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Abstract. We consider the asymptotic expansion of the sum

Sp(a; w) =

∞
∑

n=1

e−anp

nw

as a→ 0 in |arg a|< 1
2π for arbitrary finite p > 0 and w> 0. Our attention is concentrated mainly on

the case when p and w are both even integers, where the expansion consists of a finite algebraic expan-

sion together with a sequence of increasingly subdominant exponential expansions. This exponentially

small component produces a transformation for Sp(a; w) analogous to the well-known Poisson-Jacobi

transformation for the sum with p = 2 and w= 0. Numerical results are given to illustrate the accuracy

of the expansion obtained.
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1. Introduction

We consider the asymptotic expansion of the sum

Sp(a; w) =

∞
∑

n=1

e−anp

nw
(1)

as the parameter a→ 0 in |arg a|< 1
2π, where p > 0 and, for convenience, w will be supposed

throughout to be real and positive. When w= 0, this sum is known as the Euler-Jacobi series

and when a = 0 then Sp(0; w) reduces to the Riemann zeta function ζ(w) (providedℜ(w)> 1).

Consequently, the series in (1) can also be viewed as a smoothed Dirichlet series for ζ(w).

The asymptotics of Sp(a; w) as a→ 0+ for p a rational fraction and w< 0 was considered

by Ramanujan and is discussed in [1, Chapter 15]. It was shown that the expansion in this
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case consisted of an asymptotic sum involving the Riemann zeta function. A hypergeometric

function approach for the Euler-Jacobi series when p is a rational fraction and w= 0 has been

discussed at length in the monograph [3], where great emphasis was placed on obtaining ex-

ponentially small expansions. The case w= 0 and arbitrary p > 0, thus generalising the work

in [3], has been investigated in [5, §8.1] also for a→ 0+ using both a Mellin-Barnes integral

approach and also a saddle point analysis of a Laplace-type integral representation. A similar

Mellin-Barnes integral approach for this latter case has also been independently considered.

The saddle point approach is instructive for understanding the appearance of exponentially

small terms in the expansion as the parameter p increases. It was established in [5, §8.1]

that an additional exponentially small contribution appears when p = 2+ 4k, k = 0,1,2, . . . .

Indeed, the appearance of the first exponentially small expansion as p passes through the ‘clas-

sical’ value p = 2 was demonstrated to be associated with a Stokes phenomenon [5, §8.1.7].

In the case p = 2, w= 0 the behaviour of the sum S2(a; 0) as a→ 0 can be obtained from

the classical Poisson-Jacobi transformation given by

S2(a; 0) =

∞
∑

n=1

e−an2

=
1

2

s

π

a
− 1

2
+

s

π

a

∞
∑

n=1

e−π
2n2/a (2)

valid for all values of a in |arg a| < 1
2π. This well-known transformation relates a sum of

Gaussian exponentials involving the parameter a to a similar sum with parameter π2/a. In

the small-a limit, the convergence of the sum on the left-hand side becomes slow, whereas the

sum on the right-hand side converges rapidly. Various proofs of (2) exist in the literature; see,

for example, [5, p. 120], [7, p. 60] and [8, p. 124].

The dominant asymptotic expansion of Sp(a; w) as a → 0 in |arg a| < 1
2π for general

p > 0 and w > 0 is relatively straightforward and is found to consist, in general, of a single

term proportional to a(w−1)/p, together with a series in ascending powers of a with coefficients

involving the Riemann zeta function (the algebraic expansion). When 0 < p ≤ 1, the expan-

sion is convergent and the result is exact; when p > 1 the expansion is asymptotic as a→ 0.

The most interesting case arises when p and w are both even integers. The above-mentioned

algebraic expansion then terminates after a finite number of terms, and it becomes essential

for accurate estimation to also include a subdominant sequence of exponentially small expan-

sions. This exponentially small component produces a transformation for Sp(a; w) analogous

to the Poisson-Jacobi transformation in (2), but valid as a→ 0 in |arg a|< 1
2π. This similarly

involves a finite sequence of series similar to (2) with a in the exponential replaced by an

inverse power of a, but with each term decorated by an asymptotic series in ascending powers

of a1/(p−1).

The approach we employ in this paper is based on a Mellin-Barnes integral representation

for Sp(a; w) and is similar to that described in [5, §8.1.4]. An algorithm for the determination

of the coefficients in the exponentially small asymptotic series is described. The case p = 2

when w is an even integer has been recently discussed in [6], where the coefficients in the

decorating asymptotic series can be given in closed form. An application of the series when

p = 2, with w = 2 and w = 4, has arisen in the geological problem of thermochronometry in

spherical geometry [9].
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2. An Expansion for Sp(a; w) as a→ 0 When w, p 6= 2, 4, . . .

We examine the expansion of the series Sp(a; w) defined in (1) as a → 0 in the sector

|arg a|< 1
2π, where p > 0 and for simplicity in presentation we shall assume throughout real

values of w > 0. The case p = 1, w = 0 may be excluded from our consideration since the

series in this case is summable as a geometric progression.

Our starting point is the well-known Cahen-Mellin integral (see, for example, [5, §3.3.1])

zαe−z =
1

2πi

∫ c+∞i

c−∞i

Γ(α− s)zsds (z 6= 0, |arg z|< 1

2
π), (3)

where c < ℜ(α) so that the integration path passes to the left of all the poles of Γ(α − s)

situated at s = k+α (k = 0,1,2, . . .). Then, it follows that

Sp(a; w) =

∞
∑

n=1

e−anp

nw
=

∞
∑

n=1

n−w

2πi

∫ −c+∞i

−c−∞i

Γ(−s)(anp)sds

=
1

2πi

∫ −c+∞i

−c−∞i

Γ(−s)ζ(w− ps)asds (|arg a|< 1

2
π), (4)

upon reversal of the order of summation and integration, which is justified when

c >max{0, (w−1)/p}, and evaluation of the inner sum in terms of the Riemann zeta function.

The integrand in (4) possesses simple poles at s = k (k = 0,1,2, . . .) and s = s0 ≡ (w−1)/p,

except if s0 = M (that is, w = pM + 1), where M is a non-negative integer, when the pole at

s = s0 is double. The residue at the double pole is obtained by making use of the fact that

ζ(s)≃ 1/(s− 1) + γ in the neighbourhood of s = 1, where γ is Euler’s constant, to find

(−a)M

M !

§

γ− 1

p
log a+

1

p
ψ(M + 1)

ª

(M = 0,1,2, . . .),

where ψ(x) is the logarithmic derivative of the gamma function. The case when w and p are

even positive integers requires a separate treatment which is discussed in Section 3.

2.1. The Case 0< p < 1

We first consider the case 0 < p < 1. The integration path in (4) can be made to coincide

with the imaginary s-axis together with a suitable indentation to lie to the left of the poles at

s = 0 and s = s0 (when 0 < w < 1). Then use of the functional relation for ζ(s) given by [8,

p. 269]

ζ(s) = 2sπs−1ζ(1− s)Γ(1− s) sin
1

2
πs (5)

shows that the integrand can be written as

(2π)wζ(1−w+ ps)
Γ(1−w+ ps)

Γ(1+ s)

sin 1
2π(ps−w)

sinπs

as

(2π)ps
.
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With s = Reiθ , where R→∞ and is chosen so that the arc passes between the poles on the

positive real axis, the logarithm of the dominant real part of the integrand is controlled by

(p− 1)R cosθ log R+O(R).

When |θ | < 1
2π, this last expression tends to −∞ when 0 < p < 1. Consequently, the inte-

gration path can be bent back to enclose the poles of the integrand to yield the convergent

result

Sp(a; w) = Jp(a; w) +

∞
∑

k=0

′ (−)k
k!
ζ(w− kp)ak (0< p < 1), (6)

where

Jp(a; w) =









1

p
Γ

�

1−w

p

�

a(w−1)/p (w 6= pM + 1)

(−a)M

M !
{γ− 1

p
log a+

1

p
ψ(M + 1)} (w= pM + 1)

and the prime on the sum over k denotes the omission of the term corresponding to k = M

when w= pM + 1.

When p = 1, the sum S1(a; w) is given by (6) but now the sum over k on the right-hand

side converges when |a| < 2π; see [5, §4.2.2] for details. If we let p = 1, w = 0 then use

of the facts that ζ(1− 2k) = −B2k/(2k) and ζ(−2k) = 0, where B2k are even-order Bernoulli

numbers, shows that

S1(a; 0) =
1

a
− 1

2
+

1

a

∞
∑

k=1

B2k

(2k)!
a2k (|a|< 2π),

which correctly reduces to the trivial summation 1/(ea−1) by application of [4, Eq. (24.2.1)].

2.2. The Case p > 1

When p > 1, the integration path in (4) cannot be bent back over the poles and we proceed

in a similar manner to that described for the case w = 0 in [5, §8.1.4]. Consider the integral

taken round the rectangular contour with vertices at −c ± iT , c′ ± iT , where c′ > 0. The

contribution from the upper and lower sides s = σ ± iT , −c ≤ σ ≤ c′, vanishes as T →∞
provided |arg a|< 1

2π, since from the behaviour

Γ(σ± i t) = O(tσ−
1
2 e−

1
2πt), ζ(σ± i t) = O(tµ(σ) logA t) (t →∞),

where for σ and t real

µ(σ) = 0 (σ > 1),
1

2
− 1

2
σ (0≤ σ ≤ 1),

1

2
−σ (σ < 0),

A= 1 (0≤ σ ≤ 1), A= 0 otherwise,
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the modulus of the integrand is controlled by O(Tσ+µ(σ)−
1
2 log Te−∆T ), with∆= 1

2π−|arg a|.
Displacement of the integration path to the right over a finite set of poles then yields (provided

w and p are not even integers)

Sp(a; w) = Jp(a; w) +

N−1
∑

k=0

′ (−)k
k!

ζ(w− kp)ak + RN , (7)

where N is a positive integer such that N > s0 +
3
2 and the prime on the sum over k again

denotes the omission of the term corresponding to k = M when w= pM + 1.

The remainder RN is given by

RN =
1

2πi

∫ c+∞i

c−∞i

Γ(−s)ζ(w− ps)asds

=
(2π)w

2πi

∫ c+∞i

c−∞i

ζ(1−w+ ps)
Γ(1−w+ ps)

Γ(1+ s)

sin 1
2π(ps−w)

sinπs

as

(2π)ps
ds

where c = N − 1
2 and the second expression follows from (5). Upon use of the result

|ζ(x + i y)|< ζ(x) when x > 1, we obtain the bound

|RN |< (2π)w−1ζ(pN−p(s0−
1

2
))

�

a

(2π)p

�N− 1
2
∫ ∞

−∞
e−φ t F(t) d t, (8)

where φ = arg a and

F(t) =

�

�

�

�

Γ(1−w+ ps)

Γ(1+ s)

�

�

�

�

cosh 1
2πpt

coshπt
(s = N − 1

2
+ i t).

On the integration path, F(t) is regular and satisfies F(t) = O(e−
1
2π|t|) as t →±∞. Hence the

integral in (8) is convergent and independent of |a| provided |φ|< 1
2π. It then follows that

RN = O(aN− 1
2 ) (a→ 0 in |arg a|< 1

2
π).

The expansion (7) is the dominant algebraic expansion associated with Sp(a; w) valid as

a→ 0 in |arg a| < 1
2π, provided w (> 0) and p are not even integers when the sum in (7) is

finite. The same analysis can be applied to the case with non-positive w to yield the Berndt-

Ramanujan result [1, Theorem 3.1, p. 306]

Sp(a;−w) =
1

p
Γ

�

1+w

p

�

a−(1+w)/p +

N−1
∑

k=0

(−)k
k!

ζ(−w− kp) ak +O(aN− 1
2 ) (w≥ 0)

as a→ 0 in |arg a|< 1
2π. The reflection formula (5) can be employed to convert the argument

of the zeta function to a positive form.
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3. The Expansion of Sp(a; w) When w and p are Even Integers

Throughout this section we let w and p be even positive integers, with w = 2m where

m = 1,2, . . . . In this case s0 = (2m− 1)/p, which cannot equal an integer and so no double

pole can arise. More importantly, there is now only a finite set of poles of the integrand in (4)

at s = s0 and s = 0,1,2, . . . , K , where K = ⌊w/p⌋, since the poles of Γ(−s) at

s = K + k (k = 1,2, . . .) are cancelled by the trivial zeros of the zeta function ζ(s) at

s = −2,−4, . . .. This has the consequence that the integrand is holomorphic in

ℜ(s) > max{s0, K}, so that further displacement of the contour can produce no additional

algebraic terms in the expansion of Sp(a; w).

Thus, we find from (6) upon displacement of the integration path to the right over the

poles of the integrand

Sp(a; w) =
1

p
Γ

�

1−w

p

�

a(w−1)/p +

K
∑

k=0

(−)k
k!
ζ(w− pk) ak + (−)m(2π)w IL , (9)

where

IL =
(−)m(2π)−w

2πi

∫

L

Γ(−s)ζ(w− ps)asds (10)

and L denotes a path parallel to the imaginary axis withℜ(s)> (w/p)+δ, with δ denoting an

arbitrary positive quantity. This is easily seen to satisfy the requirement ℜ(s) > max{s0, K0}
necessary for the validity of (9). We now employ the functional relation for ζ(s) in (5) to

convert the argument of the zeta function in (10) into one with real part greater than unity.

The integral in (10) can then be written in the form

IL =
1

2πi

∫

L

ζ(1−w+ ps)
Γ(1−w+ ps)

Γ(1+ s)

sin 1
2πps

sinπs
χ−sds,

where χ = (2π)pa−1.

In [5, §8.1.4], the zeta function appearing in the above integrand was written as an infi-

nite series. Here we follow a suggestion made by J. Boersma and retain this function in the

integrand; see also [3, §8]. Making use of the expansion (see, for example, [5, p. 368])

sin 1
2πps

sinπs
= 2

N−1
∑

r=0

cosπ(
1

2
p−2r−1)s+

¨

0 (p/2 even)

1 (p/2 odd)
, N = [

1

4
p],

where square brackets denote the nearest integer part∗, we obtain

IL =

N−1
∑

r=0

{J+r + J−r }+
¨

0 (p/2 even)

J (p/2 odd)
. (11)

∗The nearest integer part corresponds to [x] = N when x is in the interval (N − 1
2
, N + 1

2
]. Note that when p = 2,

we have N = 0 and the above expansion contains no information.



R. Paris / Eur. J. Pure Appl. Math, 9 (2016), 3-18 9

Here we have defined the integrals J±r and J by

J±r =
1

2πi

∫

L

ζ(1−w+ ps)
Γ(1−w+ ps)

Γ(1+ s)
(χe∓πi(p/2−2r−1))−sds (12)

and

J =
1

2πi

∫

L

ζ(1−w+ ps)
Γ(1−w+ ps)

Γ(1+ s)
χ−sds. (13)

3.1. Asymptotic Evaluation of J±
r

and J

The integrals J±r and J have no poles in the half-plane ℜ(s) > (w/p) + δ, so that we can

displace the path L as far to the right as we please. On such a displaced path |s| is everywhere

large. Let M denote an arbitrary positive integer. The ratio of gamma functions appearing in

(12) and (13) may then be expanded by making use of the result (for p > 1) given in [5, p. 53]

Γ(1−w+ ps)

Γ(1+ s)
=

A

2π
(hκκ)−s

§M−1
∑

j=0

(−) jc jΓ(κs+ ϑ− j) +ρM (s)Γ(κs+ ϑ−M)

ª

, (14)

where c0 = 1, ρM (s) = O(1) as |s| →∞ in |arg s|< π and

κ= p− 1, h= p−p, ϑ =
1

2
− w, A= (2π)

1
2 κ

1
2−ϑpϑ. (15)

The coefficients c j ≡ c j(w, p) (0 ≤ j ≤ 4) are listed in [5, pp. 46–48] where an algorithm for

their determination is described; see Section 4 for details.

Substitution of the expansion (14) into the integrals J±r in (12) then produces

J±r =
A

2π

M−1
∑

j=0

(−) jc j

2πi

∫

L

ζ(1−w+ ps)Γ(κs+ ϑ− j) (X e∓πiψr )−κsds+R±M ,r

=
A

2πκ

M−1
∑

j=0

(X e∓πiψr )ϑ− j
(−) jc j

2πi

∫

L′
Γ(u)ζ(qu+λ j)(X e∓πiψr )−udu+R±M ,r .

Here we have made the change of variable u → κs + ϑ − j, with L′ denoting the modified

integration path, and have defined

X := κ(hχ)1/κ, ψr :=

1
2 p−2r−1

κ
, q :=

p

κ
, λ j := 1+

1

κ
(w+ p( j − 1

2
)) (16)

together with the remainders

R±M ,r =
A

4πi

∫

L

ρM (s)ζ(1−w+ ps)Γ(κs+ ϑ−M) (X e∓πiψr )−κsds. (17)

We note that λ j > 0 for j ≥ 0 when w > 0 and p ≥ 2. The above integrals appearing in J±r
may now be evaluated by means of (4), when we replace s by −s and allow the integration
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path (c−∞i, c+∞i) to coincide with the path L′, to yield the sum Sq(X e∓πiψr ;λ j) as defined

in (1). This evaluation is valid provided that the variable X e∓πiψr satisfies the convergence

condition |arg(X e∓πiψr )|< 1
2π; that is

�

�

�

arg a

κ
∓πψr

�

�

�<
1

2
π (0≤ r ≤ N − 1).

It is routine to verify that these conditions are met when |arg a|< 1
2π.

Thus we find

J±r =
A

2πκ

M−1
∑

j=0

(−) jc j(X e∓πiψr )ϑ− j Sq(X e∓πiψr ;λ j) +R±M ,r . (18)

Bounds for the remainders of the type R±M ,r have been considered in [5, p. 71, Lemma 2.7];

see also [2, §10.1]. The integration path in (17) is such that ℜ(1− w+ ps) > 1, so that we

may employ the bound |ζ(x + i y)| ≤ ζ(x) for x > 1. A slight modification of Lemma 2.7 in

[5, p. 71] then shows that

R±M ,r = O
�

X ϑ−M e−X e∓πiψr
�

(19)

as a→ 0 in the sector |arg a|< 1
2π.

An analogous procedure applied to J in (13) shows that

J =
A

2πκ

M−1
∑

j=0

(−) jc jX
ϑ− jSq(X ;λ j) +O(X ϑ−M e−X ) (20)

as a→ 0 in |arg a|< 1
2π.

3.2. The Expansion of Sp(a; w)

The expansion of IL as a→ 0 in |arg a| < 1
2π then follows from (9), (11), (18) and (20).

We obtain the following theorem.

Theorem 1. Let m and M be positive integers. Then, when w= 2m and p is also an even positive

integer, with K = ⌊w/p⌋ and N = [1
4 p] (with square brackets denoting the nearest integer part),

we have the expansion valid as a→ 0 in |arg a|< 1
2π

Sp(a; w) =
1

p
Γ

�

1−w

p

�

a(w−1)/p +

K
∑

k=0

(−)k
k!
ζ(w− pk) ak + (−)m(2π)w IL , (21)

with

IL =

N−1
∑

r=0

Er(a; w, p) +δpp∗ ÊN (a; w, p), (22)
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where δpp∗ is the Kronecker symbol with p∗ = 4N + 2. The sums Er(a; w, p) are given by†

Er(a; w, p) =
A

2πκ

∑

±

M−1
∑

j=0

(−) jc j(X e∓πiψr )ϑ− j Sq(X e∓πiψr ;λ j) + RM ,r (23)

for 0 ≤ r ≤ N − 1, where X = κ(h(2π)p/a)1/κ, ψr = (
1
2 p−2r−1)/κ (0 ≤ r ≤ N − 1),

λ j = 1+ (w+ p( j − 1
2))/κ, q = p/κ and the parameters κ, h, ϑ and A are defined in (15). The

leading coefficient c0 = 1 and c j ≡ c j(w, p) ( j ≥ 1) are discussed in Section 4. The sum ÊN (a; w, p)

is also given by (21) when we put ψN ≡ 0 and omit the summation
∑

±. The remainders RM ,r

satisfy the bound

RM ,r = O(max{X ϑ−M e−X e±πiψr }) (0≤ r ≤ N).

It is seen from (21), (22) and (23) that the sum Sp(a; w) has been expressed in terms of the

sums Sq(X e∓πiψr ;λ j), which involve the reciprocal power of the asymptotic variable a scaling

like a−1/κ. Thus, as a → 0 the argument X → ∞. It is obvious from the definition in (1)

(when q > 0) that

Sq(z;λ j)∼ e−z (z→∞ in |arg z|< 1

2
π),

so that the Er(a; w, p) represent a series of exponentially small expansions of increasing sub-

dominance in the small-a limit. In addition, the number of exponentially small expansions

increases by one each time p increases by 4. By means of a saddle-point analysis in the case

w = 0, this was demonstrated to correspond to a Stokes phenomenon when p was allowed

to vary continuously through the values p = 2,6,10, . . .; see [5, §§8.1.2, 8.1.7]. Finally, we

remark that the exponents p and q are conjugate exponents, since

1

p
+

1

q
= 1.

When a is a real parameter, the expansion in Theorem 1 can be expressed in a different

form by using (1) to represent the Sq(X e∓πiψr ;λ j) as infinite sums. Then from (23) we obtain

the following theorem:

Theorem 2. Let w and p be even positive integers, N = [1
4 p] and M be a positive integer. Then,

the exponentially small expansions in (23) valid as a→ 0+ can be written in the form

Er(a; w, p) =
A

πκ

∞
∑

n=1

nw−1X ϑn e−Xn cosπψr Υn,r (0≤ r ≤ N − 1), (24)

ÊN (a; w, p) =
A

2πκ

∞
∑

n=1

nw−1X ϑn e−XnΥn,N . (25)

The Υn,r (0≤ r ≤ N) have the asymptotic expansions

Υn,r =

M−1
∑

j=0

(−) jc jX
− j
n cos[Xn sinπψr +π( j − ϑ)ψr] +O(X−M

n ), (26)

†The symbol
∑

± signifies that the series with ± signs are to be added.
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where Xn = X np/κ = κ(h(2πn)p/a)1/κ, ψr = (
1
2 p−2r −1)/κ, ψN ≡ 0 and the other quantities

are as defined in Theorem 1.

The result in (21) and (22) is the analogue of the Poisson-Jacobi transformation in (2)

corresponding to w = 0, p = 2. In this latter case, N = 0 and, from (22), IL = E0(a; 0, 2).

The ratio of gamma functions in (14) is replaced by the single gamma function Γ(s + 1
2) by

the duplication formula for the gamma function, with the result that c0 = 1, c j = 0 ( j ≥ 1)

and consequently Υn,N = 1 for all n ≥ 1. Then, since K = 0 and ζ(0) = −1
2 , (21), (22) and

(25) reduce to (2). The resulting expansion is valid for all values of the parameter a (not just

a → 0) satisfying |arg a| < 1
2π. When w = 0, p = 2m, the expansions (24) and (25) reduce

to those given in [6]; see Section 5.

We observe that the n-dependence in the sums Er(a; w, p) from the factor nw−1X ϑn is given

by nw−1 npϑ/κ = n−(2w+p−2)/(2κ). Since p ≥ 2 and w> 0, this is seen to correspond to a negative

power of n.

4. The Coefficients c j

We describe an algorithm for the computation of the coefficients c j ≡ c j(w, p) that appear

in the exponentially small expansions Er(a; w, p) in (23) and (26). The expression for the ratio

of two gamma functions in (14), with α≡ 1−w for convenience, takes the form

Γ(α+ ps)

Γ(1+ s)Γ(κs+ ϑ)
=

A

2π
(hκκ)−s

§M−1
∑

j=0

c j

(1− κs− ϑ) j
+

ρM (s)

(1− κs− ϑ)M

ª

,

where the parameters κ, h, ϑ and A are defined in (15) and (α) j = Γ(α + j)/Γ(α) is the

Pochhammer symbol. If we introduce the scaled gamma function Γ∗(z) = Γ(z)/(
p

2π zz− 1
2 e−z),

then we have

Γ(βs+ γ) = Γ∗(βs+ γ)(2π)
1
2 e−βs(βs)βs+γ− 1

2 e(βs;γ),

where

e(βs;γ) := exp

�

(βs+ γ− 1

2
) log(1+

γ

βs
)− γ
�

.

The above ratio of gamma functions may therefore be rewritten as

R(s)G(s) =

M−1
∑

j=0

c j

(1− κs− ϑ) j
+

ρM (s)

(1− κs− ϑ)M
(27)

as |s| →∞ in |arg s|< π, where

R(s) =
e(ps;α)

e(s; 1)e(κs;ϑ)
, G(s) =

Γ∗(α+ ps)

Γ∗(1+ s)Γ∗(κs+ ϑ)
.

We now let ξ := (κs)−1 and expand R(s) and G(s) for ξ→ 0 making use of the well-known

expansion [5, p. 71]

Γ∗(z)∼
∞
∑

k=0

(−)kγkz−k (|z| →∞; |arg z|< π),
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where γk are the Stirling coefficients, with

γ0 = 1, γ1 = −
1

12
, γ2 =

1

288
, γ3 =

139

51840
, γ4 = −

571

2488320
, . . . .

After some straightforward algebra we find that

R(s) = 1+
ξ

2

§

α(α− 1)κ

p
− ϑ(ϑ− 1)

ª

+O(ξ2), G(s) = 1+
ξ

12

�

1− p− 1

p

�

+O(ξ2),

so that upon equating coefficients of ξ in (27)) we can obtain c1. The higher coefficients can

be obtained by matching coefficients recursively with the aid of Mathematica to find [5, p. 47]

c0 =1,

c1 =
1

24p
(2− 5p+ 2p2 − 12w+ 12pw+ 12w2),

c2 =
1

1152p2
(4+ 28p− 87p2 + 28p3 + 4p4 + 48w− 216pw+ 24p2w+ 144p3w

−96w2 − 120pw2 + 480p2w2 − 96w3 + 480pw3 + 144w4), . . . . (28)

The rapidly increasing complexity of the coefficients with j ≥ 3 prevents their presentation.

However, this procedure is found to work well in specific cases when the various parameters

have numerical values, where up to a maximum of 100 coefficients have been so calculated.

In Table 1 we present the values‡ of the coefficients c j for 1 ≤ j ≤ 8 in the specific examples

considered in Section 5.

Table 1: The Coefficients c j (1≤ j ≤ 8) for Different p and w.

j p = 4, w= 2 p = 4, w= 4 p = 6, w= 2 p = 6, w= 4

1 1.395833 (0) 3.645833 (0) 1.472222 (0) 3.305556 (0)

2 3.495009 (0) 1.648980 (1) 3.861497 (0) 1.469946 (1)

3 1.230179 (1) 9.075366 (1) 1.380091 (1) 8.081628 (1)

4 5.555372 (1) 5.899040 (2) 6.207979 (1) 5.260968 (2)

5 3.060544 (2) 4.424055 (3) 3.387328 (2) 3.949570 (3)

6 1.990604 (3) 3.760330 (4) 2.188492 (3) 3.358058 (4)

7 1.493190 (4) 3.572267 (5) 1.639364 (4) 3.189927 (5)

8 1.269216 (5) 3.750863 (6) 1.396172 (5) 3.348999 (6)

When p = 2, use of the duplication formula shows that the ratio of gamma functions in

(14) becomes

Γ(1
2− 1

2 w+s)Γ(1− 1
2 w+s)

Γ(1+ s)
=

M−1
∑

j=0

(−) jc jΓ(s+
1

2
−w− j) +ρM (s)Γ(s+

1

2
−w−M).

‡In the tables we write the values as x(y) instead of x × 10y .
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The coefficients c j in this case can be expressed in closed form as [5, p. 53]

c j =
(1

2 w) j(
1
2 +

1
2 w) j

j!
=

2−2 j(w)2 j

j!
(p = 2). (29)

Finally, we mention that when w= 0 (corresponding to the Euler-Jacobi series) the coefficients

c j are listed for p ≥ 2 and j ≤ 8 in [5, p. 374].

5. Numerical Results and Concluding Remarks

We present some examples of the expansion of Sp(a; w) given in Theorem 1 when p and

w= 2m are even integers. For convenience in presentation, we extract the factor e−z from the

sum Sq(z;λ j) by writing

Sq(z;λ j) = e−z Ŝ2(z;λ j), Ŝq(z;λ j) :=

∞
∑

n=1

e−z(nq−1)

nλ j
.

It follows that, when q > 0, Ŝq(z;λ j) = O(1) as z→∞ in |arg z|< 1
2π.

Example 1. In the case p = 2, we have κ = 1, q = 2, N = 0, K = m, p∗ = 2, ψ0 ≡ 0

and X = π2/a. The quantity δpp∗ = 1 so that the exponentially small component of S2(a; 2m)

consists of the single term Ê0(a; 2m, 2). From (21), (22), (23) and (29) we therefore find

S2(a; 2m)−1

2
Γ

�

1− 2m

2

�

am− 1
2 −

m
∑

k=0

(−)k
k!

ζ(2m− 2k)ak

=(−)m
�

a

π

�2m− 1
2

e−π
2/a

§M−1
∑

j=0

(−) j(2m)2 j

j!

�

a

4π2

� j

Ŝ2(π
2/a; 2m+ 2 j) +O(aM )

ª

(30)

as a→ 0 in the sector |arg a| < 1
2π. The expansion in this case has been given in an equivalent

form in [6].

Example 2. When p = 4, we have κ= 3, q = 4
3 , N = 1, K = ⌊12 m⌋, p∗ = 6 and

X = 3(
1

2
π)4/3 a−1/3, λ j =

1

3
(2m+ 4 j + 1).

The quantity δpp∗ = 0 so that there is the single exponentially small term E0(a; 2m, 4) with

ψ0 =
1
3 . Then we find the expansion as a→ 0 in |arg a|< 1

2π given by

S4(a; 2m)−1

4
Γ

�

1− 2m

4

�

a(2m−1)/4 −
K
∑

k=0

(−)k
k!

ζ(2m− 4k)ak
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=(−)m
�

2a

π

�(4m−1)/6∑

±
e−X e

∓ 1
3
πi∓ 1

3πiϑ

§M−1
∑

j=0

(−) jc j

(X e∓
1
3πi) j

Ŝ 4
3
(X e∓

1
3πi;λ j) +O(aM/3)

ª

(31)

where the coefficients c j ≡ c j(2m, 4) can be obtained from (28) and [5, p. 47] as

c0 =1,

c1 =
1

48
(7+ 36m+ 24m2),

c2 =
1

4608
(385+ 4392m+ 7104m2 + 3648m3 + 576m4),

c3 =
1

663552
(39655+ 1191132m+ 2970936m2 + 2666880m3

+ 1080000m4 + 200448m5 + 13824m6), . . . .

These coefficients are listed in Table 1 for 1≤ j ≤ 8 when m= 1 and m= 2.

Example 3. When p = 6, we have κ= 5, q = 6
5 , N = 1, K = ⌊13 m⌋ and

X = 5(
1

3
π)6/5 a−1/5, λ j =

1

5
(2m+ 6 j + 2).

In this case p∗ = 6, so that δpp∗ = 1 and there are now two exponentially small expansions

E0(a; 2m, 6), with ψ0 =
2
5 , and Ê1(a; 2m, 6). Then, as a → 0 in |arg a| < 1

2π, we have the

expansion

S6(a; 2m)−1

6
Γ

�

1− 2m

6

�

a(2m−1)/6 −
K
∑

k=0

(−)k
k!
ζ(2m− 6k)ak

=(−)m
�

3a

π

�(4m−1)/10∑

±
e−X e

∓ 2
5πi∓ 2

5πiϑ

§M−1
∑

j=0

(−) jc j

(X e∓
2
5πi) j

Ŝ 6
5
(X e∓

2
5πi;λ j) +O(aM/5)

ª

+ (−)m
�

3a

π

�(4m−1)/10

e−X

§M−1
∑

j=0

(−) jc j

X j
Ŝ 6

5
(X ;λ j) +O(aM/5)

ª

. (32)

The first few coefficients c j ≡ c j(2m, 6) are

c0 =1,

c1 =
1

36
(11+ 30m+ 12m2),

c2 =
1

2592
(517+ 3840m+ 4116m2 + 1392m3 + 144m4),

c3 =
1

1399680
(−22253+ 426550m+ 8181720m2 + 5237640m3

+ 1468800m4 + 185760m5 + 8640m6).

These coefficients are listed in Table 1 for 1≤ j ≤ 8 when m= 1 and m= 2.
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Table 2: Values of the Absolute Error in the Computation of Sp(a; w) Defined in (33) Using the Expansions
(30) and (31). The Value of the Index j0 Corresponds to Optimal Truncation of the Subdominant Expansion
E0(a; w, p).

p = 2, w= 2 p = 2, w= 4

a |Sp,w| |Sp,w − E0| j0 |Sp,w| |Sp,w − E0| j0
1.00 8.146(−06) 6.637(−09) 8 6.252(−07) 3.642(−08) 6

0.75 2.031(−07) 8.089(−12) 11 9.296(−09) 4.659(−11) 9

0.50 1.584(−10) 1.260(−17) 18 3.437(−12) 7.635(−17) 16

0.20 5.774(−24) 1.542(−43) 47 2.189(−26) 9.830(−43) 45

0.10 7.667(−46) 1.486(−86) 97 7.506(−49) 9.631(−86) 95

p = 4, w= 2 p = 4, w= 4

a |Sp,w| |Sp,w − E0| j0 |Sp,w| |Sp,w − E0| j0
0.200 3.473(−03) 1.329(−06) 7 3.919(−04) 8.742(−06) 6

0.100 4.863(−04) 2.749(−08) 11 4.805(−05) 4.879(−07) 8

0.050 2.737(−05) 2.156(−10) 14 8.456(−06) 1.420(−09) 11

0.010 4.221(−09) 4.621(−17) 23 7.982(−09) 3.041(−16) 21

0.001 1.064(−14) 1.033(−36) 53 1.876(−16) 6.799(−36) 51

We show the results of numerical calculations to demonstrate the achievable accuracy of

the expansion in Theorem 1. We define the difference between Sp(a; w) and the finite algebraic

expansion by

Sp,w ≡ Sp,w(a) := Sp(a; w)− 1

p
Γ

�

1− w

p

�

a(w−1)/p −
K
∑

k=0

(−)k
k!

ζ(w− pk) ak. (33)

In Table 2 we present the absolute error in the computation of Sp(a; w) for different values of

the parameter a in the two cases p = 2 and p = 4, with w= 2 and w= 4 using the expansions

given in (30) and (31). The first column in each entry displays the absolute value of Sp,w; that

is, the accuracy achievable with just the algebraic expansion and no subdominant exponential

terms. The second column shows the absolute error when the single optimally truncated expo-

nential expansion E0(a; w, p) (denoted by E0 in the table) is included. The optimal truncation

index j0, corresponding to truncation of the exponential expansion E0(a; w, p) at, or near, the

least term in magnitude, is indicated in the final column.

The situation when there is only a single subdominant exponentially small expansion

present is straightforward: this sum is truncated at some suitable point thereby introducing a

truncation error. If truncation is optimal, then the resulting error is exponentially more reces-

sive than the parent exponential expansion. However, in the case of two, or more, exponential

expansions of different degrees of subdominance (corresponding to p ≥ 6) the situation is not

so obvious. It is not clear, without further investigation, how the error from the truncated

leading exponential series compares with the contribution from the next series.

We illustrate this by considering the case p = 6 and w = 2 given in (32). In Table 3 we

present the absolute error in the computation of S6(a; 2) as a function of the parameter a. We

show, in order, the value of |S6,2| and the absolute error in S6,2− E0(a; 2, 6) when the leading
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subdominant exponential expansion E0(a; 2, 6) is optimally truncated at index j0. The fourth

column gives the absolute error when the first few terms of the second exponential expansion

Ê1(a; 2, 6) are included (for brevity in the table these exponential expansions are labelled E0

and E1, and their sum is denoted by E0,1). The final two columns show the values of the least

term (including prefactors) in E0(a; 2, 6) at optimal truncation and the values of the leading

term ( j = 0) of the sub-subdominant expansion Ê1(a; 2, 6).

A cursory inspection of Table 3 shows that for a ≃ 0.1 the leading term of Ê1(a; 2, 6) is less

than the minimum term of E0(a; 2, 6) and consequently that inclusion of Ê1(a; 2, 6) cannot

improve the accuracy. For a<∼0.01, the reverse is true: the leading terms of Ê1(a; 2, 6) are

greater than the minimum term of E0(a; 2, 6) and their inclusion therefore increases the overall

accuracy. However, it is clear that in both cases the final accuracy achievable is limited by the

optimal truncation of the leading subdominant expansion E0(a; 2, 6). Further improvement in

the accuracy would require a hyperasymptotic treatment in order to deal with the divergent

tails of E0(a; 2, 6) and Ê1(a; 2, 6). A possible hyperasymptotic scheme for the Euler-Jacobi

series with p = 3 and w= 0 has been discussed in [3, §8].

Table 3: Values of the Absolute Error in the Computation of S6(a; 2) Defined by (33) Using the Expansion
(32). The Value of the Index j0 Corresponds to Optimal Truncation of the Expansion E0(a; 2, 6).

a |S6,2| |S6,2 − E0| j0 |S6,2 − E0,1| Min |E0| E1( j = 0)

1×10−1 2.935(−02) 3.780(−05) 6 −− 9.422(−05) 5.095(−05)

5×10−2 1.617(−03) 3.037(−05) 8 1.200(−05) 1.729(−05) 1.191(−05)

1×10−2 9.512(−04) 1.193(−07) 12 5.339(−08) 1.228(−07) 1.904(−07)

5×10−3 1.292(−03) 1.099(−08) 13 8.713(−09) 9.090(−09) 2.148(−08)

1×10−3 1.604(−04) 3.452(−11) 19 3.483(−12) 3.757(−12) 4.053(−11)

1×10−4 9.894(−07) 8.801(−17) 31 2.230(−19) 3.024(−19) 9.201(−17)

1×10−5 6.209(−10) 1.522(−25) 51 1.963(−30) 1.964(−30) 1.564(−25)

Finally we remark that the asymptotics of the alternating version of (1) can be deduced

from the result in Theorem 1 by making use of the identity

∞
∑

n=1

(−)n e−anp

nw
= 21−wSp(2

pa; w)− Sp(a; w).
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