ′′‖2 X ′)− 〈X ′′, X ′′′〉X ′′




,

V4 =ηV3 ∧ V2 ∧ V1 ∧ V5,

V5 =η
V1 ∧ V2 ∧ X ′′′ ∧ X (4)


V1 ∧ V2 ∧ X ′′′ ∧ X (4)




,

k1 =


X ′′


 ,

k2 =
〈X ′′′, V3〉

‖X ′′‖
,

k3 =



V1 ∧ V2 ∧ X ′′′ ∧ X (4)




�

〈X ′′′, V3〉
�2

,

k4 =
〈X (4), V5〉
�

〈X ′′′, V3〉
�2



V1 ∧ V2 ∧ X ′′′ ∧ X (4)




.

where V1, V2, V3 , V4, V5 and k1, k2, k3, k4 denote the Frenet vectors and Frenet curvatures of
the curve X , respectively.

Also, η number is selected as+1 or -1, in order to make the determinant of
�

V1, V2, V3, V4, V5

�

matrix +1. Thus, the Frenet frame will be directed positively, [16].
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The geometric meanings of the curvatures at the initial point X (0) of the curve X can be
given with respect to the Taylor expansion of the curve X at this point in the Euclidean 5-space
E5 as if in the Euclidean 3-space E3.

Firstly, let us write Taylor expansion about the point X (0) up to fifth order and take the
terms including the lowest powers of s in every component. Thus the Taylor expansion can be
given by

X (s)∼= X (0) + s X ′(0) +
s2

2
X ′′(0) +

s3

6
X ′′′(0) +

s4

4!
X (4)(0) +

s5

5!
X (5)(0).

and considering the Frenet formulas, we obtain

X (s)∼=X (0) + sV1(0) +
s2

2
k1(0)V2(0) +

s3

3!
k1(0)k2(0)V3(0) +

s4

4!
k1(0)k2(0)k3(0)V4(0)

+
s5

5!
k1(0)k2(0)k3(0)k4(0)V5(0).

(1)

The first two terms of the equation (1)

X1 (s) = X (0) + sV1(0)

gives us a tangent line which is the best linear approach of the curve X in the neighborhood
of X (0).

The first three terms of the equation (1)

X2 (s) = X (0) + sV1(0) +
s2

2
k1(0)V2(0)

is a parabola which is the best quadratic approach of the curve X in the neighborhood of X (0).
Thus parabola lies on the plane spanned by the vectors V1 and V2. thus the curvature k1(0)
indicates how much V2 changes in the direction that is tangent to the curve.

The first four terms of the equation (1)

X3 (s) = X (0) + sV1(0) +
s2

2
k1(0)V2(0) +

s3

3!
k1(0)k2(0)V3(0)

is cubic which is the best cubic approach of the curve X in the neighborhood of X (0). This
curve lies on Sp

�

V1, V2, V3

	

-subspace. The torsion k2(0) indicates how much V3 changes in
the direction orthogonal to the V1, V2-plane of the curve. If k2(0) is zero, then the curve X lies
on the Sp
�

V1, V2

	

-plane.
The first five terms of the equation (1)

X4 (s) = X (0) + sV1(0) +
s2

2
k1(0)V2(0) +

s3

3!
k1(0)k2(0)V3(0) +

s4

4!
k1(0)k2(0)k3(0)V4(0)

is a curve which is the best quartic approach of the curve X in the neighborhood of X (0). This
curve lies on the Sp

�

V1, V2, V3, V4

	

-subspace. The curvature k3(0) is the scale of the curve
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X separating from the Sp
�

V1, V2, V3

	

-subspace. If k3(0) is zero, then the curve X lies on the

Sp
�

V1, V2, V3

	

-subspace.
The first six terms of the equation (1)

X5 (s) =X (0) + sV1(0) +
s2

2
k1(0)V2(0) +

s3

3!
k1(0)k2(0)V3(0) +

s4

4!
k1(0)k2(0)k3(0)V4(0)

+
s5

5!
k1(0)k2(0)k3(0)k4(0)V5(0)

is a curve which is the best quintic approach of the curve X in the neighborhood of X (0). This
curve lies on the Sp

�

V1, V2, V3, V4, V5

	

-subspace. The curvature k4(0) is the scale of the curve

X separating from the Sp
�

V1, V2, V3, V4

	

-subspace. If k4(0) is zero, then the curve X lies on

the Sp
�

V1, V2, V3, V4

	

-subspace.
Therefore, the following theorem can be given.

Theorem 1.

(i) A unit speed curve is a line if and only if the first curvature is zero.

(ii) A unit speed curve is a quadratic (to be on the Sp
�

V1, V2

	

-plane) if and only if the second

curvature is zero.

(iii) A unit speed curve is a cubic (to be on the Sp
�

V1, V2, V3

	

-subspace) if and only if the third

curvature is zero.

(iv) A unit speed curve is a quartic (to be on the Sp
�

V1, V2, V3, V4

	

-subspace) if and only if the

fourth curvature is zero.

(v) A unit speed curve is a quintic (to be on the Sp
�

V1, V2, V3, V4, V5

	

-subspace) if and only if

the all curvatures are different from zero.

4. Calculation of the Frenet Apparatus of the curves in the Euclidean 5-Space

The Frenet apparatus of a curve with respect to any parameter in the Euclidean 5-space
can be calculated via the same method in the Euclidean 3-space.

Let X be an arbitrary curve and a function is of class C5 in E5. If the derivatives of the curve
X up to the fifth order are calculated with respect to parameter t in terms of the parameter s,
the following equations are obtained

Ẋ =v V1, v =
ds

d t
6= 0 (2)

Ẍ =v̇ V1 + v2 k1 V2 (3)
...
X =(v̈ − v3k2

1)V1 + (3vv̇k1 + v2k̇1)V2 + (v
3k1k2)V3 (4)

X (4) =(
...
v − 6v2 v̇k2

1 − 3v3k1k̇1)V1 + (4vv̈k1 − v4k3
1 + 3v̇2k1 + 5vv̇k̇1 + v2k̈1 − v4k1k2

2)V2

+ (6v2 v̇k1k2 + 2v3k̇1k2 + v3k1k̇2)V3 + (v
4k1k2k3)V4 (5)
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X (5) =(v(4) − 15vv̇2k2
1 − 10v2 v̈k2

1 − 26v2 v̇k1k̇1 − 3v3k̇2
1 − 4v3k1k̈1 + v5k4

1 + v5k2
1k2

2)V1

+ (5
...
v vk1 − 10v3 v̇k3

1 − 6v4k2
1 k̇1 + 10v̇ v̈k1 + 9vv̈k̇1 + 8v̇2k̇1 + 7vv̇k̈1 + v2

...
k1

− 10v3 v̇k1k2
2 − 3v4k̇1k2

2 − 3v4k1k2k̇2)V2

+ (10v2 v̈k1k2 − v5k3
1k2 + 15vv̇2k1k2 + 17v2 v̇ k̇1k2 + 3v3k̈1k2 − v5k1k3

2

+ 9v2 v̇k1k̇2 + 3v3k̇1k̇2 + v3k1k̈2 − v5k1k2k2
3)V3

+ (10v3 v̇k1k2k3 + 3v4k̇1k2k3 + 2v4k1k̇2k3 + v4k1k2k̇3)V4

+ (v5k1k2k3k4)V5 (6)

where "·" denotes the derivative with respect to t.
From the equation (2), we find

v =


Ẋ


 (7)

and

V1 =
Ẋ


Ẋ




. (8)

Since v2 =



Ẋ , Ẋ
�

, if the derivative of this term is taken consecutively, we have

v̇ =




Ẋ , Ẍ
�



Ẋ




(9)

and

v̈ =



Ẍ




2 
Ẋ




2
+



Ẋ ,
...
X
�

Ẋ




2
−



Ẋ , Ẍ
�2



Ẋ




3
(10)

If the first curvature is calculated from the equation (3), the following equations are obtained

k1 =









Ẋ




2
Ẍ − 〈Ẋ , Ẍ 〉Ẋ








Ẋ




4
(11)

and

k2
1 =



Ẍ




2 
Ẋ




2
− 〈Ẋ , Ẍ 〉2


Ẋ




6
(12)

If we take the derivative of both sides of the equation (11) with respect to t, we get

k̇1 =



Ẋ




4
〈Ẍ ,

...
X 〉+ 3〈Ẋ , Ẍ 〉3 −



Ẋ




2
〈Ẋ , Ẍ 〉〈Ẋ ,

...
X 〉 − 3


Ẋ




2 
Ẍ




2
〈Ẋ , Ẍ 〉



Ẋ




4








Ẋ




2
Ẍ − 〈Ẋ , Ẍ 〉Ẋ






(13)

In addition to this, the second Frenet vector from the equation (3) is

V2 =
Ẍ


Ẋ




2
− 〈Ẋ , Ẍ 〉Ẋ









Ẋ




2
Ẍ − 〈Ẋ , Ẍ 〉Ẋ






. (14)
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By using the equation (4), we can write

〈
...
X , V3〉= v3k1k2.

Substituting the equations (7) and (11) in the above equation, we obtain the second curvature
k2 as follows

k2 =
〈
...
X , V3〉


Ẋ












Ẋ




2
Ẍ − 〈Ẋ , Ẍ 〉Ẋ






. (15)

Again, considering the equation (4), the third Frenet vector V3 of X is given by

V3 =

...
X − aV1 − bV2




...
X − aV1 − bV2





such that
a =v̈ − v3k2

1

b =3vv̇k1 + v2k̇1

. (16)

Substituting the equations (7), (9), (10), (11) and (13) in the equation (16), we have

a =
〈Ẋ ,

...
X 〉


Ẋ




.

and

b =



Ẋ




2
〈Ẍ ,

...
X 〉 − 〈Ẋ , Ẍ 〉〈Ẋ ,

...
X 〉









Ẋ




2
Ẍ − 〈Ẋ , Ẍ 〉Ẋ






.

Now, we can compute the vector form V1 ∧ V2 ∧
...
X ∧ X (4) as the follows;

V1 ∧ V2 ∧
...
X ∧ X (4) = v7k2

1k2
2k3V5. (17)

then from the above equation

V5 = η
V1 ∧ V2 ∧

...
X ∧ X (4)



V1 ∧ V2 ∧
...
X ∧ X (4)




. (18)

and η is taken ±1 to make det(V1, V2, V3, V4, V5) = +1.
Substituting the equations (7), (12) and (15) in the equation (17), the third curvature is

found

k3 =



V1 ∧ V2 ∧
...
X ∧ X (4)




〈
...
X , V3〉2


Ẋ




. (19)

The inner product 〈X (5), V5〉 gives us the fourth curvature k4 as

k4 =
〈X (5), V5〉

v5k1k2k3
. (20)
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Then, if we substitute the equations (7), (11), (15) and (19) in the above equation, we imme-
diately arrive to

k4 =
〈X (5), V5〉〈

...
X , V3〉



V1 ∧ V2 ∧
...
X ∧ X (4)






Ẋ




. (21)

Finally, the fourth Frenet vector is

V3 ∧ V2 ∧ V1 ∧ V5 = V4 (22)

Therefore, the following theorem can be given.

Theorem 2. Let X be an arbitrary curve of class C5 in the Euclidean 5-space E5. In this regard,

the Frenet vectors and curvatures of the curve X are

V1 =
Ẋ


Ẋ




,

V2 =
Ẍ


Ẋ




2
− Ẋ



Ẋ , Ẍ
�









Ẋ




2
Ẍ − Ẋ



Ẋ , Ẍ
�







,

V3 =

...
X − aV1 − bV2




...
X − aV1 − bV2





, a =




Ẋ ,
...
X 〉


Ẋ




, b =



Ẋ




2 

Ẍ ,

...
X 〉 −



Ẋ , Ẍ
� 


Ẋ ,
...
X 〉









Ẋ




2
Ẍ −



Ẋ , Ẍ
�

Ẋ







,

V4 =ηV3 ∧ V2 ∧ V1 ∧ V5,

V5 =η
V1 ∧ V2 ∧

...
X ∧ X (4)



V1 ∧ V2 ∧
...
X ∧ X (4)




,

k1 =









Ẋ




2
Ẍ −



Ẋ , Ẍ
�

Ẋ









Ẋ




4
,

k2 =


...
X , V3

�

Ẋ












Ẋ




2
Ẍ −



Ẋ , Ẍ
�

Ẋ







,

k3 =



V1 ∧ V2 ∧
...
X ∧ X (4)





...
X , V3

�

Ẋ




,

k4 =




X (5), V5

� 
...
X , V3

�



V1 ∧ V2 ∧
...
X ∧ X (4)






Ẋ




,

respectively.

5. Involute-Evolute Curve Couples in the Euclidean 5-Space

Let X be a W-curve and Y be the involute of X in E5. While the Frenet apparatus of X is
�

V1, V2, V3, V4, V5, k1, k2, k3, k4

	

, we will denote the Frenet apparatus of Y with
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�

V Y
1 , V Y

2 , V Y
3 , V Y

4 , V Y
5 , kY

1 , kY
2 , kY

3 , kY
4

	

. So, from the definition of involute-evolute curve, we
may express

Y = X +µV1 (23)

where s and sY denote the arc-parameters of the curves X and Y , respectively.
Differentiating the both sides of the equation (23) with respect to s, one can obtain

dY

dsY

dsY

ds
=

dX

ds
+

dµ

ds
V1 +µk1V2. (24)

Since the tangent vector V1 of the curve X orthogonal to the tangent vector V Y
1 of the curve

Y , it is easily seen that

1+
dµ

ds
= 0. (25)

We know that µ= c − s from the equation (25). So, we can write

Y = X + (c − s)V1 (26)

and

V Y
1

dsY

ds
= (c − s)k1V2. (27)

Also the equation (27) yields
Ẏ = (c − s)k1V2. (28)

If we take the norm of Ẏ , we have



Ẏ


= (c − s)k1. (29)

where the subscript dot "·" denotes the derivative of Y with respect to s.
Moreover, the derivatives of the curve Y up to the fifth order are given by

Ÿ =− (c − s)k2
1V1 − k1V2 + (c − s)k1k2V3, (30)

...
Y =2k2

1V1 − (c − s)k1(k
2
1 + k2

2)V2 − 2k1k2V3 + (c − s)k1k2k3V4, (31)

Y (4) =(c − s)k2
1(k

2
1 + k2

2)V1 + 3k1(k
2
1 + k2

2)V2 − (c − s)k1k2(k
2
1 + k2

2 + k2
3)V3

− 3k1k2k3V4 + (c − s)k1k2k3k4V5, (32)

Y (5) =− 4k2
1(k

2
1 + k2

2)V1 + (c − s)k1

�

k2
1(k

2
1 + k2

2) + k2
2(k

2
1 + k2

2 + k2
3)
�

V2

+ 4k1k2(k
2
1 + k2

2 + k2
3)V3 − (c − s)k1k2k3(k

2
1 + k2

2 + k2
3 + k2

4)V4

− 4k1k2k3k4V5. (33)

From the equation (8), the first Frenet vector of the curve Y can be written as

V Y
1 =

Ẏ


Ẏ




.
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Considering the equations (28) and (29), we find

V Y
1 = V2. (34)

From the equations (28) and (30), we get


Ẏ




2
Ÿ −



Ẏ , Ÿ
�

Ẏ = −(c − s)3k4
1V1 + (c − s)3k3

1k2V3 (35)

and 







Ẏ




2
Ÿ −



Ẏ , Ÿ
�

Ẏ





= (c − s)3k3
1

q

k2
1 + k2

2. (36)

If we use the equations (11) and (14), then we will obtain the second Frenet vector and the
first curvature of curve Y as follows;

V Y
2 = −

k1
q

k2
1 + k2

2

V1 +
k2
q

k2
1 + k2

2

V3 (37)

and

kY
1 =

q

k2
1 + k2

2

(c − s)k1
(38)

respectively. Besides, considering the equations (28), (29), (30), (31) and (36), one can
calculate

...
Y −




Ẏ ,
...
Y 〉


Ẏ




V Y
1 −



Ẏ




2 

Ÿ ,

...
Y 〉 −



Ẏ , Ÿ
� 


Ẏ ,
...
Y 〉









Ẏ




2
Ÿ −



Ẏ , Ÿ
�

Ẏ







V Y
2 = (c − s)k1k2k3V4. (39)

The third Frenet vector of Y is obtained from the equation (16) as

V Y
3 = V4. (40)

If the equations (31) and (40) are taken into consideration, we get

 ...
Y , V Y

3

�

= (c − s)k1k2k3. (41)

From the equations (15), (36) and (41), the second curvature of Y is found as

kY
2 =

k2k3

(c − s)k1

q

k2
1 + k2

2

. (42)

Moreover, from the equations (31), (32), (34) and (37), we have

V Y
1 ∧ V Y

2 ∧
...
Y ∧ Y (4) =

(c − s)2k2
1k3

2k2
3k4

q

k2
1 + k2

2

V1 +
(c − s)2k3

1k2
2k2

3k4
q

k2
1 + k2

2

V3 +
(c − s)2k3

1k2
2k3

3
q

k2
1 + k2

2

V5 (43)

and




V Y
1 ∧ V Y

2 ∧
...
Y ∧ Y (4)




=
(c − s)2k2

1k2
2k2

3
q

k2
1 + k2

2

q

k2
1k2

3 + k2
2k2

4 + k2
1k2

4. (44)
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Thus, if we take the equations (18), (43) and (44), the fifth Frenet vector of the curve Y is

V Y
5 =k2k4

q

k2
1k2

3 + k2
2k2

4 + k2
1k2

4V1 + k1k4

q

k2
1k2

3 + k2
2k2

4 + k2
1k2

4V3

+ k1k3

q

k2
1k2

3 + k2
2k2

4 + k2
1k2

4V5.
(45)

By (41) and (44), we obtain



V Y
1 ∧ V Y

2 ∧
...
Y ∧ Y (4)




�
 ...
Y , V Y

3

��2 
Ẏ




=

q

k2
1k2

3 + k2
2k2

4 + k2
1k2

4

(c − s)k1

q

k2
1 + k2

2

.

Therefore, from the equation (19) the third curvature of the curve Y can be found as follows

kY
3 =

q

k2
1k2

3 + k2
2k2

4 + k2
1k2

4

(c − s)k1

q

k2
1 + k2

2

. (46)

If the vectorial product V Y
3 ∧ V Y

2 ∧ V Y
1 ∧ V Y

5 is calculated by using the equations (34), (37),
(40) and (45), we find the fourth Frenet vector of the curve Y , considering the equation (22)
as follows:

V Y
4 =

−k1k2k3
q

k2
1 + k2

2

q

k2
1k2

3 + k2
2k2

4 + k2
1k2

4

V1

−
k2

1k3
q

k2
1 + k2

2

q

k2
1k2

3 + k2
2k2

4 + k2
1k2

4

V3

+
k4(k

2
1 + k2

2)
q

k2
1 + k2

2

q

k2
1k2

3 + k2
2k2

4 + k2
1k2

4

V5

(47)

From the equations (33) and (45), the inner product of the vectors Y (5) and V Y
5 is




Y (5), V Y
5

�

=
4k2

1k2
2k4(1− k2)
q

k2
1k2

3 + k2
2k2

4 + k2
1k2

4

. (48)

Finally, considering the equations (21), (41), (44) and (48) the fourth curvature of Y is found
as

kY
4 =

4k2k4(1− k2)
q

k2
1 + k2

2

k3(c − s)2(k2
1k2

3 + k2
2k2

4 + k2
1k2

4)
. (49)

Therefore, the following theorem and results can be given

Theorem 3. Let X be a W-curve and Y be the involute of X in E5.
�

V1, V2, V3, V4, V5, k1, k2, k3, k4

	

and
�

V Y
1 , V Y

2 , V Y
3 , V Y

4 , V Y
5 , kY

1 , kY
2 , kY

3 , kY
4

	

denote the Frenet apparatus of the curves X and Y ,

respectively. The relation can be expressed as

V Y
1 =V2,
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V Y
2 =−

k1
q

k2
1 + k2

2

V1 +
k2
q

k2
1 + k2

2

V3,

V Y
3 =V4,

V Y
4 =−

k1k2k3
q

k2
1 + k2

2

q

k2
1k2

3 + k2
2k2

4 + k2
1k2

4

V1 −
k2

1k3
q

k2
1 + k2

2

q

k2
1k2

3 + k2
2k2

4 + k2
1k2

4

V3

+
k4

�

k2
1 + k2

2

�

q

k2
1 + k2

2

q

k2
1k2

3 + k2
2k2

4 + k2
1k2

4

V5,

V Y
5 =k2k4

q

k2
1k2

3 + k2
2k2

4 + k2
1k2

4V1 + k1k4

q

k2
1k2

3 + k2
2k2

4 + k2
1k2

4V3

+ k1k3

q

k2
1k2

3 + k2
2k2

4 + k2
1k2

4V5,

kY
1 =

q

k2
1 + k2

2

(c − s) k1
,

kY
2 =

k2k3

(c − s) k1

q

k2
1 + k2

2

,

kY
3 =

q

k2
1k2

3 + k2
2k2

4 + k2
1k2

4

(c − s) k1

q

k2
1 + k2

2

,

kY
4 =

4k2k4

�

1− k2

�
q

k2
1 + k2

2

(c − s)2 k3

�

k2
1k2

3 + k2
2k2

4 + k2
1k2

4

� .

Corollary 1.
�

V Y
1 , V Y

2 , V Y
3 , V Y

4 , V Y
5

	

is an orthonormal frame in E5.

Corollary 2. While X is a W-curve, Y can not be a W-curve.

Corollary 3. The involute curve Y can’t be an inclined curve.

6. The Spherical Curves in Euclidean 5-Space

Let X ⊂ R5 curve be given with coordinate neighborhood (I , X ) and s ∈ I be arc-length
parameter of X . Also, assume that S4 is a hypersphere which has six common coalescent points
with the curve X . If X (s) is a point on this hypersphere, C is the center of this hypersphere
and r is the radius of it, then the equation of the hypersphere S4 is

〈X (s)− C , X (s)− C〉 = r2. (50)

On the other hand, for the base
�

V1, V2, V3, V4, V5

	

and mi(s) ∈ R

C − X (s) = m1(s)V1(s) +m2(s)V2(s) +m3(s)V3(s) +m4(s)V4(s) +m5(s)V5(s), (51)

can be written. Hence,
mi(s) =



C − X (s), Vi(s)
�

, 1≤ i ≤ 5 (52)
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In accordance with this, let us consider

f :I → R

s→ f (s) = 〈X − C , X − C〉 − r2.

If we have the following equations

f (s) = f ′(s) = f ′′ (s) = f ′′′ (s) = f (4) (s) = f (5)(s) = 0

then we say that the hypersphere touches to X at the fifth order to the curve at X (s). Therefore,

f (s) = 〈X − C , X − C〉 − r2 = 0, (53)

f ′(s) =



V1, X − C
�

= 0⇒ m1 = 0, (54)

f ′′(s) =0⇒



V2, X − C
�

=
1

k1
⇒ m2 =

1

k1
, (55)

f ′′′(s) =0⇒



V3, X − C
�

=
m′2

k2
⇒ m3 =

m′2

k2
, (56)

f (4)(s) =0⇒



V4, X − C
�

=
m′3 + k2m2

k3
⇒ m4 =

m′3 + k2m2

k3
, (57)

f (5)(s) =0⇒



V5, X − C
�

=
m′4 + k3m3

k4
⇒ m5 =

m′4 + k3m3

k4
. (58)

are obtained. Thus, the center of the hypersphere is

C = X +m2V2 +

�

m′2

k2

�

V3 +







�

m′2
k2

�′
+ k2m2

k3





V4 +















�

m′2
k2

�′
+ k2m2

k3







′

+ k3

�

m′2

k2

�









1

k4
V5

(59)
and for the square of the radius

r2 = m2
2 +

�

m′2

k2

�2

+







�

m′2
k2

�′
+ k2m2

k3







2

+















�

m′2
k2

�′
+ k2m2

k3
+ k3

�

m′2

k2

�







′








2

1

k2
4

(60)

is attained. Differentiating the equation (59), we obtain the derivative of the center as follows

C ′ = (m4k4 +m′5)V5. (61)

Considering the equality (61), it can be said that the centers of the osculating hyperspheres of a
spherical curve are in the direction of V5. In addition, all spherical curves satisfy the following



M. Masal, A. Azak / Eur. J. Pure Appl. Math, 8 (2015), 255-270 268

differential equation:

m2
2 +

�

m′2

k2

�2

+

�
�

m′2

k2

�′

+ k2m2

�2
1

k2
3

+















�

m′2
k2

�′
+ k2m2

k3
+ k3

�

m′2

k2

�







′








2

1

k2
4

= a2. (62)

If the curve is spherical, then the hypersphere is also an osculating hypersphere. Here a will
be the radius of the hypersphere. Conversely, if the equation (62) is provided, the radius of
the osculating hypersphere is constant.

If the derivative of the equation (62) is taken,

m5(m4k4 +m′5) = 0 (63)

is found. Therefore, if we consider the equation (63) with (61), then C ′ = 0. This means
that the center of the osculating hypersphere is constant. From the equation (63), all of the
differential equations of the spherical curves are

m4k4 +m′5 = 0 (64)

or

�
�

m′2

k2

�′

+ k2m2

�

k4

k3
+























�

m′2
k2

�′
+ k2m2

k3







′

+ k3

�

m′2

k2

�









1

k4









′

= 0.

However, the following theorem can be given:

Theorem 4. Let X be a unit speed curve in E5.

(i) The curve X is a spherical curve if and only if the differential equation

m4k4 +m′5 = 0

is satisfied.

(ii) If X is a spherical curve, then the center of the hypersphere is

C = X +m2V2 +m3V3 +m4V4 +m5V5

and the radius is

r =
q

m2
2 +m2

3 +m2
4 +m2

5

such that

m2 =
1

k1
, m3 =

m′2

k2
, m4 =

m′3 + k2m2

k3
, m5 =

m′4 + k3m3

k4
.

(iii) The radius of the osculating hypersphere is constant at the point X (s) if and only if the

centers of the osculating hyperspheres are the same[9].
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