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Abstract. Let L be a compactly generated multiplicative lattice with 1 compact in which every finite
product of compact elements is compact and M be a module over L. In this paper we generalize the
concepts of Baer elements,x-elements and closed elements and obtain the relation between *-elements
and Baer elements and also closed elements and Baer elements. Some characterization are also obtain
for closed elements of M and minimal prime elements of M.
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1. Introduction

A multiplicative lattice L is a complete lattice provided with commutative, associative and
join distributive multiplication in which the largest element 1 acts as a multiplicative identity.
An element a € L is called proper if a < 1. A proper element p of L is said to be prime if
ab < pimpliesa < porb <p. IfaeL,be L, (a: b)is the join of all elements c in L
such that cb < a. A proper element p of L is said to be primary if ab < p implies a < p or
b™" < p for some positive integer n. If a € L then y/a = V{x € L | x" < a,n € Z,}. An
element a € L is called a radical element if a = 4/a. An element a € L is called compact if
as< Xba implies a < by V by V...V by, for some finite subset {a;, @, ..., a,}. Throughout
this paper, L denotes a compactly generated multiplicative lattice with 1 compact and every
finite product of compact elements is compact. We shall denote by L, the set compact elements
of L. A nonempty subset F of L, is called a filter of L, if the following conditions are satisfied,

(i) x,y € F implies xy € F
(i) x e F,x < y implies y €F.
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Let F(L,) denote the set of all filters of L. For a nonempty subset {F,} € F(L,), define
UF, = {x € L, | x = fify " f € Fy,, forsomei = 1,2,...,n}. Then it is observed that,
F(L,) = (F(L,),u,n) is a complete distributive lattice with U as the supremum and the set
theroretic () as the infimum. For a € L, the smallest filter containing a is denoted by [a) and
it is given by [a) = {x € L* | x > a" for some nonnegative integer n}. For a filter F € F(L,)
we denote,0p =V{x €L, | xs=0, fors € F}.

Let M be a complete lattice and L be a multiplicative lattice. Then M is called L-module or
module over L if there is a multiplication between elements of L and M written as aB where
a € L and B € M which satisfies the following properties,

1 (Xaa)A = XaaA Ya,€L, Ae M
(ii) a(XAO‘) = XaA“ Yael, A,eM
(iii)) (ab)A=a(bA) VYa,bel, AeM
(iv) 1B=B

(v) OB =0y, for all a,a,,b € L and A,A, € M, where 1 is the supremum of L and 0O is the
infimum of L. We denote by 0,, and I;; the least element and the greatest element of M.
Elements of L will generally be denoted by a, b, c, ... and elements of M will generally
be denoted by A, B, C....

Let M be a L-module. I NeManda€ Lthen(N:a)=V{XeM |aX <N}.IfABEM,
then (A: B) = V{x € L | xB < A}. An L-module M is called a multiplication L-module if for
every element N € M there exists an element a € L such that N = aly, see [2]. In this paper
a lattice module M will be a multiplication lattice module, which is compactly generated with
the largest element Ij; compact. A proper element N of M is said to be prime if aX < N implies
X < N oraly; <N thatisa < (N : I;) for everya € L, X € M. If N is a prime element of
M then (N : Ij;) is prime element of L [4]. An element N < I; in M is said to be primary if
aX < N implies X < N or a"I; < N that is a" < (N : I;;) for some integer n. An element N of
M is called a radical element if (N : I;) = /(N : I;). If aN = 0, implies a = 0 or N = 0y,
forany a € L and N € M then M is called a torsion free L-module.

2. Residuation properties

We state some elementary properties of residuation in the following theorem.

Theorem 1. Let L be a multiplicative lattice and M be a multiplication lattice module over L.For
x,y € L and Z,A,B € M, where (0y; : I),) is a radical element. We have the following identities,

(1) x <y implies (0p; : ¥) < (0p; : x)and Opy : (Opp 2 x) < O0py 2 (0p7 : y)

(i) Opp :[0p : (0p : x)]1=1(0p; : x)



C Manjarekar, U Kandale / Eur. J. Pure Appl. Math, 8 (2015), 332-342 334
(iv) (O :x)=(0,, : x™) foreveryne Z,
(v) Opr:(0py i x)AO0p:(0pr:y) =05 :(0pp: xy) =01 : [0 : (x Ay)]
i) (0y : a) =0, implies (0, : a*) =0 foreveryne Z,
(vii) xVy =1implies (03; : x)V(0p: ¥) =0y : (x Ay)=0y : xy
(viii) For Zin M, Z <0y, : (0y; : Z)
(ix) A< B implies (0, : B) < (04 : A)
(@) Opr:[04:(0) :A)] =0y :A
(xi) Oy : xI,; = 0y : x™I,, for some positive integer n.

We define, 0z, = V{X € M, | sX = 0,, for some s € F}, where M, is the set of compact
elements of M.
The proofs of the following theorems are simple

Theorem 2. Let F C L be a filter of F(Lx) and let X be a compact element of M. Then X < Opy,
if and only if sX = 0,; for some s € F.

Theorem 3. For F € F(L,), Opp; = V{(0y; : x) | x € F}.
Theorem 4. For F{,F, € F(L,)
(l) Fl g F2 lmplles OFIM < OFzM'

(ii) OFlM A OFZM = O(Fl (F2)M

3. Baer Elements

A study of Baer elements, *-elements and closed elements carried out by D D Anderson, et
al. [1]. We generalize these concepts for lattice modules.

Definition 1. An element A € M is said to be Baer element if for x € Lx, xIy; < A implies
0y : (O = xIyy) <A

Definition 2. An element A of M is said to be x-element if A= O, for some filter F € F(L,) such
that zero does not belong to E

Definition 3. An element A of M is said to be closed element if A= 0,; : (Oy : A).
The next result establishes the relation between closed element and Baer element.
Theorem 5. Every closed element is a Baer element.

Proof. Let A be a closed element of M and x be a compact element of L, such that xI;; < A.
Then 0y : (Opr : xIy) < Oy : (0y : A) = A as Ais a closed. This shows that A is a Baer
element. n
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Definition 4. An element P of M is called a minimal prime element over A€ M if A< P and there
is no other prime element Q of M such that A< Q < P.

The following result gives the characterization of a minimal prime element over an ele-
ment.

Theorem 6. Let a be proper element of L and P be a prime element of M with al,; < P. Then the
following statements are equivalent,

(1) P is minimal prime element over aly;.

(ii) For each compact elementx in L, xI;; < P, there is compact element y in L such that yI,; ¢ P
and x"yI,; < al,; = A for some positive integer n.

Proof. (i) = (ii)
Let P be a minimal prime over al;; and suppose xI,; < P. Let

S={x"y |y L (P:I)and n is a positive integer }.

It is clear that, S is a multiplicatively closed set. Suppose x"y % al,, for any integer n and
for any yI,,; ¢ P, where y is compact in L. By the separation lemma (see [5]), there is a prime
element (Q : I;) of L such that (P : I;) < (Q : Iy) and t £ (Q : I};) for all t € S. Then
we have (Q : I};) < (P : I,) since otherwise x"(Q : I)y) € S and x™(Q : Iy) £ (Q : Iyy) a
contradiction. Hence (P : I;) = (Q : I;). It follows that P = Q (see [3]. But then for t € S,
t<x<(P:Iy)=(Q:1I) acontraduction.
(it) = (i)

Suppose for any x in L, xI); < P, there is y in L such that yI;; £ P and x"yI,; < al; for
some positive integer n. Also suppose that there is a prime element Q of M with al;; < Q < P.
Choose, xI); < P and xIj; £ Q. By hyphothesis, there is a compact element y in L such that
yI); € P and integer n such that x"yI,; < aly; < Q. As xI; £ Q, x ¢ (Q : I;;). Since Q is
a prime element of M, (Q : I,) is also prime element of L (see [4]). Hence x™ ¢ (Q : I);).
Thus, x™ £ (Q : I);) and y € (Q : I;) where (Q : I;;) is a prime element of L, which is a
contradiction. O

In the next result, we prove the important property of a minimal prime element.

Theorem 7. Let M be an lattice module. Every minimal prime element of M is a x-element where
Oy is prime element.

Proof. Let p be a minimal prime element of M. Define the set F = {x € L, | xI); ¢ P}. We
first show that F is a filter of F(L,). Let x and y be compact element of L such that x,y € F.
So xI,; ¢ P and yI); ¢ P. As P is prime, xyI,; ¢ P. This shows that xy € F. Now let x € F
and x < y. Hence xI,,; ¢ P implies yI); ¢ P and y € F. If 0 € F then we have 0I), ¢ P that
is 0y, ¢ P a contradction. Thus F € F(L,) and 0 ¢ F. Now we show that P = Opy,. Let x be a
compact element of L such that xI,; < P. By Theorem 6 it follows that there exist a compact
element y € L such that yI,; ¢ P and x"yI,; = 0,, for some positive integer n. We have y € F
and x"I; < Opy;. As Opy, is prime element, so xIy; < Op, implies P < Op),;. Now let x be a
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compact element of L such that xI;; < Opj,;. Then by Theorem 2, rxI;; = 0, for some r € F.
So we have rxI,; < P and rI; ¢ P. As P is prime, xI; < P and Og); < P which shows that
P = 0p),. Thus every minimal prime element of M is x-element. O

The relation between *-element and Baer element is proved in the next result.
Theorem 8. Each x-element of M is a Baer element.

Proof. Suppose an element A of M is x-element. Hence A = Op,, for some filter F € F(L,)
such that 0 ¢ F. Let x € L, such that xI,; < A. Then we have rxI,; = 0y, thatis xI;; < (0y : 1)
for some r € F by Theorem 2. Therefore by (i) and (iii) of Theorem 1 we get

Oy : (O s xIp) <0y i [Op : (0py 7)1 =(0py 2 7).
Hence by Theorem 3, 0y : (0y : xI;) < VF(OM :s) = Opy; = A. This shows that A is a Baer
NS
element. O

The next result we prove the existence of closed and Baer elements.

Theorem 9. Let M be multiplication lattice module. For any x € L,(0,; : x) is both Baer and
closed element.

Proof. For an element x € L,, let xI; < (0, : x), then
O 2 (0 : xIyy) <Oy i [0p1 0 (0pp 2 )] =(0yy : x)

by (i) and (iii) of Theorem 1. Thus (0, : x) is a Baer element. Again from (iii) of Theorem 1,
(0p : x)=0p; : (0y : (Oy : x)). This shows that (0y; : x) is a closed element. O

In the following theorem we prove the characterization of closed element in terms of Baer
element.

Theorem 10. For a € L,, aly; is closed if and only if al,; is a Baer element.

Proof. Let L, be the set of all compact element of L. and al,; be a Baer element of M. We
show that aly; = 0y : (0 @ aly). As aly < aly;, we have [0y : (0y @ aly)] < aly;. But
aly(0y @ alyy) < 0y, implies aly; < 0y : (0y : aly,). Therefore 0y, : (Oy : aly;) = aly;. Thus
aly; is closed. The converse is proved in Theorem 5. O

Theorem 11. For a nonzero compact element a in L, Oy, : a = Opy).

Proof. We note that F =[a)={z€L,|z>a" forsomene Z, } € F(L,) and
Opy = V{X € M, | sX = 0y, for some s € F}. Now let z be compact element of L such that
z€ FN{0}. Thenz € F and z =0. Asz € F,z > a" for some n € Z,. Hence a < /z = 0 which
shows that a = 0. This contradiction implies that 0 ¢ F. Now we show that 0y, : @ = Op;. As
a is a compact element in L, a € F. So we have 0y, : a < Opp; = V{(0y; : x) | x € F}. Let Z be
a compact element in M and Z < Opj;. Then by Theorem 2 sZ = 0;; for somes € F. Sos > a"
for some n € Z, . We note that 0y, : a" = 0y, : a. Consequently, we have a"Z < sZ = 0. This
implies that Z < (0, : a™) = (0y; : a). Consequently, Oy < (0y : a) and (0y, : a) = Op. O]

The following theorem establishes the property of Baer, closed and x-element.
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Theorem 12. Suppose L has no divisors of zero then the element 0y, is always a Baer; closed and
x-element whereas 1,; is Baer and closed.

Proof. Let x be a nonzero element of L. From Theorem 9,for any x € L, 0y, : x is both Baer
and closed and by Theorem 11 for a nonzero compact element x of L, Oy : x = Of,. To show
that 0y, a is Baer element,take x € L, such that xI;; < 0;;. We have

Hence 0y, is a Baer element. As 0y = 0y, : (0y : Oyr), Oy is closed. Every Baer element is a
x-element. To show that 1,; is a Baer element. Take any x € L, such that xI; < 1;;,. We have
Op = (Op : xIpy) =0y i [V{a € L | axIy = 0y }] =0y : 0 =1y. So 1y is a Baer element.
Now 0y, : (0py : 13,) =0y : [V{a € L | aly; =0y }] = 1), and 1, is closed. O

Remark 1. For defining the x-element, the condition O ¢ F is necessary.

Suppose if possible X is a *-element. Hence X = Oy, for some filter F such that O ¢ F. Then
we have X =V{(0y : )| r € F}. Now 0); : 0=V{A€ M | 0A =0y} = 1. Thus only 1,, will
be a x-element. Hence, for defining a x-element we take F such that 0 ¢ F.

Theorem 13. If {A,, is a family of Baer elements then AA, is a Baer element.
@ a

Proof. Let x € L, such that xI;; < AA,. Then for each a,xI;; < A,. Aseach A, is a
a
Baer element, 0y, : (0y; : xI;) < A,. Hence 0y : (0y @ xI;) < AA,. Thus AA, is a Baer
a a
element. O

The next result we prove the relation between minimal prime element and Baer element.
Theorem 14. If A is a meet of minimal prime elements then A is a Baer element.

Proof. From Theorem 7, every minimal prime element of M is a x-element and by Theorem
8, each x-element of M is a Baer element. From these two results,every minimal prime element
is a Baer element. So meet of all minimal prime elements is a Baer element, by Theorem 13. [

Theorem 15. If {A,}, is a family of closed elements then AA, is a closed element.
a

Proof. We have AA, < A, for each a. As each A, is a closed element we have
0y : [0y : (NAY)] <a0M :(0y 1 A,) =A,. This gives 0y : [0y : (AA,)] < AA,. Now let Z be an
element of M such that Z < QAa. Then we have Z < 0y, : (0 :aZ) < OMa: 0y : {x\A“)’ by (ix)
of Theorem 1. This gives {x\A“ <0y : [0y : (QAa)]. Thus we get 0y, : [0y : ({x\A"‘)] = QAa. O

Here is an important property of largest element of M which is compact.

Theorem 16. 1,; is never a x-element where 1,; is compact and M is torsion free L-module.
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Proof. Suppose that 1,; is a *-element. Then there exist some filter F € F(L,) such that
1) = Opyy, where 0 ¢ F. Then as 1,, is compact and 1;; =0y, = V{(Oy : x) | x €F},
1 = (Op : x7) V(0 : x5) V...V (0y : x,) for some xq,Xs,...,Xx, € F. Consequently, as 1,
is closed,

1M =OM:(0M . 1M):OM . [OM:((OM:xl)v(OM:xZ)v"'v(OM :xn))]
=0ps : [0pr : (Opz s x1) AOps 2 (Ot X)) Ao AOyy 2 (Op 2 X))

Therefore 1,; = 0y : [0p : (Opr & (3¢1Xx5...%,)] =0y & (x1Xx5...X,), by (iii) and (v) of Theorem
1. This implies that x;x5...x, = 0. Since xy, Xs,...,X, are in E We have 0 = xx,...x, €F.
Which is a contradiction as 0 ¢ F. O

The next result we prove the characterization of a Baer element.
Theorem 17. The following statements are equivalent,
(i) An element A€ M is a Baer element.

(ii) For any element x,y € L such that x is compact Oy, : xI; = 0y : yIyy and xI; < Aimplies
yly <A

(iii) For any element x,y € L,,0y : x =0y, : y and xIy; < Aimplies yI,; <A

Proof. (i) = (ii)
Assume that A is a Baer element of M. Let x, y € L be such that x is compact, xI;; < A, and
0y : xIy =0y : yI;. Then by Theorem 1, yI; < 0y : (Op : ¥Ipy) = 0y 2 (Opy 2 xIyy) <A,
since A is a Baer element.

(i1) = (iii)
Obvious.

(iii) = (i)
Assume that for any element x,y € L,,0,, : xIj; = 0y : ¥I;; and xI; < A implies yI;; < A.
We show that A € M is a Baer element. Let x € L, be such that xIj; < A. We have
Opr : xIyy = 0y 2 [0y 2 (0yy = xIr)]. Hence by (iii), we have 0y, : (0, : xIp;) < A. Hence, A is
a Baer element. O

In the following theorem we prove the relation between Baer element of a lattice module
and radical element of a multiplicative lattice.

Theorem 18. If A is Baer element of M then A : I, is a radical element.

Proof. Let A be Baer element of a lattice module M. We show that (A : I;) = +/(A: I).
Assume that x is compact element such that x"I); < A for some positive integer n. We have
0y @ xIy; = 0y ¢ X", by (xii) of Theorem 1 and hence by above theorem xI,; < A that is

x < (A:1I). Hence v/(A: 1) < (A: 1) and we have /(A: ;) =(A: Iy)ie(A:Iy)isa

radical element. O

Theorem 19. If A is a Baer element then every minimal prime element over A is a Baer element.
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Proof. Let A be a Baer element and P be a minimal prime in M over A. Assume that
0y : x =0y : z for some x,z € L such that x is compact and xI;; < P. There exists a compact
element y € L such that yI,,; ¢ P and x"yI;; <A< P for some positive integer n, by Theorem
14. Note that Oy : yx =(0pr :x): Yy =0y : x") : y =0p : X"y =0p : yx" =0y : y2. As A
is a Baer element. By Theorem 17, xyI,; < A implies yzI,; < A< P. Hence zI,; < P as P is
prime. So again by Theorem 17, P is a Baer element. O

The characterization of minimal prime element of M is proved in the next theorem.

Theorem 20. Let L be a lattice module and P be a prime element of M. Then P is a minimal prime
element if and only if for x € L,, P contains precisely one of xI,; and 0y : x.

Proof. If part:

Assume that for x € L,,P contains precisely one of xI,; and 0y, : x. First assume that P contains
xIy;. But 0y, : x ¢ P. Therefore there exists a compact element y in L such that yI;; < 0y : x
but yIy; ¢ P. Thus xyI,; < Oyp. This shows that for each compact element x in L,xI); < P,
there exist a compact element y in L such that yIj), ¢ P and xyI,; < 0. By Theorem 6, it
follows that P is a minimal prime element of M. Next assume that 0;; : x < P but xI,,; ¢ P.
Let z be a compact element of L such that zI,; < (0y; : x) < P. But xI); ¢ P and xzI); < 0.
Consequently, by Theorem 6 P is a minimal prime element. Thus the condition is sufficient.
Only if part:

Assume that P is a minimal prime element of M. Let x be a compact element of L. Suppose if
possible xIy; < P. Then by Theorem 6, there exist a compact element y in L such that yI,, ¢ P
and x"yI,; = 0y, for some positive integer n. Consequently, yI;; < 0,; : x" = 0y, : x. This
implies that 0y, : x ¢ P. Now suppose if possible xIj; ¢ P and 0;; : x ¢ P. Then there exist a
compact element y in L such that yI,; < 0y, : x but yI,; ¢ P. Hence we have xyI,; < 0;; and
so xyIy < P. But xI; ¢ P and yI,; ¢ P which contradicts the fact that P is prime element of
M. This shows that P contains precisely one of xI;; and (0, : x). O

The relation between *-element of M and a minimal prime element over it is established
in the next theorem.

Theorem 21. If A is a x-element of M then every minimal prime over A is a minimal prime.

Proof. Let P be a minimal prime element of M over A. We know by Theorem 8 and Theorem
18, a #-element A is a Baer element and (A : I;;) is a radical element. Let x € L, be such that
xI,; < P. But P is a minimal prime over A. Then by Theorem 2 there exists y € L, such that
yIyy ¢ Pand x"yIy SAie. x"y <A:Iy. Sox"y"<A:Iyie xy < (A:Iy)=A:1Iy).
By hyphothesis, xy is compact and xyI,; < A= Ogy, for some filter F of L, such that 0 ¢ F.
Hence xyI,,d = 0y, for some d € F. We show that there is no compact element x in F such
that xI; < P. Suppose there is compact element z in L such that zI); < P and z € F. Then
by Theorem 3, 0y, : 2 < O = A < P. This contradict the fact that P contains precisely one of
zIy; and Oy : 2 where z € L,. Hence there is no compact element x in F such that xI,; < P.
This implies that dI); £ P. As P is prime, dI,; € P and yI,; X P implies ydI,; ¥ P. Thus
xydI; =0y < P and ydI,; ¥ P. Therefore by Theorem 6, P is minimal prime. O
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Remark 2. By Theorem 7, we infer that every minimal prime element is a *-element and it is a
Baer element. Therefore by Theorem 21, if A is the meet of all minimal prime elements containing
it, A is a Baer element.

Notation: For a family {A,} of Baer elements of L we define,
VA, =V{xIj;,x €L, |0y :(x1Vxy...VXx ) <Oy :xIy,

for some compact elements x;I); < Agjand some j=1,2,..., n}.
The important property of a family of Baer elements is established in the next theorem.

Theorem 22. If {A,} is a family of Baer elements of L,YA, is the smallest Baer element greater
than each A,.

Proof. We first show that YA, is a Baer element greater than each A,. Let x be a compact
element of L such that xI); < YA,. Then there exist compact elements x;, X, . .., X, such that
Op 0 (61 Vxg Voo Vix )y < Oy i xly and xjIy S Agj j =1,2,...,n. Next we show that
Op 2 (Op = xI) < YA,. Let z be compact element in L such that zI; < 0y : (0y : xI;). Then
Oy : 2l = 0y 2 [0y (0p 2 xIyp)]. Thatis Oy : xIy; < 0y : 21, (by Theorem 1, (x) and
(xi)). Therefore 0y : (x; V xo V...V X)) < 0y : 2l This implies that zI;; < YA,. Thus
0y : (0y : xI,) < YA,. This shows that YA, is a Baer element. Let z be a compact element
in L such that zI,; <A, for some a. But 0y : zI); < 0y : 2Iy. Thus 2I); < YA,. Hence each
A, < YA,. Let B be a Baer element such that A, < B for each a and let x be a compact element
in L such that Oy : (x1 VX3 V...V x,)Iy < Oy @ xIy for some compact elements x;Iy; < Ay,
j=1,2,...,n so that xI;; < YA,. Note that B is a Baer element and the compact element
(1 VxyV...Vx)Iy < B. Hence 0y : [0y : (7 VXo V...V x,)I[;] < B. Again note that
Opr : (Opf = xIng) < Opp 2 [Opy : (6 VX Voo Vxp)Iy] and xIy; < Oyt (0yy & xIy,). Therefore
xI,; < B and hence YA, < B. Consequently YA, is the smallest Baer element greater than
each A,. O

Theorem 23. For any proper element A€ M, Y{0,; : (04, : xI);) | x € L, and xI,; < A} is the
smallest Baer element greater than A.

Proof. First we show that 0y, : (0y; : xI;,) is a Baer element i.e. we show that for any
x € L, xIy < 0y : (0y : xI;) implies Oy, : (Opy : xI3;) < Oy : (0 : xIp) which holds
obviously. Hence by Theorem 22, B = Y{0,; : (0y; : xI;) | x € L, and xI,; < A} is the smallest
Baer element containing each 0y, : (0y; : xI,,) for xI;; < A. Let a compact element x in L be
such that xIj; < A. Then we have xI; < 0y, : (Oy; : xIj;) < B. Thus A< B. Let zI;; be a Baer
element in M such that A < zI); and let y be compact element in L such that yI,; < B. Then
Op : (21 V2 V... Vg )y < 0y : yIy, for some compact elements z;Iy; < 0y : (Opr : X;1p),
where i =1,2,...,n. Thus Oy, : x;I; < Oy : 2;I;, for each i. This gives

OM :(X]_ szv"'vxn)IMZOM:XIIMAOM :XZIM/\OM :XHIM
<OM :Z]_IM/\OM :Zle/\.../\OM :ZYIIM
:OM : (Zl Vsz...VZn)IM <OM :yIM'
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Thusif x = x;Vx,V...VXx, is compact element such that xIj; = (x; VX, V... .Vx, )y SA< zly,
we get Oy : xIyy < 0y ¢ ¥Iy. As 21, is a Baer element we have

yIM < OM . (OM :.yIM) < OM : (OM . XIM) <ZIM.

Therefore B < zI,,. This shows that ¥{0,, : (0, : xI;) | x € L, and xI,; < A} is the smallest
Baer element greater than A. O

Notation : For a family {A,} of closed elements of M we define,
AV B=V{zly,z€ L, |0y :(xVYy)y <0y:zly

for some xI; <A and yI,; < B}. Then we have the following important result.
The property of closed elements is proved in the next theorem.

Theorem 24. If A and B are closed elements of M A<y B is the smallest closed element greater
than A as well as B.

Proof. We show that A/ B is closed greater than A as well as B. Let C = Ay B. We
always have C < 0y : (0y : C) where C € M. Let x be compact element in L such that
xI; <0y :(0y : C). Then 0y : C < 0y : xI;. This implies that

Op : (y V&) <0y C <Oy xly

where y,z € L., yIj; SAand zI; < B. But yI;; <AV B, zI); <A/ B. Hence
Oy 2 (rVs)Iy < 0yt yIpy and Oy : (uVy)Iy < Oy : 21y, where rly, uly, < Aand sy, vIy < B.
Therefore 0y : (r Vs)Iy AOy; i (uV V) <0y : yIyy AOy, 21, Consequently

Oy i (rvsvuVv vy <0y (yVa)y <0y xly,

where (r Vu)l; < Aand (s vV v)I,; < B. This implies that xI); < C. Hence 0y, : (0), : C) < C.
This gives 0y, : (0y; : C) = C and C is closed. As 0y;;sIy; < Oy : sI; for any element s in L, it
follows that A, B < Ax/ B. Suppose that W is closed element such that A, B < W and let x € L,
be such that 0y, : (uVv)Iy; < 0y : xI), for some ul; < Aand v, < B. Note that W is a closed
element and (u V v)I; < W. Hence we have 0y, : [0y : (uV V)] < 0y 2 (0py : W) =W,
Again note that 0y : (0py : xIp) < Oy : [Op : WV V] < W and xI; < 0y 0 (0y 2 xIyy).
Therefore xI); < W and hence Ayy B < W. Consequently, it proves that A/ B is the smallest
closed element greater than A as well as B. O

Theorem 25. If A and B are closed elements of M then Ax7 B = 0y, : [0y : (AV B)].

Proof. By Theorem 24, we have AVB < AyyB. Hence 0y, : [0y : (AVB)] <Ay BasAyB is
a closed element. Let xI,; SAvyB,x € L,. Then Oy : (uVv)Iy; < 0y : xI), for some ul; <A
and vIj; < B. Consequently, we have

XTIy < O0pp i (Opp i xIyy) < Opp 2 [0pr : (VW] <00 [0 (AV B)].

Hence Ay B < (0y : 0y : (AVB)). Thus Ay B =0, : [0, : (AVB)]. O
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