EUROPEAN JOURNAL OF PURE AND APPLIED MATHEMATICS

Vol. 8, No. 4, 2015, 462-468 ISSN 1307-5543 – www.ejpam.com

Ore Extensions Over (σ, δ) **-Rings**

M. Abrol, V. K. Bhat*

¹ School of Mathematics, SMVD University, P/O SMVD University, Katra, J and K, India- 182320

Abstract. Let *R* be a Noetherian, integral domain which is also an algebra over \mathbb{Q} (\mathbb{Q} is the field of rational numbers). Let σ be an automorphism of *R* and δ a σ -derivation of *R*. A ring *R* is called a (σ, δ) -ring if $a(\sigma(a) + \delta(a)) \in P(R)$ implies that $a \in P(R)$ for $a \in R$, where P(R) is the prime radical of *R*. We prove that *R* is 2-primal if $\delta(P(R)) \subseteq P(R)$. We also study the property of minimal prime ideals of *R* and prove the following in this direction:

Let *R* be a Noetherian, integral domain which is also an algebra over \mathbb{Q} . Let σ be an automorphism of *R* and δ a σ -derivation of *R* such that *R* is a (σ, δ) -ring. If $P \in Min.Spec(R)$ is such that $\sigma(P) = P$, then $\delta(P) \subseteq P$. Further if $\delta(P(R)) \subseteq P(R)$, then $P[x; \sigma, \delta]$ is a completely prime ideal of $R[x; \sigma, \delta]$.

2010 Mathematics Subject Classifications: 16-XX, 16W20, 16P40, 16S50

Key Words and Phrases: Noetherian ring, Ore extension, endomorphism, automorphism, minimal prime ideals, (σ, δ) -rings and 2-primal.

1. Introduction and Preliminaries

All rings are associative with identity $1 \neq 0$, unless otherwise stated. The prime radical and the set of nilpotent elements of *R* are denoted by *P*(*R*) and *N*(*R*) respectively. The ring of integers is denoted by \mathbb{Z} and the field of rational numbers by \mathbb{Q} , unless otherwise stated. The set of minimal prime ideals of *R* is denoted by *Min.Spec*(*R*).

We begin with the following:

Definition 1. Let R be a ring, σ an endomorphism of R and δ a σ -derivation of R, which is defined as an additive map from R to R such that [12]

 $\delta(ab) = \delta(a)\sigma(b) + a\delta(b)$, for all $a, b \in \mathbb{R}$.

Example 1. Let $R = \mathbb{Z}[\sqrt{2}]$. Then $\sigma : R \to R$ defined as

$$\sigma(a+b\sqrt{2}) = a - b\sqrt{2} \text{ for } a + b\sqrt{2} \in \mathbb{R}$$

http://www.ejpam.com

462

© 2015 EJPAM All rights reserved.

^{*}Corresponding author.

Email address: vijaykumarbhat2000@yahoo.com (V. Bhat)

is an endomorphism of R.

For any $s \in R$, Define $\delta_s : R \to R$ by

$$\delta_s(a+b\sqrt{2}) = (a+b\sqrt{2})s - s\sigma(a+b\sqrt{2}) \text{ for } a+b\sqrt{2} \in \mathbb{R}$$

Then δ_s is a σ -derivation of R.

Recall that $R[x; \sigma, \delta]$ is the usual polynomial ring with coefficients in R where multiplication is subject to the relation $ax = x\sigma(a) + \delta(a)$, for all $a \in R$. We take any $f(x) \in R[x; \sigma, \delta]$ to be of the form $f(x) = \sum_{i=0}^{n} x^{i}a_{i}$. We denote the Ore extension $R[x; \sigma, \delta]$ by O(R). An ideal I of a ring R is called σ -stable if $\sigma(I) = I$ and is called δ -invariant if $\delta(I) \subseteq I$. If an ideal I of R is σ -stable and δ -invariant, then $I[x; \sigma, \delta]$ is an ideal of O(R) and as usual we denote it by O(I).

Definition 2. A completely prime ideal in a ring R is any ideal such that R/P is a domain [7].

Also an ideal *P* of a ring *R* is said to be completely prime if $ab \in P$ implies that $a \in P$ or $b \in P$ for $a, b \in R$. In commutative sense completely prime and prime have the same meaning. We also note that a completely prime ideal of a ring *R* is a prime ideal, but the converse need not be true. The following example shows that a prime ideal need not be a completely prime ideal.

Example 2 (Example 1.1 of [2]). Let
$$R = \begin{pmatrix} \mathbb{Z} & \mathbb{Z} \\ \mathbb{Z} & \mathbb{Z} \end{pmatrix} = M_2(\mathbb{Z})$$
. If p is a prime number, then the ideal $P = M_2(p\mathbb{Z})$ is a prime ideal of R . But is not completely prime, since for $a = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}$ and $b = \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}$ we have $ab \in P$, even though $a \notin P$ and $b \notin P$.

There are examples of rings (non-commutative) in which prime ideals are completely prime.

Example 3 (Example 1.2 of [2]). Let
$$R = \begin{pmatrix} \mathbb{Z} & \mathbb{Z} \\ 0 & \mathbb{Z} \end{pmatrix}$$
. Then $P_1 = \begin{pmatrix} \mathbb{Z} & \mathbb{Z} \\ 0 & 0 \end{pmatrix}$, $P_2 = \begin{pmatrix} 0 & \mathbb{Z} \\ 0 & \mathbb{Z} \end{pmatrix}$ and $P_3 = \begin{pmatrix} 0 & \mathbb{Z} \\ 0 & 0 \end{pmatrix}$ are prime ideals of *R*. Now all these are completely prime also.

Definition 3. A minimal prime ideal in a ring R is any prime ideal of R that does not properly contain any other prime ideal [3].

Example 4. In example 1.2 of [2] (discussed above),
$$P_3 = \begin{pmatrix} 0 & \mathbb{Z} \\ 0 & 0 \end{pmatrix}$$
 is minimal prime ideal.

Further more there are examples of rings in which minimal prime ideals are completely prime. For example a reduced ring. If R is a prime ring, then 0 is a minimal prime ideal of R and it is the only one. In Proposition (3.3) of [6], it has been shown that any prime ideal U in a ring R contains a minimal prime ideal. Further it has been proved that there exists

only finitely many minimal prime ideals in a Noetherian ring *R* and there is a finite product of minimal prime ideals (repetition allowed) that equals zero. An example of a ring which has infinitely many minimal prime ideals is:

Example 5 (Exercise 3C of [7]). Let X be an infinite set, K a field, and R the ring of all functions from X to K. For $x \in X$, let P_x be the set of those functions in R which vanish at x. Then each P_x is a minimal prime ideal of R.

It is also known that [6] in a right Noetherian ring which is also an algebra over \mathbb{Q} , δ a σ -derivation of *R* and *U* a minimal prime ideal of *R*, $\delta(U) \subseteq U$.

Definition 4. A ring R is said to be 2-primal if and only if P(R) = N(R) [4].

Example 6. Let $R = (\mathbb{Z}/8\mathbb{Z} \oplus \mathbb{Z}/8\mathbb{Z})$. Then R is a commutative ring and hence 2-primal.

Also a reduced ring is 2-primal and so is a commutative Noetherian ring. Part of the attraction of 2-primal rings in addition to their being a common generalization of commutative rings and rings without nilpotent elements lies in the structure of their prime ideals. We refer to [4, 5, 8, 9, 11, 13, 14] for more details on 2-primal rings.

Definition 5. Let *R* be a ring and σ an endomorphism of *R*. Then *R* is said to be $\sigma(*)$ -ring if $a\sigma(a) \in P(R)$ implies that $a \in P(R)$ for $a \in R$ [3].

We note that if *R* is a Noetherian ring and σ an automorphism of *R*, then *R* is a $\sigma(*)$ -ring if and only if for each minimal prime *U* of *R*, $\sigma(U) = U$ and *U* is a completely prime ideal of *R* [Theorem (2.3) of 3].

Definition 6. Let *R* be a ring. Let σ be an automorphism of *R* and δ a σ -derivation of *R*. Then *R* is a δ -ring if $a\delta(a) \in P(R)$ implies that $a \in P(R)$ for $a \in P(R)$ [1].

Note that a ring with identity is not a δ -ring as $1\delta(1) = 0$, but $1 \neq 0$. Also from [1] we know that if *R* is a δ -Noetherian \mathbb{Q} -algebra such that $\sigma(\delta(a)) = \delta(\sigma(a))$, for all $a \in R$; $\sigma(P) = P$, for all $P \in Min.Spec(R)$ and $\delta(P(R)) \subseteq P(R)$, then $R[x; \sigma, \delta]$ is 2-primal.

We now generalize these notions as follows:

Definition 7. Let *R* be a ring. Let σ be an endomorphism of *R* and δ a σ -derivation of *R*. Then *R* is said to be a (σ, δ) -ring if $a(\sigma(a) + \delta(a)) \in P(R)$ implies that $a \in P(R)$ for $a \in R$.

Example 7. Let
$$R = \begin{pmatrix} \mathbb{Z} & \mathbb{Z} \\ 0 & \mathbb{Z} \end{pmatrix}$$
. Then $P(R) = \begin{pmatrix} 0 & \mathbb{Z} \\ 0 & 0 \end{pmatrix}$. Let $\sigma : R \to R$ be defined by $\sigma(\begin{pmatrix} a & b \\ 0 & c \end{pmatrix}) = \begin{pmatrix} a & -b \\ 0 & c \end{pmatrix}$, for all $a, b, c \in \mathbb{Z}$.

Then it can be seen that σ is an endomorphism of R.

Define $\delta : R \rightarrow R$ by

$$\delta(a) = a - \sigma(a)$$
, for all $a \in \mathbb{R}$.

Clearly,
$$\delta$$
 is a σ -derivation of R.
Now let $A = \begin{pmatrix} a & b \\ 0 & c \end{pmatrix}$. $A[\sigma(A) + \delta(A)] \in P(R)$ implies that
 $\begin{pmatrix} a & b \\ 0 & c \end{pmatrix} \{\sigma(\begin{pmatrix} a & b \\ 0 & c \end{pmatrix}) + \begin{pmatrix} a & b \\ 0 & c \end{pmatrix} - \sigma(\begin{pmatrix} a & b \\ 0 & c \end{pmatrix})\} \in P(R)$
or
 $\begin{pmatrix} a & b \\ 0 & c \end{pmatrix} \{\begin{pmatrix} a & -b \\ 0 & c \end{pmatrix} + \begin{pmatrix} a & b \\ 0 & c \end{pmatrix} - \sigma(\begin{pmatrix} a & b \\ 0 & c \end{pmatrix})\} \in P(R)$
which gives on simplification, $\begin{pmatrix} a^2 & ab + bc \\ 0 & c^2 \end{pmatrix} \in P(R) = \begin{pmatrix} 0 & \mathbb{Z} \\ 0 & 0 \end{pmatrix}$ which implies that

which gives on simplification, $\begin{pmatrix} a^2 & ab + bc \\ 0 & c^2 \end{pmatrix} \in P(R) = \begin{pmatrix} 0 & 2 \\ 0 & 0 \end{pmatrix}$ which implies that $a^2 = 0, c^2 = 0$, i.e. a = 0, c = 0. Therefore, $A = \begin{pmatrix} a & b \\ 0 & c \end{pmatrix} = \begin{pmatrix} 0 & b \\ 0 & 0 \end{pmatrix} \in P(R)$. Hence R is a (σ, δ) -ring.

Example 8. Let $R = \mathbb{Z}_2 \oplus \mathbb{Z}_2$. Then R is a commutative reduced ring. Define an automorphism $\sigma : R \to R$ by $\sigma((a, b)) = (b, a)$ for $a, b \in \mathbb{Z}_2$. Also $\delta : R \to R$ defined by $\delta((a, b)) = (a - b, 0)$ for $a, b \in \mathbb{Z}_2$ is a σ -derivation of R. Here $P(R) = \{0\}$. But R is not a (σ, δ) -ring, for take (a, b) = (0, 1).

With this we prove the following:

Theorem 1: Let *R* be a Noetherian, integral domain which is also an algebra over \mathbb{Q} . Let σ be an automorphism of *R* and δ a σ -derivation of *R* such that *R* is a (σ, δ) -ring and $\delta(P(R)) \subseteq P(R)$. Then *R* is 2-primal.

Theorem 2: Let *R* be a Noetherian, integral domain which is also an algebra over \mathbb{Q} . Let σ be an automorphism of *R* and δ a σ -derivation of *R* such that *R* is a (σ, δ) -ring. If $P \in Min.Spec(R)$ is such that $\sigma(P) = P$, then $\delta(P) \subseteq P$.

Theorem 4: Let *R* be a Noetherian, integral domain which is also an algebra over \mathbb{Q} . Let σ be an automorphism of *R* and δ a σ -derivation of *R* such that *R* is a (σ, δ) -ring and $\delta(P(R)) \subseteq P(R)$. Let $P \in Min.Spec(R)$ be such that $\sigma(P) = P$, then O(P) is a completely prime ideal of O(R).

2. Proof of Main Results

We now prove Theorems 1, 2 and 3 as follows:

Theorem 1. Let *R* be a Noetherian, integral domain which is also an algebra over \mathbb{Q} . Let σ be an automorphism of *R* and δ a σ -derivation of *R* such that *R* is a (σ, δ) -ring and $\delta(P(R)) \subseteq P(R)$. Then *R* is 2-primal.

Proof. Define a map $\rho : R/P(R) \rightarrow R/P(R)$ by

$$\rho(a + P(R)) = \delta(a) + P(R)$$
 for $a \in R$

Also define $\tau : R/P(R) \rightarrow R/P(R)$ by

$$\tau(a+P(R)) = \sigma(a) + P(R) \text{ for } a \in R.$$

Then τ is an automorphism of R/P(R) and ρ is a τ -derivation of R/P(R).

Also $a(\sigma(a) + \delta(a)) \in P(R)$ if and only if

$$(a + P(R))\rho(a + P(R)) + (a + P(R))\tau(a + P(R)) = P(R)inR/P(R).$$

Then as in Proposition (5) of [10], *R* is a reduced ring. Hence it is 2-primal.

For the proof of Theorem 2, we need the following:

Proposition 1. Let *R* be a Noetherian ring which is also an algebra over \mathbb{Q} . Let δ be a derivation of *R*. Then $\delta(P(R)) \subseteq P(R)$.

Proof. See Proposition (1.1) of [1].

Proposition 2. Let *R* be a 2-primal ring. Let σ be an automorphism of *R* and δ a σ -derivation of *R* such that $\delta(P(R)) \subseteq P(R)$. If $P \in Min.Spec(R)$ is such that $\sigma(P) = P$, then $\delta(P) \subseteq P$.

Proof. Let $P \in Min.Spec(R)$. Now P is a completely prime ideal, therefore, for any $a \in P$ there exists $b \notin P$ such that $ab \in P(R)$ by Corollary (1.10) of Shin [13]. Now $\delta(P(R)) \subseteq P(R)$, and therefore $\delta(ab) \subseteq P(R)$; i.e., $\delta(a)\sigma(b) + a\delta(b) \in P(R) \subseteq P$. Now $a\delta(b) \in P$ implies that $\delta(a)\sigma(b) \in P$. Now $\sigma(P) = P$ implies that $\sigma(b) \notin P$ and since P is completely prime in R, we have $\delta(a) \in P$. Hence $\delta(P) \subseteq P$.

Theorem 2. Let *R* be a Noetherian, integral domain which is also an algebra over \mathbb{Q} . Let σ be an automorphism of *R* and δ a σ -derivation of *R* such that *R* is a (σ, δ) -ring. If $P \in Min.Spec(R)$ is such that $\sigma(P) = P$, then $\delta(P) \subseteq P$.

Proof. Let $P \in Min.Spec(R)$. Then by Proposition 1, $\delta(P(R)) \subseteq P(R)$ and by Theorem 1, R is 2-primal. Since $\sigma(P) = P$, the result follows by Proposition 2.

For the proof of Theorem 4, we need the following:

Theorem 3. Let R be a ring. Let σ be an automorphism of R and δ a σ -derivation of R. Then:

- (i) For any completely prime ideal P of R with $\sigma(P) = P$ and $\delta(P) \subseteq P$, O(P) is a completely prime ideal of O(R).
- (ii) For any completely prime ideal U of O(R), $U \cap R$ is a completely prime ideal of R.

Proof. See Theorem (2.4) of [2].

REFERENCES

Theorem 4. Let *R* be a Noetherian, integral domain which is also an algebra over \mathbb{Q} . Let σ be an automorphism of *R* and δ a σ -derivation of *R* such that *R* is a (σ, δ) -ring and $\delta(P(R)) \subseteq P(R)$. Let $P \in Min.Spec(R)$ be such that $\sigma(P) = P$, then O(P) is a completely prime ideal of O(R).

Proof. R is 2-primal by Theorem 1 and so by Proposition 2, $\delta(P) \subseteq P$ and as in proof of Proposition 2 above, *P* is a completely prime ideal of *R*. Now use Theorem 3 and the proof is complete.

References

- [1] V. K. Bhat. *Differential operator rings over 2-primal rings*, Ukranian Mathematical Bulletin, 5(2), 153-158. 2008.
- [2] V. K. Bhat. A note on completely prime ideals of ore extensions, International Journal of Algebra and Computation, 20(3), 457-463. 2010.
- [3] V. K. Bhat. *Minimal prime ideals of* $\sigma(*)$ *-rings and their extensions*, Armenian Journal of Mathematics, 5(2), 98-104. 2013.
- [4] G. F. Birkenmeier, H. E. Heatherly, and E. K. Lee. Completely prime ideals and associated radicals, In. S. K.Jain, S. T. Rizvi, eds, Proc. Biennal Ohio State - Denison Conference 1992. Singapore-New Jersey-London-Hongkong: World Scientific (Singapore), 102-129. 1993.
- [5] G. F. Birkenmeier, J. Y. Kim, and J. K. Park. *Polynomial extensions of Baer and quasi-Baer rings*, Journal of Pure and Applied Algebra, 159(1), 25-41. 2001.
- [6] P. Gabriel. Representations Des Algebres De Lie Resoulubles (D Apres J. Dixmier). In Seminaire Bourbaki, 1968-69, pp 1-22, Lecture Notes in Math. No. 179, Berlin 1971 Springer Verlag, 1971.
- [7] K. R. Goodearl and R. B. Warfield. *An introduction to Non-commutative Noetherian rings*, Cambridge University Press, 2004.
- [8] Y. Hirano Some studies on strongly π -regular ring, Mathematical Journal of Okayama University, 20(2), 141-149. 1978.
- [9] C.Y. Hong and T.K. Kwak. *On minimal strongly prime ideals*, Communications in Algebra, 28(10), 4868-4878. 2000.
- [10] C.Y.Hong, N. K. Kim, and T. K. Kwak. *Ore extensions of Baer and p.p-rings*, Journal of Pure and Applied Algebra, 151(3), 215-226. 2000.
- [11] N.K. Kim and T.K.Kwak. Minimal prime ideals in 2-primal rings, Mathematica Japonica, 50(3), 415-420. 1999.

- [12] J. C. McConnell and J. C. Robson. *Noncommutative Noetherian Rings*, Wiley, 1987; revised edition: AMS, 2001.
- [13] G. Y. Shin. *Prime ideals and sheaf representations of a pseudo symmetric ring*, Transactions of American Mathematical Society, 184, 43-60. 1973.
- [14] S. H. Sun. Non-commutative rings in which every prime ideal is contained in a unique maximal ideal, Journal of Pure and Applied Algebra, 76(2), 179-192. 1991.